Budapest University of Technology and Economics ANALYSIS OF INTERACTION BETWEEN EARTH RETAINING STRUCTURE AND SOIL Ph.D. dissertation Thesis book Vendel Józsa Civil engineer Scientific supervisor: Dr. László Nagy, PhD Budapest 2016. February
Table of contents 1. Introduction... 3 2. New scientific results... 5 1. Thesis... 5 1/1. Subthesis... 5 1/2. Subthesis... 7 2. Thesis... 8 2/1. Subhesis... 8 2/2. Subthesis... 9 3. Thesis... 10 4. Thesis... 11 5. Thesis... 12 5/1. Subthesis... 12 5/2. Subthesis... 13 5/3. Subthesis... 13 6. Thesis... 15 3. Applicability of Results... 19 4. Future research proposal... 19 5. References, publications... 20 5.1. References... 20 5.2. Own publications... 21 5.3. Citied publications... 24 5.4. Major engineering activities... 25 2
1. Introduction In the geotechnical praxis, the design of earth retaining structures plays an important role. Its suitability primarily depends on the quality of the soil survey and the reliability of the calculation parameters determined on its basis. The Eurocode 7 standard provides recommendations for the depth and quantity of surveys and tests depending on geotechnological categories and levels of planning. If possible, both site and laboratory tests should be conducted and compared, then the conclusions should be incorporated in the planning and/or subsequent verification procedures in order to obtain optimal engineering decisions. It is not sufficient to perform a certain number of tests, their quality is also crucial. The quality of the sampling is important, as the number of samples, as well. Professional geotechnical soil models are available, but the determination method of input parameters and laboratory test can be difficult and expensive. In hardening soil model, the rarely analysed parameters e.g. overconsolidation ratio, unloading-reloading modulus cannot be determined from basic soil laboratory test, special site investigation and laboratory tests are needed. The construction of the metro line 4 in Budapest was finished in 2014, where deep excavation methods were applied to prepare the main metro stations. For the metro stations a large number of soil explorations in high quality was required, and through the processing of these samples, further information have been gathered about the clay soils of the relevant soilphysical parameters in the function of depth. The drill machines often penetrated overconsolidated soils, which can cause a big effect to the earth retaining structures based on the geological preloading (from cca. 6-8 m). The effect of certain special soil parameters may have a favourable or unfavourable effect on deformations and loads, which determine the required geometrical configuration and thereby the implementation costs as well. The objective of computer modelling is to approximate the reality, the actual behaviour of structures as well as possible, where one of the best solutions, if it is possible, is to process and incorporate into the model a sufficient depth and quantity of information from soil surveys. This can be followed by recording of the behaviour of the completed structure by means of a monitoring system, the feeding of that data into the original model and the recalculation of the task using more accurate settings (back analysis). After an initial investment, this method leads to an optimized planning process and more economical implementation. 3
The aim of my dissertation was to analyse the interaction between retaining structure and soil, within that to analyse the overconsolidated soils. The following topics are analysed: I. Analysis of the Unloading-reloading modulus (E ur ), the secant modulus at 50 % strength (E 50 ) and the oedometric modulus (E oed ) in function of depth related to overconsolidated kiscelli clay in the Buda side. II. Analysis of the determination methods of preconsolidation stress from triaxial and oedometer test in kiscelli clay. III. Separation and estimation the overconsolidation effects in kiscelli clay. IV. Determination of the erosion in kiscelli clay from laboratory test. V. Determination of the overconsolidation ratio from CPTu. VI. Analysis of earth pressures and limit values of wall movements in overconsolidated soils. 4
