Környezeti háttérsugárzás mérése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Környezeti háttérsugárzás mérése"

Átírás

1 Környezeti háttérsugárzás mérése Kísérleti beszámoló Készítették a mérőcsoport tagjai: Fischer Katalin Belvárosi I. István Középiskola Bugát Pál Tagintézménye Jéhn János A Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma Székesfehérvár Pécs Iván-Csáfordjánosfa-Csér- Németh Árpád Pusztacsalád Községi Önkormányzatok Általános Iskolája Iván Péterfi Enikő Ágnes Puskás Tivadar Fém- és Villamosipari Szakképző Iskola és Kollégium Szombathely Zsidi Erika Csertán Sándor Általános Iskola és Óvoda Alsónemesapáti Ratkai Ferenc Kürt Alapítványi Gimnázium Budapest

2 Bevezetés Egy kitűnő kezdeményezés, a CERN-i fizikatanár-továbbképzés keretében kapott, közelebbről meg nem határozott feladatunk a környezeti háttérsugárzás mérése volt az út során. A háttérsugárzás szűkebb, földi, és tágabb, kozmikus környezetünkből szüntelenül, minden irányból, időben és térben változó, de általában kicsiny intenzitással áramlik felénk. Ez így volt mindig is az emberiség története folyamán, ebben nincs is semmi különös, talán csak az, hogy még manapság is ez meglehetősen kevéssé él az emberek tudatában. Utunk során ebből a hatalmas sugárzás-óceánból gyűjthettünk mintát további elemzés céljából. A háttérsugárzás tehát jelen van a mindennapjainkban és mégis igen kevés szó esik róla, a fizika tananyagban és az élet egyéb területén egyaránt. Az emberek többsége éppen ezért nem sokat tud arról, hogy mi is ez a sugárzás, honnan ered és milyen hatásai lehetnek szervezetünkre. A háttérsugárzás földi eredetű komponense származhat természetes, vagy mesterséges forrásból. Az egyik párhuzamos mérőcsoport feladata volt pl. a talajból, illetve az épületek falából származó radioaktív radon gáz által okozott sugárzás mérése. Mesterséges eredetű radioaktivitással manapság, az atomkísérletek befejeztével elsősorban orvosi diagnosztikai, illetve terápiás centrumokban találkozhatunk természetesen csak megfelelően indokolt esetben, precíz kockázatelemzés után. A kozmikus sugárzás a Földön kívülről származó nagyenergiájú részecskékből áll. Előfordul benne gamma-foton, elektron, proton, alfa-részecske és más atommag is. Ezeknek a részecskéknek az energiája 20 nagyságrendet fog át. A felszínt elérő kozmikus sugárzás fluxusa a részecskeenergiák köbének a reciprokával arányos, ezért a légkör alján igen ritkán észlelhető igen nagy energiájú részecske. A rendkívül széles energiaspektrumot a különböző eredet magyarázza. A kozmikus sugárzás származhat a Nap nagyenergiájú folyamataiból, Tejútrendszerünkből, de akár a legtávolabbi extragalaxisokból is. 2

3 Az elnevezést indokló nem földi eredetet Victor Franz Hess osztrák fizikus (*1883, 1964) bizonyította 1912-ben, amelyért 1936ban megosztott fizikai Nobel-díjat kapott. Társával együtt jelentős kockázatot vállalva légballonokon több mint 5000 méteres magasságba vittek fel elektrométereket. A töltésvesztés sebességét mérve 1000 méterig valóban azt tapasztalta, amit akkoriban a fizikusok többsége igaznak tartott, hogy a sugárzás csökken a magassággal. Mivel felfelé egyre nagyobb intenzitást észlelt, ez tarthatatlanná tette azt a hipotézist, hogy a földkéreg kisugárzása okozza a jelenséget. Pierre Victor Auger (*1899, 1993), a CERN létrehozásában is fontos szerepet játszó francia fizikus 1938-ban az Alpok magaslatain egymástól néhány méterre elhelyezett műszereivel egyidejű részecskebecsapódásokat észlelt. Arra következetett, hogy ezek egyetlen, nagy energiájú részecskétől származnak, amely a légkör atommagjaival ütközve rengeteg másodlagos részecskét, ún. részecskezáport hozott létre. Az első kozmikus légizáporészlelése tiszteletére róla nevezték el a két telephelyű (Argentina, Pampa Amarilla, Malargüe város mellett, USA, Milliard County, Utah), ultranagy energiájú (>10 19 ev) kozmikus sugárzás vizsgálatára alkalmas műszeregyüttessel rendelkező obszervatóriumot. Csak a publikálás idejében maradt el tőle némileg a felfedezésben az akkor Manchesterben élő Jánossy Lajos fizikus. A közvetlenül ezt követő időszakban, a megfelelő teljesítményű részecskegyorsítók hiányában a kozmikus sugárzás tanulmányozása fontos kutatási területté lépett elő. Így találták meg pl. a pozitront (1932) és a müont (1936). Később pedig az elfogadott elméleti előrejelzésekkel össze nem egyeztethetően nagy energiájú kozmikus részecskék észlelésének magyarázata foglalkoztatta a tudósokat. Kenneth I. Greisen amerikai (USA), Georgij Tyimofejevics Zacepin (*1917) és Vagyim Alekszejevics Kuzmin (*1937) orosz fizikusok ugyanis kiszámolták (1966), hogy egy ev-nál nagyobb 3

