2003/1. Mennyi zsír van abban a fél literes tejeszacskóban, amelynek felirata szerint a zsírtartalma 2,8%? 2p 2004/1. Egy cég a csökkentett alkoholtartalmú sörkészítményét fél literes üvegben forgalmazza. Hány dl alkohol van egy ilyen üvegben, ha felirata szerint a benne lévő sör 2,8%-os alkoholtartalmú? Megoldását indokolja! 2004/17. Egy 28 fős diákcsoport autóbusszal 7 napos táborozásra indul. A csoport tagjai előzőleg elhatározták, hogy a kirándulás költségeinek a fedezésére elmennek almát szedni. a) A munka utáni elszámoláskor kiderült, hogy minden nap megduplázták előző napi bevételüket. (Egyre többen mentek, és egyre hosszabb ideig dolgoztak.) Mennyi pénzt kerestek öt nap alatt, ha az első napi munkabérük 5000 Ft volt? b) Az 5 napi kereset kevésnek bizonyult, ezért a 6. napon is dolgoztak, és az előző napi bevételüket most is megduplázták. Mennyit kerestek ezen a napon? c) A szállás megrendeléséhez szükséges hatjegyű telefonszám utolsó számjegye elmosódott a papíron, így csak az első öt jegyet tudták biztosan: 24375. A csoport egyik tagja arra biztosan emlékezett, hogy a hatjegyű szám osztható volt hattal. Melyik számjegy állhat az utolsó helyen? d) A táborba autóbusszal utaztak, amelyre ülésrendet állítottak össze. Az első két ülésre 25-en jelentkeztek. Hányféleképpen lehet kiválasztani a két tanulót, ha azt is figyelembe kell venni, hogy ki ül az ablak mellett? (3 p) e) A csoportot négyszemélyes faházakban szállásolják el. Minden nap más faház lakói főzik az ebédet. Hányféleképpen lehet beosztani a főzés sorrendjét? f) Hányféle beosztás lehetséges, ha a tervekkel ellentétben a táborozás csak öt napig tart? 2005/05.10/17. Anna és Zsuzsi is szeretné megvenni az újságosnál az egyik magazint, de egyik lánynak sincs elegendő pénze. Anna pénzéből hiányzik a magazin árának 12%-a, Zsuzsi pénzéből pedig az ár egyötöde. Ezért elhatározzák, hogy közösen veszik meg a magazint. A vásárlás után összesen 714 Ft-juk maradt. a) Mennyibe került a magazin, és mennyi pénzük volt a lányoknak külön-külön a vásárlás előtt? (10 pont) b) A maradék 714 Ft-ot igazságosan akarják elosztani, azaz úgy, hogy a vásárlás előtti és utáni pénzük aránya azonos legyen. Hány forintja maradt Annának, illetve Zsuzsinak az osztozkodás után? (7 pont) 2005/05/28/2. Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 10%-kal olcsóbban lehet megvenni. Mennyi a télikabát leszállított ára? 2005/05/28/15. Egy sportuszoda 50 méteres medencéjében egy edzés végén úszóversenyt rendeztek. A versenyt figyelve az edző a következő grafikont rajzolta két tanítványának, Robinak és Jánosnak az úszásáról. Olvassa le a grafikonról, hogy a) mennyi volt a legnagyobb távolság a két fiú között a verseny során; (1 pont) b) mikor előzte meg János Robit; c) melyikük volt gyorsabb a 35. másodpercben! A 4 100-as gyorsváltó házi versenyén a döntőbe a Delfinek, a Halak, a Vidrák és a Cápák csapata került. d) Hányféle sorrend lehetséges közöttük, ha azt biztosan tudjuk, hogy nem a Delfinek csapata lesz a negyedik? e) A verseny után kiderült, hogy az élen kettős holtverseny alakult ki, és a Delfinek valóban nem lettek az utolsók. Feltéve, hogy valakinek csak ezek az információk jutottak a tudomására, akkor ennek megfelelően hányféle eredménylistát állíthatott össze? 