2. New scientific results My scientific results were summarised in 6 main thesis groups. 1. Thesis 1/1. Subthesis Unloading-reloading modulus (E ur ), secant modulus at 50 % strength (E 50 ) and oedometric modulus (E oed ) based on the estimated preloading stress range were determined in function of depth related to the overconsolidated kiscelli clay in the Buda side. (Tab. 1.) Publication related to the thesis: Józsa (2014) Tab. 1. Modulus in function of depth E 50 = a (z)+b [MPa] E ur = a (z)+b [MPa] E oed = a (z)+b [MPa] Location a b R 2 a b R 2 a b R 2 Tétényi út (Bikás park) 13,28-177,36 0,40 14,60-174,34 0,40 - - - Móricz Zs. krt. 6,68-58,50 0,66 10,37-108,66 0,57 8,87-66,72 0,80 Bartók B. út 7,18-88,74 0,88 7,72-75,23 0,86 - - - Etele t. (Pajzsindító) 7,96-116,55 0,51 7,97-88,86 0,65 8,49-75,81 0,78 Bocskai út (Újbuda kp.) 8,63-44,04 0,78 7,10-21,84 0,69 10,78-99,45 0,67 The colors of trendlines of E 50, E ur, and E oed related to the same colors of points. The estimated borders of different moduli are presented with dashed lines. It should be noted, that E 50 is related to the first loading in the definition, but the analysed E 50 is related to the preloaded soil sample, its value can be range between the real E 50 and E ur. Results are presented in Fig. 1-3. 5
Estimated border Depth [m] Fig. 1. E 50 vs. depth Estimated border Depth [m] Fig. 2. E ur vs. depth Estimated border Depth [m] Fig. 3. E oed vs. depth 6
1/2. Subthesis A trendline was determined between E 50 and E ur : E ur = 1,08 E 50 + 20,77 (MPa) (Fig. 4.), where the slope about 1 (1,08). The phenomenon is related to the overconsolidation, therefore E 50 can be defined as a modulus related to the geological loading. Based on the results, a soil model is recommended to use, where the moduli can be defined independently. Publication related to the thesis: Józsa (2014); Józsa (2016) Fig. 4. E 50 and E ur correlation of kiscelli clay 7
2. Thesis 2/1. Subhesis New equations were determined to estimate the preconsolidation stress between different moduli and preconsolidation stress from oedometer test related to the kiscelli clay (in the Buda side) with additional data from tardi clay (Danube river bed). New equations based on oedometric and triaxial methods are presented (Fig. 5.): 0,323 σ ʹp = 16,3 Eoed σ ʹ v σ ʹp = E σ ʹ 0,012 0 0,435 0,059 3,35 ur v0 with a statistical coefficient of determination R 2 = 0,643 and R 2 = 0,713. (1) (2) The equations are converted and given in the following form, where the unit is given in kpa on both sides of the equations. σ ʹp = E σ ʹ 0,665 0,323 0,012 0,763 σ atm oed v0 σ ʹp = E σ ʹ 0,506 0,435 0,059 0,326 σ atm ur v0 - σ atm = 100 kpa, reference stress, - σ p preconsolidation stress from oedometer test, - E ur unloading-reloading modulus from triaxial test, - E oed oedometric modulus related to the preloading stress level. Publication related to the thesis: Józsa (2016) (3) (4) a) b) Fig. 5. Analysis of preconsolidation stress estimation based on E oed (oedometric method) and E ur (tiaxial method) 8
2/2. Subthesis Based on new equations, estimated overconsolidated ratio was determined in kiscelli clay (in the Buda side) and in tardi clay (Danube river bed) as shown in Fig. 6. In kiscelli clay, OCR=1,5 4,5 based on oedometric method, and OCR=2 4,6 based on triaxial method. In tardi clay, OCR=2 8,4 based on oedometric method, and OCR=2 8,0 based on triaxial method. Earlier, OCR = 10-16 was determined from selfboring pressuremeter test (Horváth- Kálmán, 2012) in Kelenföld area, which is higher, than OCR determined from laboratory tests. Publication related to the thesis: Józsa (2016) a) b) Fig. 6. Estimated preconsolidation stress: a) oedometric and b) triaxial method 9