4 energiájú, kozmikus eredetű részecske átlagosan 20 millió fényév megtétele után lép kölcsönhatásba a mindenütt jelenlévő mikrohullámú háttérsugárzás egy fotonjával, s ennek következtében energiájának mintegy negyedét elveszíti. A Föld kozmikus környezetében ennél csak jóval nagyobb távolságra ismernek olyan csillagászati objektumokat (a legközelebbi a kb. 60 millió fényévre lévő Virgo-halmazbeli M87 aktív galaxis centruma), amelyek ekkora energiára gyorsíthatnák fel a részecskéket, ennek ellenére megfigyeltek ilyeneket, ezért a jelenséget felfedezőik nevének kezdőbetűiről GZK-paradoxonnak is nevezik. Előkészületek A háttérsugárzás mindenütt megtalálható, ezért igyekeztünk annak szélsőséges értékeire vadászni. Az egyik korábbi mérőcsoport beszámolójából kitűnt, hogy a legnagyobb változást valószínűleg a tengerszint feletti magasság növekedésével tapasztaljuk majd. Egyik fő célunk ennek pontosabb kimérése volt. Azt is olvashattuk, hogy a CERN alagútjában nem sikerült mérniük, s ezt javasolták a későbbi csoportok egyik céljának. A működő LHC-val túl sok reményünk nem volt arra, hogy ezt is megvalósítsuk, de egy váratlan leállás ezt is lehetővé tette. Előre nem tudtuk hol lesz alkalmunk használni az út során, ezért elhatároztuk, hogy ha kézhez kapjuk, a hitelesített műszert mindig készenlétben tartjuk. Álmodoztunk geológiai törésvonalak bányák, források, sziklák, menti, meddőhányók, folyók, tavak, atomerőművek közelében végzendő mérésekről. Természetesen a fúziós kísérlet, s a CERN területén is terveztünk méréseket. Többünknek a műszerpark bővítését célzó számos sikertelen 4

5 próbálkozása után Fischer Katalin mentette meg a helyzetet azzal, hogy elhozta az iskolájukból az útra a GM-számlálót. Volt olyan oktatási intézmény, ahol jobbnak látták, ha a GM-cső továbbra is felbontatlanul a dobozában marad, s olyan is akadt, ahol kinevették az érdeklődő csapattagot, s biztosították arról, hogy ott nincs, s nem is lesz doziméter... GPSvevőt Németh Árpád tudott szerezni. A mérőműszerek Típus Főbb adatok Kép 10 nsv/h 1 Sv/h FH40 G-10 ESM gyártmányú 30 kev 4,4 MeV proporcionális számláló Hitelesítés: as G M számláló, AP ös G M csővel WayteQ x920bt GPS, IGO szoftverrel Állítható előfeszítés: 200 V 600 V Mérésidő: 1 s, 10 s, 100 s, folyamatos Kijelző méret: 5" Érintőképernyős TFT LCD Kijelző felbontás: 480 x 272 Processzor (CPU): Dual Core 500 MHz, SiRF Atlas IV GPS-vevő: Atlas IV, (40 csatorna) A mérések A könnyen hordozható, stabil tokozású dozimétert a csoport minden tagja használta, az alkalomra várva szinte mindig ott lógott valamelyikünk nyakában. Ági rendszerint Katival, Erika Árpival alkotott mérőpárost. Folyamatosan bekapcsolva tartani egészen az utolsó napig 5