2005/05/28/17. Egy teherautóval több zöldségboltba almát szállítottak. Az egyik üzletbe 60 kg jonatánt, 135 kg starkingot, 150 kg idaredet és 195 kg golden almát vittek. A jonatán és az idared alma kilóját egyaránt 120 Ft-ért, a starking és a golden kilóját 85 Ft-ért árulta a zöldséges. a) Hány százalékkal volt drágább a jonatán alma kilója a goldenéhez képest? b) Mennyi bevételhez jutott a zöldséges, ha a teljes mennyiséget eladta? c) A zöldségeshez kiszállított árukészlet alapján számítsa ki, hogy átlagosan mennyibe került nála 1 kg alma! d) Ábrázolja kördiagramon a zöldségeshez érkezett alma mennyiségének fajták szerinti megoszlását! (6 pont) A jonatán alma mérete kisebb, mint az idaredé, így abból átlagosan 25%-kal több darab fér egy ládába, mint az idaredből. Rakodásnál mindkét fajtából kiborult egy-egy tele láda alma, és tartalmuk összekeveredett. e) A kiborult almákból véletlenszerűen kiválasztva egyet, mekkora a valószínűsége annak, hogy az jonatán lesz? 2005/05/29/3. Egy vállalat 250 000 Ft-ért vásárol egy számítógépet. A gép egy év alatt 10%-ot veszít az értékéből. Mennyi lesz a gép értéke 1 év elteltével? Írja le a számítás menetét! 2005/05/29/17. Budapestről reggel 7 órakor egy tehervonat indul Debrecenbe, amely megállás nélkül egyenletes sebességgel halad. A koordinátarendszerben a tehervonat által megtett utat ábrázoltuk az idő függvényében. a) Mekkora utat tett meg a tehervonat az első órában? b) Számítsa ki, hogy hány óra alatt tesz meg a tehervonat 108 kilométert? Budapestről reggel 7 óra 30 perckor egy gyorsvonat is indul ugyanazon az útvonalon Debrecenbe, amely megállás nélkül 70 km/h állandó nagyságú sebességgel halad. c) Rajzolja be a fenti koordinátarendszerbe a gyorsvonat út-idő grafikonját a 7 óra 30 perc és 9 óra 30 perc közötti időszakban! d) Számítsa ki, hogy mikor és mekkora út megtétele után éri utol a gyorsvonat a tehervonatot! (11 pont) 2005/10/18. 2001-ben a havi villanyszámla egy háztartás esetében három részből állt. - az alapdíj 240 Ft, ez független a fogyasztástól,
- a nappali áram díja 1 kwh fogyasztás esetén 19,8 Ft, - az éjszakai áram díja 1 kwh fogyasztás esetén 10,2 Ft. A számla teljes értékének 12%-át kell még általános forgalmi adóként (ÁFA) kifizetnie a fogyasztónak. a) Mennyit fizetett forintra kerekítve egy család abban a hónapban, amikor a nappali fogyasztása 39 kwh, az éjszakai fogyasztása 24 kwh volt? b) Adjon képletet a befizetendő számla F összegére, ha a nappali fogyasztás x kwh, és az éjszakai fogyasztás pedig y kwh! c) Mennyi volt a család fogyasztása a nappali illetve és az éjszakai áramból abban a hónapban, amikor 5456 Ft-ot fizettek, és tudjuk, hogy a nappali fogyasztásuk kétszer akkora volt, mint az éjszakai? (8 pont) d) Mekkora volt a nappali és az éjszakai fogyasztás aránya abban a hónapban, amikor a kétféle fogyasztásért (alapdíj és ÁFA nélkül) ugyanannyit kellett fizetni? 2006/02/11. Egy farmernadrág árát 20%-kal felemelték, majd amikor nem volt elég nagy a forgalom, az utóbbi árat 25%-kal csökkentették. Most 3600 Ft-ért lehet a farmert megvenni. Mennyi volt az eredeti ára? Válaszát számítással indokolja! 2006/05/1. Egy háromszög belső szögeinek aránya 2:5:11. Hány fokos a legkisebb szög? 2006/05/3. A pozitív egészeket növekvő sorrendbe állítjuk. Melyik szám nagyobb: a hetedik 13-mal osztható pozitív egész, vagy a tizenharmadik 7- tel osztható pozitív egész? 