Az atomok periódusos rendszere

Hasonló dokumentumok
Az atomok periódusos rendszere

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Az elektronpályák feltöltődési sorrendje

Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só?

Elektronegativitás. Elektronegativitás

Minta vizsgalap (2007/08. I. félév)

3. A kémiai kötés. Kémiai kölcsönhatás

Kötések kialakítása - oktett elmélet

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

Az elemek rendszerezése, a periódusos rendszer

A kémiai kötés. Kémiai kölcsönhatás

Energiaminimum- elve

Periódusos rendszer (Mengyelejev, 1869) nemesgáz csoport: zárt héj, extra stabil

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat

A periódusos rendszer, periodikus tulajdonságok

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

Általános és szervetlen kémia 3. hét Kémiai kötések. Kötések kialakítása - oktett elmélet. Lewis-képlet és Lewis szerkezet

SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK

MINŐSÉGI KÉMIAI ANALÍZIS

1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10

A tételek: Elméleti témakörök. Általános kémia

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv: oldal) 1. Részletezze az atom felépítését!

Sav bázis egyensúlyok vizes oldatban

5. elıadás KRISTÁLYKÉMIAI ALAPOK

KÉMIA FELVÉTELI DOLGOZAT

Szalai István. ELTE Kémiai Intézet 1/74

Facultatea de Chimie și Inginerie Chimică, Universitatea Babeș-Bolyai Admitere 2015

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő

Kémiai reakciók. Közös elektronpár létrehozása. Általános és szervetlen kémia 10. hét. Elızı héten elsajátítottuk, hogy.

... Dátum:... (olvasható név)

Az anyagi rendszerek csoportosítása

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

5. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Közös elektronpár létrehozása

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

A természetes vizek összetétele

A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

Az anyagi rendszer fogalma, csoportosítása

A vegyületek csoportosítása

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan

ALPHA spektroszkópiai (ICP és AA) standard oldatok

ORVOSI KÉMIA. Az anyag szerkezete

Környezetvédelem / Laboratórium / Vizsgálati módszerek

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Oldódás, mint egyensúly

7. osztály Hevesy verseny, megyei forduló, 2003.

Az anyagi rendszerek csoportosítása

VÍZKEZELÉS Kazántápvíz előkészítés ioncserés sómentesítéssel

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.

KÖZSÉGI VERSENY KÉMIÁBÓL március 3.

Pufferrendszerek vizsgálata

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Oldódás, mint egyensúly

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000

A kovalens kötés polaritása

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Adszorpció folyadékelegyekből 2. Elektrolit oldat

3. változat. 2. Melyik megállapítás helyes: Az egyik gáz másikhoz viszonyított sűrűsége nem más,

6. A TALAJ KÉMIAI TULAJDONSÁGAI. Dr. Varga Csaba

Általános Kémia, BMEVESAA101

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont

I. ATOMOK, IONOK I FELELETVÁLASZTÁSOS TESZTEK

A tudós neve: Mit tudsz róla:

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály C változat

6. Melyik az az erős oxidáló- és vízelvonó szer, amely a szerves vegyületeket is roncsolja?

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

5. elıadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK

Kémiai reakciók Műszaki kémia, Anyagtan I. 11. előadás

KÖZSÉGI VERSENY KÉMIÁBÓL március 3.

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

20/10/2016 tema04_biolf_

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Indikátorok. brómtimolkék

Balazs Katalin_10_oraterv

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Bemutatkozás, a tárgy bemutatása, követelmények. Munkavédelmi tájékoztatás.

Az Analitikai kémia III laboratóriumi gyakorlat (TKBL0504) tematikája a BSc képzés szerint a 2010/2011 tanév I. félévére

Facultatea de Chimie și Inginerie Chimică, Universitatea Babeș-Bolyai Admitere 2017

7. évfolyam kémia osztályozó- és pótvizsga követelményei Témakörök: 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2.