6 nem mertük, hiszen nem tudtuk, mennyit bír ki az elem, s a Mont Blancon mindenképpen akartunk vele mérni. Általában legalább 5 perc beállási időt kivárva, fél percenként mértünk hatot, az értékeket vagy rögtön Jéhn Jani laptopjával, vagy átmenetileg, papíron rögzítettük. Feljegyeztük a mérés helyét, idejét, a GPS adatokat, ha voltak. Több mérés helyét utólag határozta meg Németh Árpi a Google Earth program segítségével. A műszer beállításai adottak voltak, azon túl sok mindent nem tudtunk változtatni, lényegében csak a hangjelzést lehetett ki-, vagy bekapcsolni, s a dózisértékeket törölni. Gyorsan változó sugárzási környezet esetén a kijelzőn leolvasható érték nyilván nem pontos, ekkor a maximális, illetve az átlagos érték jelenthet támpontot. Hitelesnek tekinthető mérést a 400-as beütésszám elérésével lehetett végezni. Természetesen tudományos alaposságú vizsgálatot nem végezhettünk, már csak azért sem, mert soha nem tudtuk előre, hogy mennyi időnk lesz rá, éppen ezért statisztikai elemzést sem végeztünk, de talán így is sok érdekességről számolhatunk majd be a diákjainknak, csakúgy, mint egy demonstrációs kísérlet elvégzése után. Részletes leírást az interneten a műszerről nem találtunk, de alapadatokat igen, s a beszerezhető kiegészítők listája is figyelemre méltó hosszúságú. Némi zavart okozott számunkra az, hogy a műszert natural background rejection -nel reklámozzák, ami olyasmit is jelenthet, hogy éppenséggel elnyomja bizonyos mértékig az általunk mérni kívánt természetes eredetű háttérsugárzást a mesterséges eredetű gamma-források javára. De lehet, hogy ez csak a kiegészítőkre vonatkozik. A G M számláló használata körülményesebb volt, azt mindig gondosan ki, és el kellett csomagolni. A Kótyuk Marcival kibővített mérőcsoport (ő máskor is betársult hozzánk) előbb egyik este megismerkedett a működésével, majd megvitattuk, hogy milyen mérési célt is tűzhetnénk ki. Arra jutottunk, hogy ugyan a G M cső az alfa és a béta sugárzásra is érzékeny, mégis, az előbbit leárnyékoló kupak használatával talán találunk valami arányosságot a két műszer által mutatott értékek között. A dózismérőről tudtuk, hogy egy teljes félgömbben, tehát 2π szteradián térszögben, ráadásul nagyjából egyenletesen érzékeny, de a G M számláló megfelelő adatát nem ismertük. Sejtettük, hogy az sokkal kisebb térszög lehet, de arányítani 6

7 talán így is érdemes az értékeket. Eredmények A nyers és a feldolgozott mérési eredmények a mellékelt excel munkafüzet első munkalapjában találhatók. A doziméter által mutatott gammasugárzás értékeket és a G M számláló béta gamma együttes értékeit Fischer Kati hasonlította össze a második munkalapon. arányosságokat, Talált de ezeket hatékonyan felhasználni nem tudjuk, hiszen ahogyan azt meg is állapította, azok valóban csak egy adott helyen és limitált időintervallumban lehetnek érvényesek. Valami olyasmit szerettünk volna, hogy iskolájában csak a G M számláló használatával is tudjon valamit mondani arról a diákoknak, hogy az átlagos háttérsugárzási értékekhez képest (az 1 ms/év természetes eredetű terhelésnek nagyjából 115 ns/h felel meg) éppen mennyit mutat a műszer. Értékelése szerint jóval több párhuzamos mérés pontosítaná a képet. A dózisteljesítmény tengerszint feletti magasságtól való függését a harmadik munkalapon szemléltetjük. Nincs értelme lényegesen eltérő földrajzi helyekről származó mérési adatok összehasonlításának, azonban ezeket mégis benne hagytuk, hogy legyen elegendő pont a diagramhoz. A trend az így is látszik. Kihagytuk viszont a feltehetően különleges helyekről, vagy eseményekből származó értékeket, tehát a föld alatti, a lineáris gyorsító melletti méréseket, illetve a kozmikus záporoknak tulajdonítható eseményeket. Így is szemmel láthatóan nagy a szórás kis magasságoknál a jelentős földrajzi koordinátakülönbségek, a kilátónál pedig a sugárzás időben is valóban nagymértékű ingadozása miatt. A korrelációs együtthatóra így nem túl nagy, 0,84-es érték adódott. Az excel a polinomillesztés választásával is nagyjából egyenest illesztett a pontokra. 7

8 Próbálkoztunk mind Lausanne-ban, a TCV környékén, mind a CERN hatalmas területén, a meglátogatott számos helyszín mindegyikén valami különleges sugárzási esemény észlelésével tegyük hozzá szerencsére nem sok sikerrel. Messze a legalacsonyabb sugárzási szintet (34 ns/h), a számos figyelmeztető tábla és az igen komolynak tűnő biztonsági rendszerek (pl. íriszminta azonosításán alapuló beléptetőrendszer) ellenére vagy talán éppen ezért a CMS mellett állva mértünk. Érdekes módon kb. harmadával magasabb értéket mértünk a konferenciaterem hátsó részén, mint elöl. Magyarázatot nem találtunk rá, pedig G M számlálóval is kerestük az esetleges forrást, de a közeli szellőztetőnyílások mellett sem nőtt a becsapódásszám. A működés közben megtekintett lineáris gyorsítótól mindössze pár centiméterre helyezve a műszer érzékelőjét aztán akadt némi sikerélmény: a megszokott értékek majdnem százszorosát elérő számokat olvashattunk a kijelzőn (max 6000 ns/h-t). 3 m-re távolodva már ez is a tizedére csökkent. A mérés szempontjából kétségkívül legizgalmasabb eseményekre az utolsó napig, a Mont Blanc-i kirándulásig kellett várnunk. Már Chamonix-ban, Magyarország legmagasabb pontjával nagyjából egyező magasságban észleltük, hogy a sugárzás tartósan nagyobb értékű és gyorsabban is változik, mint akár pl. a CERN szintjén. A drótkötélpályán fölfelé menet aztán átszálláskor (Plan de l Aiguille) már 450 ns/h-ig szaladt a műszer. Túl sok idő itt nem volt meg- és feljegyezni az adatokat, de az látszott, hogy nagyon gyorsan megnőtt, s aztán kicsit lassabban csökkent a dózisteljesítmény. Az Aiguille du Midin Kati is mért a csoporttársakkal, de egy másik teraszon, elsodródtunk egymástól. Ekkor már nem mertem pihentetni a készüléket, mégis kénytelen voltam kétszer is újraindítani, mert a kijelzőjén rövid hangjelzés után értelmezhetetlen jelek jelentek meg. Ezután már jobban résen voltam, s az ezt 8