2006/05/9. Egy négytagú társaság e-mail kapcsolatban van egymással. Bármelyikük egy-egy társának legfeljebb egy levelet ír hetente. Válassza ki a felsorolt lehetőségek közül, hogy maximum hány levelet írhatott összesen egymásnak a társaság 4 tagja 1 hét alatt? Válaszát indokolja! a) 4 4 = 16 b) 4 3 = 12 c) 4 3 6 2 2006/05/15. A 12. évfolyam tanulói magyarból próbaérettségit írtak. Minden tanuló egy kódszámot kapott, amely az 1, 2, 3, 4 és 5 számjegyekből mindegyiket pontosan egyszer tartalmazta valamilyen sorrendben. a) Hány tanuló írta meg a dolgozatot, ha az összes képezhető kódszámot mind kiosztották? b) Az alábbi kördiagram a dolgozatok eredményét szemlélteti: Adja meg, hogy hány tanuló érte el a szereplő érdemjegyeket! Válaszát foglalja táblázatba, majd a táblázat adatait szemléltesse oszlopdiagramon is! (6 pont) c) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe? 2006/05/17. Egy televíziós játékban 5 kérdést tehet fel a játékvezető. A játék során a versenyző, ha az első kérdésre jól válaszol, 40 000 forintot nyer. Minden további kérdés esetén döntenie kell, hogy a játékban addig megszerzett pénzének 50, 75 vagy 100 százalékát teszi-e fel. Ha jól válaszol, feltett pénzének kétszeresét kapja vissza, ha hibázik, abba kell hagynia a játékot, és a fel nem tett pénzét viheti haza. a) Mennyi pénzt visz haza az a játékos, aki mind az öt feltett kérdésre jól válaszol, s bátran kockáztatva mindig a legnagyobb tétet teszi meg? b) Az a játékos, aki mindig helyesen válaszol, de óvatos, és a négy utolsó fordulóban pénzének csak 50%-át teszi fel, hány forintot visz haza? c) A vetélkedő során az egyik versenyző az első négy kérdésre jól válaszolt. A második kérdésnél a pénzének 100%-át, a 3., 4. és 5. kérdés esetén pénzének 75%-át tette fel. Az 5. kérdésre sajnos rosszul válaszolt. Hány forintot vihetett haza ez a játékos? (5 pont) d) Egy versenyző mind az 5 fordulóban jól válaszol, és közben minden fordulóban azonos eséllyel teszi meg a játékban megengedett lehetőségek valamelyikét. Mennyi annak a valószínűsége, hogy az elnyerhető maximális pénzt viheti haza? 2006/10/15. Az erdőgazdaságban háromféle fát nevelnek (fenyő, tölgy, platán) három téglalap elrendezésű parcellában. A tölgyfák parcellájában 4- gyel kevesebb sor van, mint a fenyőfákéban, és minden sorban 5-tel kevesebb fa van, mint ahány fa a fenyő parcella egy sorában áll. 360-nal kevesebb tölgyfa van, mint fenyőfa. A platánok telepítésekor a fenyőkéhez viszonyítva a sorok számát 3-mal, az egy sorban lévő fák számát 2-vel növelték. Így 228-cal több platánfát telepítettek, mint fenyőt. a) Hány sor van a fenyők parcellájában? Hány fenyőfa van egy sorban? (10 pont) b) Hány platánfát telepítettek? 2007/05/4. Bea édesapja két és félszer olyan idős most, mint Bea. 5 év múlva az édesapa 50 éves lesz. Hány éves most Bea? Válaszát indokolja! 2007/10/14. Az iskola rajztermében minden rajzasztalhoz két széket tettek, de így a legnagyobb létszámú osztályból nyolc tanulónak nem jutott ülőhely. Minden rajzasztalhoz betettek egy további széket, és így hét üres hely maradt, amikor ebből az osztályból mindenki leült. a) Hány rajzasztal van a teremben? Hányan járnak az iskola legnagyobb létszámú osztályába? (6 pont) A rajzterem falát (lásd az ábrán) egy naptár díszíti, melyen három forgatható korong található. A bal oldali korongon a hónapok nevei vannak, a másik két korongon pedig a napokat jelölő számjegyek forgathatók ki. A középső korongon a 0, 1, 2, 3; a jobb szélsőn pedig a 0, 1, 2, 3,...8, 9 számjegyek szerepelnek. Az ábrán beállított dátum február 15. Ezzel a szerkezettel kiforgathatunk valóságos vagy csak a képzeletben létező dátumokat. b) Összesen hány dátum forgatható ki? c) Mennyi a valószínűsége annak, hogy a három korongot véletlenszerűen megforgatva olyan dátumot kapunk, amely biztosan létezik az évben, ha az nem szökőév.