Csermák Mihály: Kémia 8. Panoráma sorozat

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

A tételek: Elméleti témakörök. Általános kémia

Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1999

Átírás:

Az atomok periódusos rendszere Mengyelejev (1871): az elemeket relatív atomtömegük növekvő sorrendjében felírva egy táblázatot készített, amelyben egymás alatt a hasonló fizikai és kémiai tulajdonságú elemek kerültek periódusos rendszer

Az atomok elektronhéjának felépítése Atompályák alakja: s pályák gömbszimmetrikusak (maximum 2 elektron) p pályák egy csomósíkkal rendelkeznek (maximum 6 elektron) d pályák két csomósíkkal rendelkeznek (maximum 10 elektron) Az elektronhéj elektronjainak megadása: n s x p y ahol x és y az azonos energiájú elektronok száma

Az atomok elektronhéjának felépítése

Az atomok elektronhéjának felépítése Külső elektronhéj elektronszerkezete dönti el a kémiai kötések számát és módját vegyértékhéj Nemesgáz-konfiguráció: ns 2 ill. ns 2 p 6 a legstabilabb elektronszerkezet, melynek elérése után új héj kezd feltöltődni, tehát az elektronhéjak kiépülése periodikus. Figyelem! n = 3-tól a d pályák, n = 4-től az f pályák E értékei magasabbak az utánuk következő s ill. p-pályákénál

Az elemek fizikai tulajdonságai Az elemek legtöbb fizikai sajátsága periodikusan változik, pl. a sűrűség, mely az egyes periódusok közepe táján maximális értéket vesz fel, egy oszlopon belül pedig általában felülről lefelé nő. Az elemek sűrűsége szilárd halmazállapotban a rácstípus, a relatív atomtömeg és az atomméret függvénye és tág határozok között változik.

Az elemek fizikai tulajdonságai Az elemek olvadáspontja és forráspontja a rácstípuson kívül annak a kötésnek az erősségétől függ, amely a rácspontokban elhelyezkedő részecskéket tartja össze. Rácstípusok: atomrács, ionrács, molekularács, fémrács Az atomrácsot alkotó elemek esetén az összetartó erők tulajdonképpen vegyértékerők, így olvadáskor kémiai bomlás játszódik le, melyhez nagyobb energia szükséges. Magas hőmérsékleten olvadnak és forrnak, illetve szublimálnak. Atomrács: rácspontokban atomok, közöttük kovalens kötés Ionrácsos elem értelemszerűen nincs.

Az elemek fizikai tulajdonságai A molekularácsokat gyenge van der Waals erők tartják össze, ezért az ilyen elemek olvadás- és forráspontja alacsony. Molekularács: rácspontokban molekulák, közöttük van der Waals kötés A fémrácsos elemek a szoros illeszkedés és a delokalizált elektronfelhő kialakulása miatt általában szilárdak és magas olvadáspontúak. A rácspontok elmozdítása csak a rács kismértékű deformációjával jár, ezért a fémek alakíthatók. A delokalizált elektronfelhő miatt a fémek fém -fényűek, és vezetik az elektromos áramot. Fémrács: rácspontokban fémionok, közöttük elektrongáz

Az elemek kémiai tulajdonságai Oxigénnel a halogének és a nemesgázok kivételével valamennyi elem közvetlenül reagál megfelelő körülmények között, miközben oxidok keletkeznek. Vízzel az elemek egy része nem reagál. A fluor a vízből oxigént szabadít fel, és a többi halogén is képes erre, de lényegesen lassúbb két lépéses reakcióban. A hidrogénnél pozitívabb jellemű elemek a vízből hidrogént szabadítanak fel. de a tömör oxidréteg akadályozza a reakciót. Savakkal a hidrogénnél pozitívabb fémek hidrogénfejlődés közben reagálnak. Oxidáló hatású savak a hidrogénnél kevésbé pozitív fémekkel is reagálnak (hidrogén nem keletkezik!). A nemfémekkel csak erősen oxidáló hatású savak reagálnak.

Az elemek kémiai tulajdonságai Lúgoldatokkal a hidrogénnél pozitívabb fémek hidrogénfejlődés közben reagálnak, de a reakció csak az alkálifémek és a bárium (Ba) esetében játszódik le teljesen, mivel ezeknek a fémeknek a hidroxidjai oldhatók vízben. A többi fém felületén összefüggő hidroxidréteg keletkezik, mely a reakciót a továbbiakban meggátolja. Néhány fém hidroxidja lúgokban komplex képződés közben oldódik /ún. amfoter hidroxidok, pl. Al(OH) 3 /, így ezek a fémek hideg vízből nem, de lúg oldatokból hidrogént képesek fejleszteni. Számos nemfémes elem is reagál lúgokkal.