3. Thesis A new method has been developed to separate the overconsolidated effects, which have resulted the overconsolidated kiscelli clay. The ratio of mechanical preloading of overconsolidation (Λ MP ) were defined and analysed, and based on the results, the erosion of kiscelli clay was estimated in the Buda side. The possible causes of overconsolidation in Kiscelli Clay appears to be mainly erosion in the case of mechanical preloading (oedometric method: 77-100%, triaxial method: 51-88%), while the additional possible causes of overconsolidation appear to be cementation, aging, and/or water table changes (Tab. 2). Publication related to the thesis: Józsa (2016) Tab. 2. Ratio of mechanical preloading of overconsolidation Λ MP Oedometric method Triaxial method min max min max Etele t. (Pajzsindító) 92% 95% 69% 81% Tétényi út (Bikás park) 100%* 100%* 70% 85% Bocskai (Újbuda-kp.) 77% 85% 78% 88% Móricz Zs. krt. 85% 92% 68% 81% Bartók B. u. 100% 100% 51% 63% * data are calculated with R 2 =0,17 10
4. Thesis Minimum and maximum value of the overconsolidation difference in the meaning of mechanical preloading (OCD M.min, OCD M.max ) were determined in kiscelli clay, in addition, minimum and maximum erosion and the estimated original surface were calculated. OCD M = 205,7-664,8 kpa based on oedometric method and OCD M = 0-498,8 kpa based on triaxial method (Tab. 3.). The estimated minimum erosion varied between 0-18 m and the maximum erosion varied between 11 33 m (Fig. 7.) Publication related to the thesis: Józsa (2016) Tab. 3. Estimated overconsolidation difference in the meaning of mechanical preloading and erosion based on different methods Oedometric method Triaxial method Etele t. (Pajzsindító) OCD M min OCD M max H min erosion H max erosion OCD M min OCD M max H min erosion H max erosion [kpa] [kpa] [m] [m] [kpa] [kpa] [m] [m] 330,4 506,0 17 25 83,7 365,8 4 18 Tétényi út (Bikás park) 290,0* 664,8* 14* 33* 94,0 498,8 5 25 Bocskai út (Újbuda-kp.) 249,1 498,4 12 25 213,2 480,1 11 24 Móricz Zs. krt. 381,4 518,6 19 26 96,4 494,2 5 25 Bartók B. u. 205,7 256,5 10 13 0,0 212,3 0 11 * data are calculated with R 2 =0,17 a) b) Fig. 7. Minimum and maximum erosion: a) oedometric and b) triaxial method 11
5. Thesis 5/1. Subthesis OCR and preconsolidation stress from CPTu results were calculated, where the overconsolidation factor k ocr = 0,05 (Bocskai út (Újbuda-központ)) was determined to the laboratory test results, and k ocr = 0,1 was determined to the selfboring pressure meter test results in Kelenföld (6-15 m). Results are shown in Fig. 8 and Fig. 9. Publication related to the thesis: Horváth-Kálmán, Józsa (2014b) Depth [m] Fig. 8. OCR values determined from oedometer test, CPTu and SBP Preconsolidation stress [kpa] Depth [m] Fig. 9. Preconsolidation stress values determined from oedometer, CPTu and SBP test The overconsolidation ratio can be calculated by Wroth (1984) and Powell et al. (1988): qt σ v0 OCR = kocr ( ) σ ʹ v0 where k ocr is the overconsolidation factor and q t is the corrected cone resistance. (5) 12
5/2. Subthesis On the basis of laboratory tests, down to a depth of 36 m the preconsolidation stress values in kiscelli clay do not exceed approximately 1150 kpa, on whose basis I concluded that during the oedometer test, loading stresses of 1400-2000 kpa need to be reached so as to obtain a clear observation of the point where the straight lines cross, i.e. the preconsolidation stress point. If a last loading step is applied in the oedometer test in that range of values, a sufficient number of points are given after the preconsolidation stress point Publication related to the thesis: Józsa (2014) 5/3. Subthesis In the area around Berettyóújfalu, the boreholes and probes crossed soil strata down to an approximate depth of 30 m, I evaluated the results of a total of 22 soil samples (from 6 boreholes) and 11 CPTu diagrams. In addition, I compared various methods for determining the OCR, using both laboratory and in-situ tests. Based on