2007/10/16. Egy televíziós vetélkedőn 20 játékos vesz részt. A műsorvezető kérdésére a lehetséges három válasz közül kell a játékosoknak az egyetlen helyes megoldást kiválasztani, melyet az A, a B vagy a C gomb megnyomásával jelezhetnek. A vetélkedő három fordulóból áll, minden fordulóban négy kérdésre kell válaszolni. Amelyik versenyző hibásan válaszol, 0 pontot kap. A helyes válaszért annyi pont jár, ahány helytelen válasz született (pl. ha Péter jól válaszol és 12-en hibáznak, akkor Péter 12 pontot szerez). a) Töltse ki az első forduló táblázatának hiányzó adatait! b) Hány százalékkal növekedett volna Anikó összpontszáma az első fordulóban, ha a második kérdésre is jól válaszolt volna? (A többi játékos válaszát változatlannak képzeljük.) c) Ha Anikó valamelyik másik fordulóban mind a négy kérdésre találomra válaszol, akkor mennyi annak a valószínűsége, hogy minden válasza helyes? d) Hány játékosnak kell helyesen válaszolnia egy adott kérdésre ahhoz, hogy a 20 játékosnak erre a kérdésre kapott összpontszáma a lehető legtöbb legyen? Válaszát indokolja! (7 pont) 2008/05/2. Egy 7-tagú társaságban mindenki mindenkivel egyszer kezet fogott. Hány kézfogás történt? 2008/05/4. Ha fél kilogramm narancs 75 Ft-ba kerül, akkor hány kilogramm narancsot kapunk 300 Ft-ért? 2008/05/12. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik mindkét nyelven? Válaszát indokolja! 2008/05/18. Egy szerencsejáték a következőképpen zajlik: A játékos befizet 7 forintot, ezután a játékvezető feldob egy szabályos dobókockát. A dobás eredményének ismeretében a játékos abbahagyhatja a játékot; ez esetben annyi Ftot kap, amennyi a dobott szám volt. Dönthet azonban úgy is, hogy nem kéri a dobott számnak megfelelő pénzt, hanem újabb 7 forintért még egy dobást kér. A játékvezető ekkor újra feldobja a kockát. A két dobás eredményének ismeretében annyi forintot fizet ki a játékosnak, amennyi az első és a második dobás eredményének szorzata. Ezzel a játék véget ér. Zsófi úgy dönt, hogy ha 3-nál kisebb az első dobás eredménye, akkor abbahagyja, különben pedig folytatja a játékot. a) Mennyi annak a valószínűsége, hogy Zsófi tovább játszik? b) Zsófi játékának megkezdése előtt számítsuk ki, mekkora valószínűséggel fizet majd neki a játékvezető pontosan 12 forintot? (6 pont) Barnabás úgy dönt, hogy mindenképpen két dobást kér majd. Áttekinti a két dobás utáni lehetséges egyenlegeket: a neki kifizetett és az általa befizetett pénz különbségét. c) Írja be a táblázat üres mezőibe a két dobás utáni egyenlegeket! d) Mekkora annak a valószínűsége, hogy Barnabás egy (két dobásból álló) játszmában nyer? 2009/05/2. Számítsa ki a 12 és 75 számok mértani közepét! 2009/05/11. Egy kisüzem 6 egyforma teljesítményű gépe 12 nap alatt gyártaná le a megrendelt csavarmennyiséget. Hány ugyanilyen teljesítményű gépnek kellene dolgoznia ahhoz, hogy ugyanennyi csavart 4 nap alatt készítsenek el? 2009/10/1. Számítsa ki 25 és 121 számtani és mértani közepét! 