9 követően még kétszer megismétlődő riasztás után rögtön leolvastam a kijelzőn megjelenő értékeket, bár elhinni alig is akartam: szemmel 80 ms(!)/h-t láttam, de a készülék 93,6-es maximumot tárolt el, a normál érték mintegy milliószorosát! Természetesen ez az állapot csak rövid ideig tartott, így semmiféle veszélyt, vagy akár csak jelentősebb többletdózist nem szolgáltatott. Magyarázatként a kozmikus záporon kívül más nem merült fel, de ez 3800 méteren hihető is. Kíváncsiak vagyunk a légnyomást közvetlenül (Torricelli-kísérlet), és közvetve, a víz forráspontjának megállapításán keresztül mérő csoportok eredményeire, de statisztikusan ebben a magasságban a levegő sűrűsége a háromnegyede (5000 méteren már csak fele) a lentinek. Ez azt jelenti, hogy jóval nagyobb eséllyel figyelhetjük meg a nagyenergiájú kozmikus részecskék által keltett másodlagos részecskesokaságokat, a kozmikus záporokat. S hogy a felszínhez közel miért nincs erre esély? Többünk kedvenc olvasmánya, a Természet Világa Mikrovilág különszáma egy cikkében (Részecskebombák a világűrbõl) található adatok szerint a földfelszínt is elérő kozmikus záport csak legalább ev energiájú részecske indíthat, ezekből viszont naponta mindössze 10 halad át a légkör tetejének egy négyzetméterén. Próbáltuk ellenőrizni, hogy volt-e aznap valami különleges földi, vagy űridőjárási körülmény, de nem találtunk ilyet. Ha csak az nem számít annak, hogy az adott időszakban az ragyogóan tiszta felhők alig égbolt volt, látszottak. Kicsit később, másnap, már újra tengerszinten, egy binokulárral kivetítéses módszerrel megállapíthattuk, hogy jelentősebb napfolt se látszik a Nap felénk forduló felszínén. A Spaceweather.com aznapi adatai megerősítették ezt a megfigyelést: a napfolt-relatívszámra 0-ás értéket közöltek 9

10 Tapasztalatok hasznosítása munkánk során Nem érdemes sokat vitatkozni azzal a véleménnyel hogy egy hőmérő, barométer, higrométer minden háztartás nélkülözhetetlen tartozéka. Szintúgy nem hiányozhat(na) egy G M számláló egy fizikaszertárból. S a mérés hetére rendelkezésünkre bocsátott, hitelesített doziméterhez hasonló eszközzel középiskolai diákokkal felhasználva az (akár külföldi) osztálykirándulásokat izgalmas, s talán hasznos méréseket lehetne végezni. Nem közismert a jelenség, s kevés adatot találni a pl. a nagy magasságokban repülő személyszállítógépek utasait, s főként a személyzetét érő sugárterhelés mértékére. Ráakadtunk egy cikkre, amely ezzel foglalkozik, de egyelőre nem fértünk hozzá: Blanco, F., P. La Rocca, and F. Riggi, Cosmic rays with portable Geiger counters: from sea level to airplane cruise altitudes, European Journal of Physics, 30, (2009). Veszélyes sport-e ebből a szempontból a hegymászás? Mit tanácsolnak a nemzetközi űrállomáson tartózkodó űrhajósoknak a Napból származó részecskevihar esetére? Hallottak-e már arról a diákok, hogy mekkora kockázatot vállalnának egy Mars-expedíció tagjai? Több, érdekes kezdeményezés is zajlik a világban középiskolák diákjainak bevonására a nagyenergiájú kozmikus sugárzás megfigyelésébe. Az egyik ilyen a hollandiai HiSPARC: egy másik a kaliforniai CHICOS: de a CERN Courier egy cikke ( meglepően sok egyéb kísérletet is ismertet. Talán ezek például szolgálnak, s egyszer Magyarországon is megvalósul majd valami hasonló. Tartalomjegyzék Bevezetés...2 Előkészületek...4 A mérőműszerek...5 A mérések...5 Eredmények...7 Tapasztalatok hasznosítása munkánk során

Természettudományos Önképző Kör. Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem V. 25, péntek, 14:45-15:45