the results, I formulated the following thesis: Processing the CPTu probe and oedometer test results for the area around Berettyóújfalu using various methods I reached the conclusion that the variation of OCR as a function of depth is best described by a power function. I determined the following equations for the approximating power functions (Fig. 10.): OCR is determined from oedometer test: OCR ( z) = 18.306 ( z) OCR is determined based on Mayne (1995): OCR ( z) = 29.101 ( z) OCR is determined based on Mayne (2005): 0.887 0.803 (6) (7) OCR ( z) = 66.512 ( z) 0.822 Disregarding the excessive OCR values in the top 3 m, between depths of 3 and 30 m, I obtained OCR values between 1 and 15, with great variation, depending on the method. I also found that the maximum oedometer loading level of 400 kpa generally used in practice is insufficient for determining OCR, therefore the preconsolidation stress value obtained from the oedometer test may be lower than the preconsolidation stress value 13 (8)
obtained from the probing results (Fig. 11.). Publication related to the thesis: Józsa (2012, 2013b) Depth [m] Fig. 10. OCR vs. depth based on different calculation methods Intact clay CPTu ID. Preconsolidation stress Net cone resistance Fig. 11. Preconsolidation stress and net cone resistance Preconsolidation stress can be determined based on Mayne (1995): σ ʹp = 0.33 ( qt σ v0) (9) Preconsolidation stress can be determined based on Mayne (2005): σ ʹ p = 0.60 ( q t u2) (10) and the overconsolidation ratio is given in the following equation: σ ʹ p OCR = σ ʹ v0 (11) 14
6. Thesis Active and passive earth pressures and limit values of wall movements were determined in overconsolidated soils using finite element method. Results are shown in Tab. 4-7. and Fig. 12 - Fig. 17. I have shown that the increase in OCR has the result that an increasing displacement is required for reaching the active limit state, while a decreasing displacement is required for reaching the passive limit state with the geometrical data and soil parameters that were used in my tests. Publication related to the thesis: Józsa, Czap (2014) Tab. 4. Wall movements at active limit state Kind A falmozgás of wall movement jellege (aktív hat.áll.) Active Limit State analysis Loose laza soil talaj Non-cohesive szemcsés talaj (φ=28, c= 0 kpa) v a / h % Eurocode 7 soil OCR = 1 v a / h % OCR = 2 OCR = 4 szerint K 0 =0,535 K 0 =0,7503 K 0 =1,0611 va a) h 0,4 0,5 0,6* 1,6* 2,4* b) v a h 0,2 0,268 0,294 1,278 *Estimated value Tab. 5. Wall movements at passive limit state Kind of wall movement A falmozgás jellege Passive (passzív Limit State hat.áll.) analysis Loose laza talaj soil Non-cohesive szemcsés talaj (φ=28, c= 0 kpa) v p / h % Eurocode 7 soil OCR = 1 v a / h % OCR = 2 OCR = 4 szerint K 0 =0,535 K 0 =0,7503 K 0 =1,0611 a) v p h 7 (1,5) 25 (4,0) (2,76%) (1,73%) (0,71%) b) v p h 5 (0,9) 10 (1,5) (0,83%) (0,59%) (0,29%) () Value determined at 50 % of limit earth pressure 15
Tab. 6. Wall movements at active limit state Kind of wall movement Active A falmozgás Limit jellege State analysis (aktív hat.áll.) Transitional átmeneti soil talaj (φ=20, c= 10 kpa) Cohesive kötött soil talaj (φ=0, c= 40 kpa) v a / h % v a / h % OCR = 1 OCR = 1,2 OCR = 1,5 OCR = 2,0 OCR = 1 OCR = 1,44 OCR = 2,25 OCR = 4,0 K 0 =0,658 K 0 =0,7208 K 0 =0,8059 K 0 =0,9306 K 0 =1 K 0 =1,2 K 0 =1,5 K 0 =2,0 va a) h 2,6* 3,6* 5,6* 9,6* 1,1# 2,7# 6,6# 12,6# v a b) h 2,4 2,6 2,8 3,2 3,6 4,2 5,4 8,0 *Estimated value () Value determined at 50 % of limit earth pressure # Value determined at 200 kpa note: Transitional soil can be defined as a soil, where ϕ 0 o and c 0 kpa. Tab. 7. Wall movements at passive limit state Kind of wall movement Passive A falmozgás Limit jellege State analysis (passzív hat.áll.) Transitional átmeneti soil talaj (φ=20, c= 10 kpa) v a / h % Cohesive kötött soil talaj (φ=0, c= 40 kpa) v a / h % OCR = 1 OCR = 1,2 OCR = 1,5 OCR = 2,0 OCR = 1 OCR = 1,44 OCR = 2,25 OCR = 4,0 K 0 =0,658 K 0 =0,7208 K 0 =0,8059 K 0 =0,9306 K 0 =1 K 0 =1,2 K 0 =1,5 K 0 =2,0 vp a) h (2,9) (2,6) (2,2) (1,6) (1,2) (0,4) 14,0* 3,8* b) vp h (1,4) (1,3) (1,1) (0,8) (2,4**) 3,6 (1,9**) 3,6 (1,3**) 3,6 (0,4**) 3,6 *Estimated value ** () Value determined at 80 % of limit earth pressure () Value determined at 50 % of limit earth pressure Non-cohesive soil Fig. 12. Analysis of wall movement at limit state in non-cohesive soil; wall movement type: a) 16