A nemfémes elemek általános tulajdonságai A nemfémes elemek a periódusos rendszer főcsoportjaiban a III-VIII. oszlopban találhatók. A harmadik oszlopból csak a bór (B),a negyedikből pedig a szén (C), szilicium (Si) és a germánium (Ge) nem fém. Külső héjuk elektronkonfigurációja: ns 2 np x (x = 1, 2, 3, 4, 5, 6). A nemfémek elektronleadással csak kivételesen tudnak ionná alakulni. A VI. és VII. oszlop nemfémes elemei 1, illetve 2 elektron felvételével anionokká alakulnak. A nemfémek tipikus ionvegyületeket alkotnak az I. és II. oszlop fémeivel. Egymással kovalens kötéseket létesítenek. Leggyakrabban molekularácsos (pl. SO 2, NO) ritkábban atomrácsos vegyületeket hoznak létre (pl. SiC, BN stb.).

A nemfémes elemek általános tulajdonságai Gázállapotban a nemesgázok kivételével többatomos molekulákat alkotnak (molekularács!), melyek magas hőmérsékleten atomjaikra disszociálnak. Sűrűségük általában nem túl nagy és az egyes csoportokban atomtömeg növekedésével nő. Hasonló szabályszerűséget mutat általában az olvadáspont és a forráspont menete is, színük a relatív atomtömeg növekedésével fokozatosan mélyül.

A fémes elemek általános tulajdonságai A periódusos rendszer elemeinek mintegy háromnegyed része fém. Külső héjuk általános elektronkonfigurációja: ns 2 np x (x = 1, 2). Az átmeneti fémek külső héján egységesen ns 2, az n-1 d pálya töltődik

A fémes elemek általános tulajdonságai Az egyes fémek fizikai tulajdonságai között általában jóval kisebb a különbség, mint az egyes nemfémek között. Ez, részben a fémes kötésre jellemző delokalizált elektronfelhővel magyarázható. A fémek sűrűsége széles határok között változik, a legkisebb az Alkálifémeké (0,6-1,9), a legnagyobb az ozmiumé (22,5) és az iridiumé (22,4). A fémeket sűrűségük szerint két nagy csoportra osztjuk: az 5 g/cm 3 -nél kisebb sűrűségű fémeket könnyű-, az annál nagyobb sűrűségűeket pedig nehézfémeknek nevezzük. Toxikus könnyűfém pl. Ba (3,5), nem toxikus nehézfém Fe (7,9)! A fémek szobahőmérsékleten a higany kivételével szilárd halmazállapotúak Képlékenyek, alakíthatók és nagy a szakítószilárdságuk, tehát anélkül nyújthatók, hogy rácsszerkezetük összetörne. Minél tisztább egy fém, annál inkább alakítható. A fémek vezetik az elektromos áramot. A tiszta fémek jobban. Legjobban vezetnek: arany, ezüst, réz, de az alumíniumot is használják.

A félfémek általános tulajdonságai Fémes és nemfémes tulajdonságú kristályokat is alkothatnak. Kémiai jellemzőik a fémek és a nemfémek között helyezkednek el. Például, oxidjaik gyakran amfoterek. Elektromos tulajdonságaik a félvezetőtől (B, Si, Ge) a kvázi-fémekig (például Sb) változnak.

Az elemek gyakorisága a földkéregben

Növényi tápelemek fajonként, fajtánként, részenként különböző a koncentrációban: N, K 2,0-6,0 % Ca, P, S 0,3-1,5 % Mg, Na 0,2-0,6 % Fe, Mn 20-200 ppm Zn 20-100 ppm Cu 5-10 ppm B (egyszikű) 10 ppm B (kétszikű) 20 100 ppm Mo 1 ppm Földkéregben: ppm milliomod rész N: 0,03% K: 2,6% mg/kg g/t Ca: 3,6% P: 0,1% S: 0,05% 2000-6000 ppm 0,002-0,02 % Mg: 2% Na: 2% Fe: 5% Mn: 0,1% Zn: 0,01% Cu: 0,01% B: 0,002% Mo: 0,001% O: 47% Si: 28% Al: 9% H: 0,14% C: 0,032% Cl: 0,02% Toxikus elemek: Radioaktív elemek: Pb: 0,002% Cd Hg As U Sr Co J 40 K (0,012%) (20 ppm) izotópok

Urangehalt der deutschen Böden: Urangehalt (mg U kg -1 ) der deutschen Ober- (links) und Unterböden (rechts), dargestellt nach DeKok und Schnug (2008)