Természettudományos Önképző Kör. Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem V. 25, péntek, 14:45-15:45 Természettudományos Önképző Kör Helyszín: Berze Nagy János Gimnázium, Kiss Lajos terem 2007. V. 25, péntek, 14:45-15:45 Sok szeretettel köszöntünk minden kedves érdeklődőt Csörgő Tamás iskolánk öregdiákja,

Részletesebben

Kozmikus záporok és észlelésük középiskolákban

Kozmikus záporok és észlelésük középiskolákban Magfizika és Részecskefizika előadás Szegedi Egyetem, Kísérleti Fizikai Tanszék 2012. 10. 16 Kozmikus záporok és észlelésük középiskolákban Csörgő Tamás MTA Wigner Fizikai Kutatóközpont Részecske és Magfizikai

Részletesebben

Sükösd Csaba egyetemi docens, és Jarosievitz Beáta főiskolai tanár

Sükösd Csaba egyetemi docens, és Jarosievitz Beáta főiskolai tanár Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék Hungarian Teachers Programs Sükösd Csaba egyetemi docens, és Jarosievitz Beáta főiskolai tanár 1 A CERN és a tanárok A kezdetek

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

KÖRNYEZETÜNK SUGÁRZÁSAI

KÖRNYEZETÜNK SUGÁRZÁSAI Gradus Vol 2, No 2 (2015) 257-262 ISSN 2064-8014 KÖRNYEZETÜNK SUGÁRZÁSAI Győrfi Tamás 1* 1 Matematikai és informatikai szakcsoport, Eötvös József Főiskola, Baja, Magyarország Kulcsszavak: környezeti sugárzás

Részletesebben

Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium. 58 év a részecskefizikai kutatásban

Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium. 58 év a részecskefizikai kutatásban Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 58 év a részecskefizikai kutatásban CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12

Részletesebben

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio

-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio -A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Az expanziós ködkamra

Az expanziós ködkamra A ködkamra Mi az a ködkamra? Olyan nyomvonaljelző detektor, mely képes ionizáló sugárzások és töltött részecskék útját kimutatni. A kamrában túlhűtött gáz található, mely a részecskék által keltett ionokon

Részletesebben

KOZMIKUS SUGÁRZÁS EXTRÉM ENERGIÁKON I. RÉSZ

KOZMIKUS SUGÁRZÁS EXTRÉM ENERGIÁKON I. RÉSZ is elôírt fizikai ismeretek tárgyalásától. Ez a kihívás indította el az orvosi irányultságú fizika/biofizika oktatását Budapesten. Tarján professzor több mint 30 éven keresztül állt a katedrán és ez alatt

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Radioaktív anyag felezési idejének mérése

Radioaktív anyag felezési idejének mérése A pályázótársam által ismertetett mérési módszer alkalmazásához Labview szoftverrel készítettem egy mérőműszert, ami lehetőséget nyújt radioaktív anyag felezési idejének meghatározására. 1. ábra: Felhasználói

Részletesebben

A szférák zenéjétől és az űridőjárásig. avagy mi a kapcsolat az Antarktisz és a műholdak között. Lichtenberger János

A szférák zenéjétől és az űridőjárásig. avagy mi a kapcsolat az Antarktisz és a műholdak között. Lichtenberger János A szférák zenéjétől és az űridőjárásig avagy mi a kapcsolat az Antarktisz és a műholdak között Lichtenberger János ELTE Geofizikai és Űrtudományi Tanszék Űrkutató Csoport Egy kis közvéleménykutatás 1.

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Ionizáló sugárzások dozimetriája

Ionizáló sugárzások dozimetriája Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Bemutatkozik a CERN Fodor Zoltán

Bemutatkozik a CERN Fodor Zoltán Bemutatkozik a CERN Fodor Zoltán 1 CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12 ország alapította, ma 21 tagország (2015: Románia) +Szerbia halad + Ciprus,

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Beltéri radon mérés, egy esettanulmány alapján

Beltéri radon mérés, egy esettanulmány alapján Beltéri radon mérés, egy esettanulmány alapján Készítette: BARICZA ÁGNES ELTE TTK, KÖRNYEZETTAN BSC. SZAK Témavezető: SZABÓ CSABA, Ph.D. Előadás vázlata 1. Bevezetés 2. A radon főbb tulajdonságai 3. A

Részletesebben

Kell-e félnünk a salaktól az épületben?

Kell-e félnünk a salaktól az épületben? XLIII. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2018. április 17-19. Kell-e félnünk a salaktól az épületben? Homoki Zsolt Országos Közegészségügyi Intézet Közegészségügyi Igazgatóság Sugárbiológiai

Részletesebben

Hévíz és környékének megemelkedett természetes radioaktivitás vizsgálata

Hévíz és környékének megemelkedett természetes radioaktivitás vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Fizikai Intézet Atomfizikai Tanszék Hévíz és környékének megemelkedett természetes radioaktivitás vizsgálata Szakdolgozat Készítette: Kaczor Lívia földrajz

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások Biofizika előadások 2013 december Orbán József PTE ÁOK Biofizikai Intézet A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Fogalma. bar - ban is kifejezhetjük (1 bar = 10 5 Pa 1 atm.). A barométereket millibar (mb) beosztású skálával kell ellátni.