Non-cohesive soil Fig. 13. Analysis of wall movement at limit state in non-cohesive soil; wall movement type: b) Transitional soil Fig. 14. Analysis of wall movements at limit state in transitional soil; wall movement type: a) 17
Transitional soil Fig. 15. Analysis of wall movements at limit state in transitional soil; wall movement type: b) Cohesive soil Fig. 16. Analysis of wall movements at limit state in cohesive soil; wall movement type: a) Cohesive soil Fig. 17. Analysis of wall movements at limit state in cohesive soil; wall movement type: b) 18
3. Applicability of Results I processed the results of on-site and laboratory tests to determine the variations of deformation moduli and OCR values as a function of depth characteristic of the areas of the stations along Metro Line 4, which will be of assistance during the planning and implementation of deep construction pits, and I stipulated approximate formulas for determining OCR values using CPTu probing. I ran computer models to determine active and passive limit state conditions, in which I determined the possible unit displacement values for overconsolidated soil, whereby it becomes easier to plan for the expected values of construction pit displacements and alarm levels in overconsolidated soils. The new scientific results derived from my research make it possible to examine the interaction between earth retaining structures and soil, thereby facilitating more economical and accurate planning and implementation. 4. Future research proposal Additional research topics are recommended to analyse: - Analysis overconsolidation effects to the retaining structure, wall movements and limit states. - Analysis of determination methods of OCR between CPTu, laboratory and in-situ tests. - Analysis of determination methods of OCR based on undrained shear strength. - Analysis of overconsolidation and its origin in Hungary. - Analysis additional tests to separate the effects of overconsolidation. 19
5. References, publications 5.1. References Horváth Kálmán E. (2012): Nyugalmi feszültségállapot meghatározása a túlkonszolidált kiscelli agyagban, Ph.D. értekezés, BME, Geotechnikai Tanszék Horváth-Kálmán, E., Józsa, V. (2014b): Túlkonszolidált talaj és szerkezet kapcsolatának vizsgálata helyszíni, laboratóriumi kísérletek és back-analysis alapján, Alagút- és Mélyépítő Szakmai Napok 2014.11.12-13. Budapest, No.8. p.10. ISBN: 978-615-5270-14-7 Józsa, V. (2012): Túlkonszolidáltság hatása a geotechnikai eredményekre. Konferencia kiadvány, Geotechnika 2012 Konferencia, Ráckeve, 2012.10.16-17. No.21. p.7. ISBN: 978-963-89016-4-4 Józsa, V. (2013b): Empirical correlations of overconsolidation ratio, coefficient of earth pressure at rest and undrained strength. Second Conference of Junior Researchers in Civil Engineering, Budapest Hungary, 2013.06.17-18., pp. 88-92 Józsa, V. (2014): Profiling and Analysis of the Overconsolidation Ratio and Strength Parameters in Hungarian Soils of the Metro 4 Stations in Budapest, Hungary. RMZ- Materials and Geoenvironment Vol. 60. No. 3. 