Kémiai kötések Elsődleges kémiai kötések: energiaszegényebb állapot elérése a cél. Elektronegativitás : megadja, hogy egy atom a többihez képest milyen mértékben képes az elektronfelhőt maga köré sűríteni (0,6 4,00). Ionos kötés: ionok között elektrosztatikus vonzás Kovalens kötés: közös elektronpár révén megvalósuló elsőrendű kötés kolligációval: ha mindkét atom (egy-egy ellentétes spínű) elektronjából jön létre a kötés. H. + H. H - H datív módon: ha a kötést létesítő egyik atomtól (donor) származik mindkét elektron (a másik atom az akceptor). H: + H+ H - H A kötés és a molekula lehet poláros vagy apoláros: 06:54

σ pálya: Kétatomos molekulapályák töltésfelhő eloszlása hengerszimmetrikus kapcsolódó atomok szabad rotációja biztosított erős kötés π pálya: töltésfelhő eloszlása merőleges a kötéstengelyre kapcsolódó atomok szabad rotációja nem biztosított gyenge kötés

Lokalizálható molekulaszintek Atompályák kapcsolódásánál a vegyértékhéj pályái a másik atom polarizáló hatása miatt alakváltozást (hibridizációt) szenvednek. Az s, p és d pályák 5 legfontosabb hibridtípusa:

Kémiai kötések folytatás Fémes kötés: fémkationok és közöttük könnyen mozgó elektrongáz, policentrikus, n részecske esetén n-szeres felhasadás (sávok). Az elektronok szabadon elmozdulhatnak és nem lehet megállapítani, hogy melyik fémionhoz tartoznak. A vegyértékelektronok tehát a fémes kötés esetén az összes ion között vannak megosztva. Másodlagos kötések: Van der Waals - kötés: orientációs effektus (dipólusok kölcsönhatása) indukciós effektus (indukált dipólus kölcsönhatás) diszperziós effektus (nem dipólusok kölcsönhatása) Hidrogén kötés: H és nagy elektronegativitású atom (O, N, F) közötti elektrosztatikus vonzás

Halmazok, homogén és heterogén rendszerek Szilárd halmazállapot jellemzői: amorf vagy kristályos szerkezet

Halmazok, homogén és heterogén rendszerek Atomrács: rácspontokban atomok, közöttük kovalens kötés pl.: SiO 2 (α-kvarc) Ionrács: rácspontokban ionok, közöttük elektrosztatikus vonzás pl.: NaCl (konyhasó) Molekularács: rácspontokban molekulák, közöttük másodlagos kötés pl.: H 2 O (jég) Fémrács: rácspontokban fémionok, közöttük elektrongáz pl.: bronz

A vegyületek általános tulajdonságai Két atom között létrejövő kötés jellegét az atomok elektronegativitásának összege és különbsége határozza meg. Különbség/ Összeg 0,5 0,5 1,0 1,0 1,5 2,0 5-8 kovalens apoláros kovalens gyengén poláros kovalens erősen poláros ionos EN Ionos kötés 3-5 kovalens fémes átmeneti kovalens gyengén poláros kovalens erősen poláros ionos Fémes kötés Kovalens kötés EN 2-3 fémes kovalens vagy fémes kovalens erősen poláros -

Kötés jelleg - elektronegativitás Különbség/Összeg 0,5 0,5 1,0 1,0 1,5 2,0 5-8 kovalens apoláros kovalens gyengén poláros kovalens erősen poláros ionos 3-5 kovalens fémes átmeneti kovalens gyengén poláros 2-3 fémes kovalens vagy fémes kovalens erősen poláros kovalens erősen poláros ionos -

A vegyületek oldhatósága függ a szilárd anyag molekulái, ionjai közötti kötés erősségétől A vegyületek oldhatósága függ az oldatba kerülő molekulák illetve ionok és az oldószer molekulái illetve ionjai közötti kötés erősségétől A fémoxidok maguk sohasem oldódnak vízben, csak ha hidroxidokká alakulnak. A hidroxidok közül csak az alkálifémek hidroxidjai és a báriumhidroxid oldódnak jól, kevéssé oldódik még a stroncium (Sr) és a kalcium (Ca), forró vízben pedig a magnézium (Mg) hidroxidja.