2010/05/13. Számítsa ki azt a két pozitív számot, amelyek számtani (aritmetikai) közepe 8, mértani (geometriai) közepe pedig 4,8. (12 pont) 2010/10/2. Egy baráti társaság minden tagja írt egy-egy SMS üzenetet a társaság minden további tagjának. Így mindenki 11 üzenetet írt. Hány SMS-t írtak egymásnak összesen a társaság tagjai? (2p) 2011/05/11. Melyik a 201-edik pozitív páros szám? Válaszát indokolja! 2p 2011/05.03/6. Egy hattagú társaságban mindenki a társaságnak pontosan három tagjával fogott kezet. Hány kézfogásra került sor? 2p kmatma/2011/05 /9. Tapasztalatok szerint egy férfi cm-ben mért (h) magasságának és alkarjának hossza (a) között a következő összefüggés áll fenn: h 10a 256):3 Ezen összefüggés szerint milyen hosszú egy 182 cm magas férfi alkarja? Válaszát indokolja! 3p 2011/05.03/10. Egy könyvritkaság értéke a katalógus szerint két éve 23 000 Ft volt. Ez az érték egy év alatt 20%-kal nőtt. A második évben 30%-os volt az értéknövekedés. Mennyi lett a könyv értéke két év után? Hány százalékos a két év alatt az értéknövekedés? Válaszát indokolja! 2p kmat_2012_okt/6. Egy szám 5/6 részének a 20%-a 31. Melyik ez a szám? Válaszát indokolja! (3p) kmat_2012_okt/16. Stefi mobiltelefon-költségeinek fedezésére feltöltőkártyát szokott vásárolni. A mobiltársaság ebben az esetben sem előfizetési díjat, sem hívásonkénti kapcsolási díjat nem számol fel. Csúcsidőben a percdíj 25 forinttal drágább, mint csúcsidőn kívül. Stefi az elmúlt négy hétben összesen 2 órát telefonált és 4000 Ft-ot használt fel kártyája egyenlegéből úgy, hogy ugyanannyi pénzt költött csúcsidőn belüli, mint csúcsidőn kívüli beszélgetésekre. a) Hány percet beszélt Stefi mobiltelefonján csúcsidőben az elmúlt négy hétben? A mobiltársaság Telint néven új mobilinternet csomagot vezet be a piacra január elsején. Januárban 10 000 új előfizetőt várnak, majd ezután minden hónapban az előző havinál 7,5%-kal több új előfizetőre számítanak. Abban a hónapban, amikor az adott havi új előfizetők száma eléri a 20 000-et, a társaság változtatni szeretne a Telint csomag árán. b) Számítsa ki, hogy a tervek alapján melyik hónapban éri el a Telint csomag egyhavi új előfizetőinek a száma a 20 000-et! (11+6p) 2012/kmatma/maj/ 7. Mekkora lesz két év múlva annak az 50 000 Ft-os befektetési jegynek az értéke, amelynek évi 10%-kal nő az értéke az előző évihez képest? Válaszát indokolja! (3p) kmat2013/maj/2. Egy kis cégnél nyolcan dolgoznak: hat beosztott és két főnök. A főnökök átlagos havi jövedelme 190 000 Ft, a beosztottaké 150 000 Ft. Hány forint a cég nyolc dolgozójának átlagos havi jövedelme? 2p
kmat2013/maj/10. Egy futóverseny döntőjébe hat versenyző jutott, jelöljük őket A, B, C, D, E és F betűvel. A cél előtt pár méterrel már látható, hogy C biztosan utolsó lesz, továbbá az is biztos, hogy B és D osztozik majd az első két helyen. Hányféleképpen alakulhat a hat versenyző sorrendje a célban, ha nincs holtverseny? Válaszát indokolja! 2+1p kmat2013/maj/15. A munkavállaló nettó munkabérét a bruttó béréből számítják ki levonások és jóváírások alkalmazásával. Kovács úr bruttó bére 2010 áprilisában 200 000 forint volt. A 2010-ben érvényes szabályok alapján különböző járulékokra ennek a bruttó bérnek összesen 17%-át vonták le. Ezen felül a bruttó bérből személyi jövedelemadót is levontak, ez a bruttó bér 127%-ának a 17%-a volt. A levonások után megmaradó összeghez hozzáadtak 15 100 forintot adójóváírásként. Az így kapott érték volt Kovács úr nettó bére az adott hónapban. a) Számítsa ki, hogy Kovács úr bruttó bérének hány százaléka volt a nettó bére az adott hónapban! Szabó úr nettó bére 2010 áprilisában 173 015 forint volt. Szabó úr fizetésénél a levonásokat ugyanazzal az eljárással számították ki, mint Kovács úr esetében, de ebben a hónapban Szabó úr csak 5980 forint adójóváírást kapott. b) Hány forint volt Szabó úr bruttó bére az adott hónapban? 