2014. pp. 211-217 Józsa, V. (2016): Estimation and Separation of Preconsolidation Stress Using Triaxial,- and Oedometer Test in Kiscelli Clay, Periodica Polytechnica Civil Engineering. Elfogadva megjelenés alatt, 2016. DOI: 10.3311/PPci.9068 Józsa, V., Czap, Z. (2014): A földnyomások határértékeinek alakulása túlkonszolidált talajok esetén. Konferencia kiadvány, Geotechnika 2014 Konferencia, Ráckeve, 2014.10.13-15. No.3. p.12 ISBN: 978-615-80006-2-8 Mayne, P.W. (1995): Profiling Yield Stress in Clays by In-Situ Tests, Transportation Research Record 1479, National Academy Press, Washington, D.C, pp. 43-50. Mayne, P.W. (2005): Integrated Ground Behavior: In-Situ and Lab Tests, Deformation Characteristics of Geomaterials, Vol. 2 (Proc. Lyon, France), Taylor & Francis, London, United Kingdom, 2005, pp. 155 177. Powell, J. J. M., Quaterman, R.S.T., Lunne, T. (1988): interpretation and use of the piezocone test in UK clays, Penetration Testing in the UK, Thomas Telford, London pp. 151-156. Wroth, C.P. (1984): The interpretation of in-situ soil tests, 24th Rankine Lecture, Geotechnique Vol. 34. No. 4, pp. 449-489 20
5.2. Own publications Publikáció Czap, Z., Józsa, V. (2014a): Az épületek alapozása I. Síkalap típusok. Műszaki Ellenőr III. évfolyam 2014. március, pp. 42-44. ISSN 2063-4447 Czap, Z., Józsa, V. (2014b): Az épületek alapozása II. Cölöpalapozás. Műszaki Ellenőr III. évfolyam 2014. április, pp. 43-46. ISSN 2063-4447 Czap, Z., Józsa, V. (2014c): Az épületek alapozása III.A mélyalapok további típusai. Műszaki Ellenőr III. évfolyam 2014. május, pp. 42-46. ISSN 2063-4447 Czap, Z., Józsa, V. (2014d): Az épületek alapozása IV. Síkalap tervezése. Műszaki Ellenőr III. évfolyam 2014. június, pp. 37-40. ISSN 2063-4447 Czap, Z., Józsa, V. (2014e): Az épületek alapozása V. A mélyalapok további típusai. Műszaki Ellenőr III. évfolyam 2014. július, pp. 44-48. ISSN 2063-4447 Czap, Z., Józsa, V., Vásárhelyi, B. (2013): Gyöngyösoroszi bánya mátraszentimrei telérének tömedékelése és gáttervezése. Konferencia kiadvány, III. Kézdi Konferencia, Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, 2013.05.28. pp. 101-118. ISBN: 978-963-313-081-0 Farkas, J., Józsa, V. (2014a): Alapozás (BMEEOGTAT15): elektronikus BSc egyetemi jegyzet, BME, Geotechnikai Tanszék p. 102. http://www.gtt.bme.hu/gtt/oktatas/feltoltesek/bmeeogtat15/farkas_jozsa_ -_alapozas_jegyzet.pdf Farkas, J., Józsa, V. (2014b): Egy árvízvédelmi vasbeton támfal kiborulása. Műszaki Ellenőr III. évfolyam 2014. június, pp. 41-45. ISSN 2063-4447 Farkas, J., Józsa, V. (2015): Egy károsodott kórházi épület geotechnikai vizsgálata. Műszaki Ellenőr IV. évfolyam 2015. augusztus, pp. 41-45. ISSN 2063-4447 Farkas, J., Józsa, V., Szendefy J. (2014): Foundation Engineering (BMEEOGTAT15): elektronikus angol BSc egyetemi jegyzet, BME, Geotechnikai Tanszék p. 97. http://www.gtt.bme.hu/gtt/oktatas/feltoltesek/bmeeogtat15/foundation_e ngineering.pdf Horváth-Kálmán, E., Józsa, V. (2014a): In-situ measurements and back-analysis in Overconsolidated Clay and between structure and soil: Earth Pressure at rest. Proceedings of the World Tunnel Congress 2014, Iguassu Falls, Brazil, 2014.05.09-15. ISBN 978-85-67950-00-6 Horváth-Kálmán, E., Józsa, V. (2014b): Túlkonszolidált talaj és szerkezet kapcsolatának vizsgálata helyszíni, laboratóriumi kísérletek és back-analysis alapján, Alagút- és Mélyépítő Szakmai Napok 2014.11.12-13. Budapest, No.8. p.10. ISBN: 978-615-5270-14-7 típus D D D D D G A D D A F* H 21
Imre, E., Juhász, M., Józsa, V., Hegedűs, M., Bíró, B., Singh, V.P. (2014): CPTu Simple dissipation tests in saline environment. Proceedings of 3rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada, USA. Omnipress Paper # 2-41b 2014.05.12-14. ISBN: 978-0-615-98835-1, Józsa, V. (2010a): Ritkán vizsgált talajjellemzők hatása befogott támszerkezeteknél. Konferencia kiadvány, Geotechnika 2010 Konferencia, Ráckeve, 2010.10.26-27. No.9. p.14.isbn: 978-963-89016-0-6. Józsa, V. (2010b): Ritkán vizsgált talajjellemzők hatása befogott támszerkezeteknél. TDK Dolgozat, BME Építőmérnöki Kar, Geológia és Geotechnika szekció, 2010.11.17. Józsa, V. (2011a): Boulderscape, avagy támszerkezet sziklamódra. Magyar építéstechnika, 49. évf. 2-3. sz. / 2011., pp. 84-85. Józsa, V. (2011b): Effects of rarely analyzed soil parameters for FEM analysis of embedded retaining structures. Proceedings of the 21st European Young Geotechnical Engineers Conference, Rotterdam, Netherlands, 2011.09.04-07., pp. 15 20. ISBN: 978-1-60750-807-6 