Fémhidroxidok oldhatósága [OH - ] = 10-14 /[H + ] lg[oh - ] = -14-lg[H + ] L = [Fe 3+ ].[OH - ] 3 = 1,7*10-39 [Fe 3+ ] = 1,7*10-39 / [OH - ] 3 lg[fe 3+ ] = -38,77-3*lg[OH - ] = 3,23 3*(-lg [H + ]) L = [Fe 2+ ].[OH - ] 2 = 4,9*10-17 [Fe 2+ ] = 4,9*10-17 / [OH - ] 2 lg[fe 2+ ] = -16,31-2*lg[OH - ] = 25,69 2*(-lg [H + ]) 0-1 -2-3 -4-5 -6-7 -8-9 -10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ph lg(c) Fe(OH) 3 Fe(OH) 2

Fémhidroxidok oldhatósága Komplexképződés befolyása

Foszfor a talajban Összes P 0,02-0,1% (nagyrészt erősen kötött) 50% szerves 50% szervetlen Szervetlen foszfátok Eredeti ásvány:» Ca 5 (PO 4 ) 3 F fluorapatit» Ca 5 (PO 4 ) 3 OH hidroxiapatit Átalakulási termékek: Ca 3 (PO 4 ) 2, CaHPO 4, Ca(H 2 PO 4 ) 2 Ca foszfátok AlPO 4.2H 2 O variszcit FePO 4 strengtit

Foszfátok ph függő oldhatósága AlPO 4.2H 2 O (variszcit) L=9,84E -21 9,84E- 21 FePO 4 (strengtit) L=1,30E -22

Oldhatósági szorzat Ca 3 (PO 4 ) 2 CaHPO 4 2,07E-33 1,00E-07

Vas, mangán és néhány kis mennyiségben előforduló fém Vas: A foszfor hozzáférhetőségét befolyásolja Fe 2+ - vízben oldódik (FeS nem), míg az Fe 3+ nem. Oxidatív, ph 7,5-7,7 környezetben Fe 3+ - (Fe(OH) 3 ) kicsapódik, a foszfor adszorbeálódik a vashidroxid felületén és kiülepszik (koprecipitáció). A toxikus nehézfémek is kicsapódnak a vas precipitátumokkal (csapadékokkal). Gyöngyösoroszi bányavíz tisztítás!

Komplex szennyezők kicsapatása Lúgos bontás hidroxo komplex Komplexképződési egyensúly szabad komplexképző eltávolítása (másik fázis, oxidáció) erősebb csapadékképző komplex Trimercapto-s-triazin tmt 15 szennyvizekben oldott, komplex kötésű, egy- és kétértékű nehézfémek (pl. ólom, kadmium, réz, nikkel, higany, ezüst) kicsapatására, mivel ezeket komplexképző anyagok jelenlétében nem lehet hidroxidok formájában kicsapni.

A kémiai gyakorlatban gyakran előforduló sók vízben való oldhatósága: a nitrátok mind oldhatók (NO 3- ) a klorátok mind oldhatók (Cl0 3- ) a perklorátok mind oldhatók (Cl0 4- ), kivéve a kálium-perklorátot (KCl0 4 ) fluoridok oldhatók, kivéve a Ca 2+, Sr 2+ és Ba 2+ és Al 3+ fluoridjait (F - ), a kloridok (Cl - ) és bromidok (Br - ), jodidok (I - ) általában oldhatók

A kémiai gyakorlatban gyakran előforduló sók vízben való oldhatósága: a karbonátok és a foszfátok általában oldhatatlanok, kivéve az alkálifémek és az ammónium karbonátjait és foszfátjait (CO 3 2-,PO 4 3- ). Több fém (pl. Ca 2+, Ba 2+, Mg 2+ és Pb 2+ ) hidrogénkarbonátja vízoldható (HCO 3- ), a szulfidok közül csak az alkáli- és alkáliföldfémek szulfidjai oldódnak (S 2- ). a szulfátok közül nem oldható a Ba 2+, Sr 2+ és Pb 2+ szulfátjai (SO 4 2- ), és rosszul oldódik az Ag + és Hg 2+ szulfát a szulfit és tioszulfát ionoknak csak az alkálifémekkel alkotott sói oldhatók (SO 3 2-, S 2 O 3 2- ).

Vízkeménység Vízkő-kiválás. Okozzák: kalcium és magnézium sók. Változó keménység: Ca(HCO 3 ) 2, Mg(HCO 3 ) 2 Forralás CO 2 vesztés karbonát kiválás Állandó keménység: Oldható Ca, Mg sók (CaCl 2 ) Csapadékképződés (pl.: Ca-szappan) Mértéke: német keménységi fok A definíció szerint: 1 nk = 10 mg CaO / lit.