5+7p kmat/2013/okt/5. Egy országban egy választáson a szavazókorú népesség 63,5%-a vett részt. A győztes pártra a résztvevők 43,6%-a szavazott. Hány fős a szavazókorú népesség, ha a győztes pártra 4 152 900 fő szavazott? Válaszát indokolja! 2 +1 pont kmat_2014/maj/2. Egy konzerv tömege a konzervdobozzal együtt 750 gramm. A konzervdoboz tömege a teljes tömeg 12%-a. Hány gramm a konzerv tartalma? 2p kmat_2014/maj/6. Egy termék árát az egyik hónapban 20%-kal, majd a következő hónapban újabb 20%-kal megemelték. A két áremelés együttesen hány százalékos áremelésnek felel meg? Válaszát indokolja! 3p kmat/2014/okt/14. Egy család személyautóval Budapestről Keszthelyre utazott. Útközben lakott területen belül, országúton és autópályán is haladtak. Az utazással és az autóval kapcsolatos adatokat a következő táblázat tartalmazza: megtett út hossza (km) átlagsebesség (km/h) átlagos benzinfogyasztás 100 km-en (liter) lakott területen belül 45 40 8,3 országúton 35 70 5,1 autópályán 105 120 5,9 a) Mennyi ideig tartott az utazás? b) Hány liter ezen az utazáson az autó 100 km-re eső átlagfogyasztása? Válaszát egy tizedesjegyre kerekítve adja meg! Útközben elfogyott az autóból a benzin. A legközelebbi benzinkútnál kétféle benzineskannát lehet kapni. A nagyobbra rá van írva, hogy 20 literes, a kisebbre nincs ráírva semmi. A két kanna (matematikai értelemben) hasonló, a nagyobb kanna magassága éppen kétszerese a kisebb kanna magasságának. c) Hány literes a kisebb kanna? 4p+5p+5p kmat/2015/okt/2. 11. A ruházati cikkek nettó árát 27%-kal növeli meg az áfa (általános forgalmi adó). A nettó ár és az áfa összege a bruttó ár, amelyet a vásárló fizet a termék vásárlásakor. Egy nadrágért 6350 Ft-ot fizetünk. Hány forint áfát tartalmaz a nadrág ára? Megoldását részletezze! 3p kmat/2015/okt/2. 14. Egy öttusaversenyen 31 résztvevő indult. A vívás az első szám, ahol mindenki mindenkivel egyszer mérkőzik meg. Aki 21 győzelmet arat, az 250 pontot kap. Aki ennél több győzelmet arat, az minden egyes további győzelemért 7 pontot kap a 250 ponton felül. Aki ennél kevesebbszer győz, attól annyiszor vonnak le 7 pontot a 250-ből, ahány győzelem hiányzik a 21-hez. (A mérkőzések nem végződhetnek döntetlenre.) a) Hány pontot kapott a vívás során Péter, akinek 5 veresége volt? 3p b) Hány győzelme volt Bencének, aki 215 pontot szerzett? 3p Az öttusa úszás számában 200 métert kell úszni. Az elért időeredményekért járó pontszámot mutatja a grafikon. c) Jelölje meg az alábbi két kérdés esetén a helyes választ! Hány pontot kapott Robi, akinek az időeredménye 2 perc 6,28 másodperc? A: 320 B: 321 C: 322 D: 323 Péter 317 pontot kapott. Az alábbiak közül válassza ki Péter időeredményét! A: 2 perc 7,00 mp B: 2 perc 7,60 mp C: 2 perc 7,80 mp D: 2 perc 8,00 mp 2p