Fogalma. bar - ban is kifejezhetjük (1 bar = 10 5 Pa 1 atm.). A barométereket millibar (mb) beosztású skálával kell ellátni. A légnyomás mérése Fogalma A légnyomáson a talajfelszín vagy a légkör adott magasságában, a vonatkoztatás helyétől a légkör felső határáig terjedő függőleges légoszlop felületegységre ható súlyát értjük.

Részletesebben

Kettőscsillagok vizuális észlelése. Hannák Judit

Kettőscsillagok vizuális észlelése. Hannák Judit Kettőscsillagok vizuális észlelése Hannák Judit Miért észleljünk kettősöket? A kettőscsillagok szépek: Rengeteg féle szín, fényesség, szinte nincs is két egyforma. Többes rendszerek különösen érdekesek.

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs

Részletesebben

MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József

MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József MATROSHKA kísérletek a Nemzetközi Űrállomáson Kató Zoltán, Pálfalvi József Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2010 A Matroshka kísérletek: Az Európai Űrügynökség (ESA) dozimetriai programjának

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

A CERN bemutatása. Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011

A CERN bemutatása. Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011 A CERN bemutatása Horváth Dezső MTA KFKI RMKI és ATOMKI Hungarian Teachers Programme, 2011 CERN: Conseil Européen pour la Recherche Nucléaire Európai Nukleáris Kutatási Tanács Európai Részecskefizikai

Részletesebben

Magspektroszkópiai gyakorlatok

Magspektroszkópiai gyakorlatok Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai

Részletesebben

AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT. Szakmai Nap II. 2015. február 5.

AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT. Szakmai Nap II. 2015. február 5. AZ ESÉLY AZ ÖNÁLLÓ ÉLETKEZDÉSRE CÍMŰ, TÁMOP-3.3.8-12/2-2012-0089 AZONOSÍTÓSZÁMÚ PÁLYÁZAT Szakmai Nap II. (rendezvény) 2015. február 5. (rendezvény dátuma) Orbán Róbert (előadó) Bemeneti mérés - természetismeret

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

A családi háttér és az iskolai utak eltérései

A családi háttér és az iskolai utak eltérései 13 Szanyi-F. Eleonóra A családi háttér és az iskolai utak eltérései Az alábbi cikk első része egy, e folyóiratban korábban megjelent írás (Hiányszakmát tanuló végzős szakiskolások; ÚPSz 211/6) folytatása.

Részletesebben

Gyorsjelentés. az informatikai eszközök iskolafejlesztő célú alkalmazásának országos helyzetéről 2011. február 28-án, elemér napján KÉSZÍTETTÉK:

Gyorsjelentés. az informatikai eszközök iskolafejlesztő célú alkalmazásának országos helyzetéről 2011. február 28-án, elemér napján KÉSZÍTETTÉK: Gyorsjelentés az informatikai eszközök iskolafejlesztő célú alkalmazásának országos helyzetéről 2011. február 28-án, elemér napján KÉSZÍTETTÉK: Hunya Márta PhD Kőrösné dr. Mikis Márta Tartsayné Németh

Részletesebben

19. A fényelektromos jelenségek vizsgálata

19. A fényelektromos jelenségek vizsgálata 19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban

Részletesebben

Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium. 62 év a részecskefizikai kutatásban

Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium. 62 év a részecskefizikai kutatásban Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 62 év a részecskefizikai kutatásban CERN Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium 1954-ben 12

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat, 2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül

Részletesebben

Csillagászati eszközök. Űrkutatás

Csillagászati eszközök. Űrkutatás Csillagászati eszközök Űrkutatás Űrkutatás eszközei, módszerei Optikai eszközök Űrszondák, űrtávcsövek Ember a világűrben Műholdak Lencsés távcsövek Első távcső: Galilei (1609) Sok optikai hibája van.

Részletesebben

1. Magyarországi INCA-CE továbbképzés

1. Magyarországi INCA-CE továbbképzés 1. Magyarországi INCA rendszer kimenetei. A meteorológiai paraméterek gyakorlati felhasználása, sa, értelmezése Simon André Országos Meteorológiai Szolgálat lat Siófok, 2011. szeptember 26. INCA kimenetek

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

FMO. Földfelszíni Megfigyelések Osztálya. Zárbok Zsolt osztályvezető 2015.10. 02..