Józsa, V. (2011c): Konszolidáltsági fok meghatározása CPT szondázással és hatása befogott támszerkezetekre. Konferencia kiadvány, Geotechnika 2011 Konferencia, Ráckeve, 2011.10.25-26. No.3. p.15. ISBN: 978-963-89016-2-0 Józsa, V. (2012): Túlkonszolidáltság hatása a geotechnikai eredményekre. Konferencia kiadvány, Geotechnika 2012 Konferencia, Ráckeve, 2012.10.16-17. No.21. p.7. ISBN: 978-963-89016-4-4 Józsa, V. (2013a): Soil Classification and Determination of Overconsolidation from CPTu in Deep Excavation. Pollack Periodica, An International Journal for Engineering and Information Sciences, Vol. 8, No. 1, 2013, pp. 53 63. DOI: 10.1556/Pollack.8.2013.1.5 Józsa, V. (2013b): Empirical correlations of overconsolidation ratio, coefficient of earth pressure at rest and undrained strength. Second Conference of Junior Researchers in Civil Engineering, Budapest Hungary, 2013.06.17-18., pp. 88-92 Józsa, V. (2013c): A parciális tényezők értékelése az egyes tervezési módszereknél befogott támszerkezet esetén. Konferencia kiadvány, Geotechnika 2013 Konferencia, Ráckeve, 2013.10.15-16. No.4. p.8. ISBN: 978-963-89016-7-5 Józsa, V. (2014): Profiling and Analysis of the Overconsolidation Ratio and Strength Parameters in Hungarian Soils of the Metro 4 Stations in Budapest, Hungary. RMZ-Materials and Geoenvironment Vol. 60. No. 3. 2014 Józsa, V. (2016): Estimation and Separation of Preconsolidation Stress Using Triaxial,- and Oedometer Test in Kiscelli Clay, Periodica Polytechnica Civil Engineering. Elfogadva, megjelenés alatt, 2016. DOI: 10.3311/PPci.9068 Józsa, V., Czap, Z. (2014): A földnyomások határértékeinek alakulása túlkonszolidált talajok esetén. Konferencia kiadvány, Geotechnika 2014 Konferencia, Ráckeve, 2014.10.13-15.. No.3. p.12 ISBN: 978-615-80006-2-8 F* H I J F H H C** E H B* C** IF H 22
Józsa, V., Czap, Z., Vásárhelyi, B. (2014): Gyöngyösoroszi bánya mátraszentimrei telérének zárógát-tervezése monitoring mérések alapján. Konferencia kiadvány, Geotechnika 2014 Konferencia, Ráckeve, 2014.10.13-15. No.4. p.15 ISBN: 978-615-80006-2-8 Józsa, V., Czap, Z., Vásárhelyi, B. (2015): Geotechnical Design of Underground Mine Dam in Gyöngyösoroszi, Hungary. IAEG (International Association for Engineering Geology and the Environment) XII. Congress Torino Italy. 2014.09.15-19. Eds: G. Lollino; D. Giordan; K. Thuro; C. Carranza-Torres; F. Wu; P. Marinos; C. Delgado. Engineering Geology for Society and Territory - Volume 6, Applied Geology for Major Engineering Projects, Springer International Publishing, 2015, pp 443-447. ISBN: 978-3-319-09059-7, DOI: 10.1007/978-3-319-09060-3_77 Józsa, V., Móczár, B. (2013): Talaj és szerkezet kölcsönhatása (BMEEOGTMST8): elektronikus MSc egyetemi jegyzet, BME, Geotechnikai Tanszék p. 160. http://www.gtt.bme.hu/gtt/oktatas/feltoltesek/bmeeogtmst8/talaj_es_szer kezet_kolcsonhatasa_.pdf) Józsa, V., Tompai, Z. (2014): Felújítások geotechnikai kérdései (BMEEOGTMA09): elektronikus MSc egyetemi jegyzet, BME, Geotechnikai Tanszék p. 125 www.gtt.bme.hu/gtt/oktatas/feltoltesek/bmeeogtma09/jozsa_tompai_- _felujitasok_geot_kerd_jegyzet.pdf Jelölésrendszer A B C D E F G H I J Printed (or online printed, shared) textbook, 4pcs Journal article in foreign language, published in foreign country, 1 pcs Journal article in foreign language, published in Hungary, 1 pcs (+1 pcs accepted) Journal article in Hungarian, published in Hungary, 7 pcs Paper in foreign language, published in proceedings in Hungary, 1 pcs Paper in foreign language, published in international proceedings, 4 pcs Conference paper in Hungarian, published in proceedings, 1 pcs Conference paper in Hungarian, published in proceedings (CD), 7 pcs Scientific Student Thesis, 1 pcs Other, 1 pcs * Peer-reviewed ** Peer-reviewed (Scopus or Web of Science) IF Peer-reviewed, impact factor = 0,261 (http://www.pp.bme.hu/ci/index) H F* A A 23