Az öttusa lovaglás számában egy akadálypályán tizenkét különböző akadályt kell a versenyzőnek átugratnia. Egy akadály a nehézsége alapján három csoportba sorolható: A, B vagy C típusú. Ádám a verseny előtti bemelegítéskor először az öt darab A, majd a négy darab B, végül a három darab C típusú akadályon ugrat át, mindegyiken pontosan egyszer. Bemelegítéskor az egyes akadálytípusokon belül a sorrend szabadon megválasztható. d) Számítsa ki, hogy a bemelegítés során hányféle sorrendben ugrathatja át Ádám a tizenkét akadályt! 4p kmat/2016/05/2. Ha 1 kg szalámi ára 2800 Ft, akkor hány forintba kerül 35 dkg szalámi? 2p kmat_2016/okt/9. Egy kirándulócsoport 8 km-es túrára indult. Már megtették a 8 km 40%-át és még 1200 métert. A tervezett út hány százaléka van még hátra? Számításait részletezze! 3p+1p kmat_2017_maj/17. A Hód Kft. faárutelephelyén rönkfából (henger alakú fatörzsekből) a következő módon készítenek gerendát. A keretfűrészgép először két oldalt levág egy-egy az ábrán sötéttel jelölt részt, majd a fa 90 -kal történő elfordítása után egy hasonló vágással végül egy négyzetes hasáb alakú gerendát készít. A gépet úgy állítják be, hogy a kapott hasáb alaplapja a lehető legnagyobb legyen. Most egy forgáshenger alakú, 60 cm átmérőjű, 5 méter hosszú rönkfát fűrészel így a gép. a.) Igaz-e, hogy a kapott négyzetes hasáb alakú fagerenda térfogata kisebb 1 köbméternél? 6p A Hód Kft. deszkaárut is gyárt, ehhez a faanyagot 30 000 Ft/m 3 -es beszerzési áron vásárolja meg a termelőtől. A gyártás közben a megvásárolt fa kb. 40%-ából hulladékfa lesz. A késztermék 1 köbméterét 90 000 forintért adja el a cég, de az eladási ár 35%-át a költségekre kell fordítania (feldolgozás, telephely fenntartása stb.). b.) Mennyi haszna keletkezik a Hód Kft.-nek 1 köbméter deszkaáru eladásakor? 5p A fakitermelő cég telephelyéről hat teherautó indul el egymás után. Négy teherautó fenyőfát, kettő pedig tölgyfát szállít. c.) Számítsa ki annak a valószínűségét, hogy a két, tölgyfát szállító teherautó közvetlenül egymás után gördül ki a telephelyről, ha az autók indulási sorrendje véletlenszerű! 6p kmatma/2017/17. Az autók átlagfogyasztását Magyarországon literben, 100 kilométerre vetítve szokták megadni. Kovács úr egyik útja során autójával először 1 órán keresztül 70 km/h átlagsebességgel haladt. A fedélzeti számítógép szerint ez alatt az autó átlagos üzemanyag-fogyasztása (100 kilométerre vetítve) 6,0 liter volt. Ezután 1 órán keresztül 120 km/h átlagsebességgel haladt, ami alatt az átlagos fogyasztás (100 kilométerre vetítve) 8,5 liter volt. a) Számítsa ki az autó átlagfogyasztását a teljes útra vonatkoztatva! Válaszát egy tizedesjegyre kerekítve adja meg! 6p b) Kovács úr üzleti útra Washingtonba utazik. Amikor megérkezik, autót bérel. Az egyik autón ez olvasható: Ez az autó átlagosan 25 mérföld utat tesz meg 1 gallon benzinnel. Tudjuk, hogy 1 gallon körülbelül 3,8 liter, 1 mérföld pedig kb. 1600 méter. Számítsa ki, hogy ez az autó hány liter benzint fogyaszt 100 kilométeren! 3p c) Kovács úr hét napon keresztül minden nap utazott a bérelt autóval. Megfigyelte, hogy a második naptól kezdve minden nap 10%- kal rövidebb utat tett meg, mint az azt megelőző napon. Hány mérföldet tett meg az első napon, ha a hetedik napon 186 mérföldet tett meg? 3p d) Washingtonban az autók rendszáma hét karakterből áll: az első három karakter betű, az utolsó négy pedig szám (pl. APR 0123). (Előfordulhat, hogy mind a négy szám nulla.) Az APR betűkkel kezdődő rendszámokat már mind kiadták, ezek közül egyet véletlenszerűen kiválasztunk. Melyik esemény a valószínűbb: az, hogy a kiválasztott rendszámon az APR betűk után négy különböző számjegy szerepel, vagy az, hogy a számjegyek között legalább kettő azonos? 5p