Vízlágyítás Régi kémiai módszerek (általában ipari): meszes lágvítás Ca(HCO 3 ) 2 + Ca(OH) 2 = 2 CaCO 3 + 2 H 2 O Csak a változó keménységet távolítja el. Ez a karbonát mentesítés. Egyben részleges sótalanítás is, mert csökken az összes só tartalom is. Alkalmazása: magas változó keménység (szikes vizek) esetén indokolt. Nem 100 %-os, de ma is alkalmazott módszer -> előlágyításra - a mész olcsó. Szódás eljárás: ha magas az állandó keménység, változó alig van, (ritka eset): CaCI 2 + Na 2 CO 3 = CaCO 3 + 2 NaCI A fenti két módszer kombinációja a mész-szódás eljárás A vegyszer feleslegek végül egymással is reagálnak: Ca(OH) 2 + Na 2 CO 3 = CaCO 3 + 2 NaOH Trisós eljárás: Na 3 PO 4 reagál az állandó és változó keménységet okozó kalcium- és magnézium sókkal -> oldhatatlan csapadék (Ca 3 (PO 4 ) 2, Mg 3 (PO 4 ) 2 ) költségesebb. Iszap-szerű csapadék - nem képez nehezen eltávolítható lerakódást.

Ioncserélő műgyanták aktív csoportokkal rendelkező polimer polimer műgyanta, gyöngypolimer Szilárd szemcsés ioncserélő anyagok szilárd sónak, savnak, bázisnak tekinthetők. Az ioncserélő műgyanták térhálós szerkezetű szerves molekulavázból állnak, amelyen disszociációra képes aktív csoportok foglalnak helyet. az aktív csoportok kicserélhetők protonra (H + ), Na + -ra >>> KATIONCSERÉLŐ hidroxil ionra (OH - ), Cl - -re>>> ANIONCSERÉLŐ Deszt víz: H +, OH -, Lágy víz: Na + Cl -

Ioncserélő műgyanták Az aktív csoport jellege szerint lehet Gyengén savas, pl.: -COO - Erősen savas kationcserélő gyanta, pl.: -SO 3 Gyengén bázisos, pl.: -NH 3 + Erősen bázisos anioncserélő gyanta, pl.: -NR 3 +

Ioncserélő műgyanták Az erősen savas ioncserélők (-SO 3 ) általában nem szelektívek. Kötéserősség-sorrend: H + < Na + < NH 4+ < K + < Mg 2+ < Ca 2+ < Al 3+ A kötéserősség az ionok töltésszámának növekedésével nő. A gyengén savas ioncserélők (-COO - ) kötési sorrendje: K + < Na + < Mg 2+ < Ca 2+ < H + Az erősen bázisos ioncserélők (-NR 3+ ) kötési sorrendje: OH - < HCO 3 < Cl - < CO 3 2 < SiO 3 2 < SO 4 2 A gyengén bázisos ioncserélők (-NH 3+ ) kötési sorrendje: HCO 3 < CO 3 2 < SiO 3 2 < Cl - < SO 4 2 < OH -

Ioncserélő készülékek I. Külön ágyas berendezések a kationcserélő és az anioncserélő műgyanta külön oszlopban van elhelyezve először a kationokat, majd az anionokat cseréljük ki regenerálás: kationcserélő >>>HCl anioncserélő >NaOH

Külön ágyas berendezés sematikus rajza Működtetés: csapvíz Kationcserélő oszlop Anioncserélő oszlop S ioncserélt víz duzzasztás regenerálás víztermelés

Ioncserélő készülékek II. Kevert ágyas berendezések a kationcserélő és az anioncserélő műgyanta egy oszlopban van elhelyezve egyszerre cseréli a kationokat és az anionokat regenerálás: a gyártó regenerálja (szeparálás, külön regenerálás) Jellemzően a külön ágyas berendezés után csatlakoztatva ionmentes víz előállítás

Kevert ágyas berendezés sematikus rajza Működtetés: Kevert ioncserélő oszlop S duzzasztás csapvíz ioncserélt víz regenerálás víztermelés Vízlágyítás esetén regenerálás: tömény NaCl oldat

Intézeti ioncserélő készülék