5.3. Citied publications Imre, E., Juhász, M., Józsa, V., Hegedűs, M., Bíró, B., Singh, V.P. (2014): CPTu Simple dissipation tests in saline environment. Proceedings of 3rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada, USA. Omnipress Paper # 2-41b 2014.05.12-14. ISBN: 978-0-615-98835-1 Imre, E., Firgi1, T., Telekes, G. (2014): Evaluation of the Oedometer Tests of Municipal Landfill Waste Material, YBL Journal of Built Environment. Vol. 2 Issue 1, pp. 42 64, DOI: 10.2478/jbe-2014-0004 Józsa, V. (2011b): Effects of rarely analyzed soil parameters for FEM analysis of embedded retaining structures. Proceedings of the 21st European Young Geotechnical Engineers Conference, Rotterdam, Netherlands, 2011.09.04-07., pp. 15 20. ISBN: 978-1-60750-807-6 Li, H. (2013): Analysis of Off-Road Tire-Soil Interaction through Analytical and Finite Element Methods, Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation Soekhoe, R. (2015): Realistic bending stiffness of diaphragm walls for structural analysis, A comparison with the uncracked and totally cracked stiffness for the case of The Waalbrug Nijmegen, Thesis - Master of Science in Civil Engineering, TUDelft, 2015.12.15. Naresh, M., Uday, K.V. (2015): Application of image analysis to study the deformation characteristics of soil Józsa, V. (2013a): Soil Classification and Determination of Overconsolidation from CPTu in Deep Excavation. Pollack Periodica, An International Journal for Engineering and Information Sciences, Vol. 8, No. 1, 2013, pp. 53 63. DOI: 10.1556/Pollack.8.2013.1.5 Bodnár, N., Török, Á. (2014): Engineering geological characterization of sediments at a new metro station, Budapest. Pollack Periodica, An International Journal for Engineering and Information Sciences, Vol. 9, No. 1, 2014, pp. 17 28. DOI: 10.1556/Pollack.9.2014.1.3 Józsa, V. (2013b): Empirical correlations of overconsolidation ratio, coefficient of earth pressure at rest and undrained strength. Second Conference of Junior Researchers in Civil Engineering, Budapest Hungary, 2013.06.17-18., pp. 88-92 Mustapha, A.M., Alhassan M. (2013): Overconsolidation Ratio of Some Selected Soil Deposits in Nigeria. Scholars Journal of Engineering and Technology (SJET), 2013 Vol.1. No.4. pp.183-186. Horváth-Kálmán E. (2015): In-situ Measurements in Overconsolidated Clay, YBL Journal of Built Environment. Vol. 3 Issue 1-2 (2015), pp. 68-76, DOI: 10.1515/jbe- 2015-0007 24
5.4. Major engineering activities 2014.03. Józsa V., Tompai Z.: Geotechnikai szakértői vélemény - Szentendre, Szabadtéri Néprajzi Múzeum fogadóépület padló károsodásairól, helyreállítási javaslatairól 2014.03. Józsa V., Czap Z.: Geotechnikai Szakértői vélemény: Miskolc város ivóvízellátás biztonságának javítása korszerű víztisztítási technológia kiépítésével, Miskolc- Tapolca vízbázisának súlyos veszélyeztetése miatt. Miskolc-Tapolca vízműtelep, új Technológiai épület alapozásának módosítása, alacsony teherbíró képességű altalaj miatt: Épület alatti földtani közeg vizsgálata, 2013.10. Józsa V., Tompai Z.: Kiegészítő Talajvizsgálati és Geotechnikai Kiviteli terv - M0- M7 Autópálya csomópont és a 8103. jelű út közötti új Budapest irányú kapcsolatok 2013.09. Farkas J., Józsa V.: Geotechnikai Alapozási szakvélemény Miskolc-Tapolca, Barlangfürdő Vízműtelep bővítéséről 2013.07. Farkas J., Józsa V.: Szakértői vélemény Római Part Árvízvédelmi vasbeton támfal kiborulásának okairól 2013.04. Czap Z., Farkas J., Józsa V.: Tervellenőri vélemény az Extreme Light Infrastucture (ELI) Lézer Kutatóközpont Kiviteli terv Geotechnika Alapozás tervdokumentációjáról (III/1. kötet, 1. és 3. füzet) 2013.03. Czap Z., Farkas J., Józsa V.: Szakértői vélemény az Extreme Light Infrastucture (ELI) Lézer Kutatóközpont Tenderterv Geotechnika Mélyépítés; Tervdokumentációról (II.1. kötet) 2013.02. Farkas J., Józsa V.: Alapozási és geotechnikai szakvélemény A Nyírő Gyula Kórház (Budapest, XIII. ker. Lehel u. 59.) Addiktológiai épületéről 2012.03. Czap Z., Józsa V., Vásárhelyi B.: Gát geotechnikai terve - A Gyöngyösoroszi bánya mátraszentimrei telérének tömedékelésével kapcsolatos feladatok megoldására 25