FMO. Földfelszíni Megfigyelések Osztálya. Zárbok Zsolt osztályvezető 2015.10. 02.. FMO Földfelszíni Megfigyelések Osztálya Zárbok Zsolt osztályvezető 2015.10. 02.. Földfelszíni Megfigyelések Osztálya Mottó: minden meteorológiai tevékenység alapja a megfigyelés Földfelszíni Megfigyelések

Részletesebben

A KÖRNYEZETI INNOVÁCIÓK MOZGATÓRUGÓI A HAZAI FELDOLGOZÓIPARBAN EGY VÁLLALATI FELMÉRÉS TANULSÁGAI

A KÖRNYEZETI INNOVÁCIÓK MOZGATÓRUGÓI A HAZAI FELDOLGOZÓIPARBAN EGY VÁLLALATI FELMÉRÉS TANULSÁGAI A KÖRNYEZETI INNOVÁCIÓK MOZGATÓRUGÓI A HAZAI FELDOLGOZÓIPARBAN EGY VÁLLALATI FELMÉRÉS TANULSÁGAI Széchy Anna Zilahy Gyula Bevezetés Az innováció, mint versenyképességi tényező a közelmúltban mindinkább

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 3060 Lézeres távolságmérő TARTALOMJEGYZÉK ELEM CSERÉJE... 3 A KÉSZÜLÉK FELÉPÍTÉSE... 3 A KIJELZŐ FELÉPÍTÉSE... 3 MŰSZAKI JELLEMZŐK... 4 LÉZERES CÉLZÓ BEKAPCSOLÁSA... 4 MÉRÉSI TÁVOLSÁG...

Részletesebben

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc

FIZIKA PRÓBAÉRETTSÉGI 2004. EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. FIZIKA EMELT SZINT 240 perc A feladatlap megoldásához 240 perc áll rendelkezésére. Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat

Részletesebben

A napsugárzás mérések szerepe a napenergia előrejelzésében

A napsugárzás mérések szerepe a napenergia előrejelzésében A napsugárzás mérések szerepe a napenergia előrejelzésében Nagy Zoltán 1, Dobos Attila 2, Rácz Csaba 2 1 Országos Meteorológiai Szolgálat 2 Debreceni Egyetem Agrártudományi Központ Könnyű, vagy nehéz feladat

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

1. sz. füzet 2001-2005.

1. sz. füzet 2001-2005. M A G Y A R M Ű S Z A K I B I Z T O N S Á G I H I V A T A L 1. sz. füzet A 2/2001. (I. 17.) Korm. rendelet alapján összeállított biztonsági jelentés, illetőleg biztonsági elemzés hatóságnak megküldendő

Részletesebben

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK Célok, módszerek, követelmények CÉLOK, MÓDSZEREK Meteorológiai megfigyelések (Miért?) A meteorológiai mérések célja: Minőségi, szabvány

Részletesebben

FELSZÍN ALATTI VIZEK RADONTARTALMÁNAK VIZSGÁLATA ISASZEG TERÜLETÉN

FELSZÍN ALATTI VIZEK RADONTARTALMÁNAK VIZSGÁLATA ISASZEG TERÜLETÉN FELSZÍN ALATTI VIZEK RADONTARTALMÁNAK VIZSGÁLATA ISASZEG TERÜLETÉN Készítette: KLINCSEK KRISZTINA környezettudomány szakos hallgató Témavezető: HORVÁTH ÁKOS egyetemi docens ELTE TTK Atomfizika Tanszék

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 5040 Lézeres távolságmérő TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Az elemek cseréje... 2 3. A készülék felépítése... 2 4. Műszaki jellemzők... 3 5. A lézeres távolságmérő bekapcsolása...

Részletesebben

2014. évi országos vízrajzi mérőgyakorlat

2014. évi országos vízrajzi mérőgyakorlat 2014. évi országos vízrajzi mérőgyakorlat Készült a Közép-Dunántúli Vízügyi Igazgatóság Vízrajzi és Adattári Osztálya által készített jelentés felhasználásával Idén május 5. és 7. között került lebonyolításra

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2014-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán

A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán Király Péter MTA Wigner Fizikai Kutatóközpont RMKI KFFO İsrégi kérdés: meddig terjedhet Napisten birodalma? Napunk felszíne, koronája,

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

A debreceni alapéghajlati állomás, az OMSZ háttérklíma hálózatának bővített mérési programmal rendelkező mérőállomása

A debreceni alapéghajlati állomás, az OMSZ háttérklíma hálózatának bővített mérési programmal rendelkező mérőállomása 1 A debreceni alapéghajlati állomás, az OMSZ háttérklíma hálózatának bővített mérési programmal rendelkező mérőállomása Nagy Zoltán Dr. Szász Gábor Debreceni Brúnó OMSZ Megfigyelési Főosztály Debreceni

Részletesebben

efocus Content management, cikkírás referencia

efocus Content management, cikkírás referencia Gainward nvidia GeForce GTX 550 Ti VGA A GTX 460 sikeres folytatásaként aposztrofált GTX 550 Ti egy kicsit GTS, egy kicsit Ti, de leginkább GTX. Ebben a hárombetűs forgatagban az ember már lassan alig

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Felhasználói kézikönyv V 1.0

Felhasználói kézikönyv V 1.0 720 Felhasználói kézikönyv V 1.0 1. Bevezetés Tudod, hogy milyen kapcsolat van a légköri nyomás, és a horgászat között, vagy hogy mikor jött el a tökéletes idő a horgászathoz? Ezt a karórát első sorban

Részletesebben

1. Cartesius-búvár. 1. tétel

1. Cartesius-búvár. 1. tétel 1. tétel 1. Cartesius-búvár Feladat: A rendelkezésre álló eszközök segítségével készítsen el egy Cartesius-búvárt! A búvár vízben való mozgásával mutassa be az úszás, a lebegés és az elmerülés jelenségét!

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

CERN-i látogatás. A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit.

CERN-i látogatás. A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit. CERN-i látogatás Mágnesgyár A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit. Ez a berendezés gyorsítja a részecskéket.,és

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája

A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Táncoló vízcseppek. Tartalomjegyzék. Bevezető

Táncoló vízcseppek. Tartalomjegyzék. Bevezető TUDEK 2013 Szerző: Veres Kincső Bolyai Farkas Elméleti Líceum Marosvásárhely Fizika kategória Felkészítő tanár: Szász Ágota Táncoló vízcseppek Tartalomjegyzék Bevezető... 1 1. Leidenfrost jelenség... 2

Részletesebben

A Nukleáris Medicina alapjai

A Nukleáris Medicina alapjai A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia

Részletesebben

Radon. 34 radioaktív izotópja ( Rd) közül: 222. Rn ( 238 U bomlási sorban 226 Ra-ból, alfa, 3.82 nap) 220

Radon. 34 radioaktív izotópja ( Rd) közül: 222. Rn ( 238 U bomlási sorban 226 Ra-ból, alfa, 3.82 nap) 220 Radon Radon ( 86 Rn): standard p-t-n színtelen, szagtalan, természetes, radioaktív nemes gáz; levegőnél nehezebb, inaktív, bár ismert néhány komplex és egy fluorid-vegyület, vízoldékony (+szerves oldószerek!)

Részletesebben

HUMÁN TÉRBEN TAPASZTALHATÓ SUGÁRZÁSOK ÉS ENERGIASKÁLÁK RADIATIONS IN HUMAN SPACE AND ENERGY SCALES

HUMÁN TÉRBEN TAPASZTALHATÓ SUGÁRZÁSOK ÉS ENERGIASKÁLÁK RADIATIONS IN HUMAN SPACE AND ENERGY SCALES HUMÁN TÉRBEN TAPASZTALHATÓ SUGÁRZÁSOK ÉS ENERGIASKÁLÁK RADIATIONS IN HUMAN SPACE AND ENERGY SCALES Garamhegyi Gábor Isaszegi Gábor Dénes Gimnázium és Szakközépiskola az ELTE Fizika Tanítása doktori program

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6

óra 1 3 5 7 9 11 13 15 17 19 21 23 24 C 6 5 3 3 9 14 12 11 10 8 7 6 6 Időjárási-éghajlati elemek: a hőmérséklet, a szél, a nedvességtartalom, a csapadék 2010.12.14. FÖLDRAJZ 1 Az időjárás és éghajlat elemei: hőmérséklet légnyomás szél vízgőztartalom (nedvességtartalom) csapadék

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

Bor Pál Fizikaverseny tanév 8. évfolyam I. forduló Név: Név:... Iskola... Tanárod neve:...

Bor Pál Fizikaverseny tanév 8. évfolyam I. forduló Név: Név:... Iskola... Tanárod neve:... Név:... Iskola... Tanárod neve:... A megoldott feladatlapot 2019. január 8-ig küldd el a SZTE Gyakorló Gimnázium és Általános Iskola (6722 Szeged, Szentháromság u. 2.) címére. A borítékra írd rá: Bor Pál

Részletesebben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Diagnosztikai műszerek 2003. Kispál István

Diagnosztikai műszerek 2003. Kispál István Diagnosztikai műszerek 2003 Kispál István RVM 5462 Az 5461-es típus továbbfejlesztett változata - Testre szabható mérések - Nagyobb teljesítmény - Beépített próbatárgy - Rövidebb mérési idő - Megnövelt

Részletesebben

Használati útmutató PAN Aircontrol

Használati útmutató PAN Aircontrol Használati útmutató PAN Aircontrol Air Quality meter Tartalom 1. Bevezető... 2 2. Szállítmány tartalma... 3 3. Általános biztonsági útmutatások... 3 4. A készüléken lévő szimbólumok magyarázata... 4 5.

Részletesebben

τ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus

τ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus A Mössbauer-spektroszkópia igen nagy érzékenységű spektroszkópia módszer. Alapfolyamata

Részletesebben

A talaj természetes radioaktivitás vizsgálata és annak hatása lakóépületen belül. Kullai-Papp Andrea

A talaj természetes radioaktivitás vizsgálata és annak hatása lakóépületen belül. Kullai-Papp Andrea A talaj természetes radioaktivitás vizsgálata és annak hatása lakóépületen belül Kullai-Papp Andrea Feladat leírása A szakdolgozat célja: átfogó képet kapjak a családi házunkban mérhető talaj okozta radioaktív

Részletesebben