Számítógép Architektúrák
|
|
- Mariska Gáspár
- 9 évvel ezelőtt
- Látták:
Átírás
1 Az utasítás-pipeline szélesítése Horváth Gábor április 23. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tsz.
2 Aktuális 2. ZH jövő csütörtök Memória technológiák, virtuális memória, cache memória, lokalitástudatos programozás, utasításkészlet architektúrák Csak az elméleti részben: egyszerű pipeline utasításfeldolgozás Távközlési klub: FÉNYJÁTÉK Nagysebességű fejlődés, extrém sebességű átvitel Házigazda: Babics Emil (Magyar Telekom) Vendégek: Kolozs Csaba (ügyvezető, Equicom) Szepesi Zoltán (nemzetközi mérnöktanácsadó csoportvezető, Cisco) Rétsán Dániel (fejlesztési munkatárs, Magyar Telekom) Időpont: április 30. (csütörtök) 18:00-20:00 Helyszín: BME I épület, IB017 (1117, Bp. Magyar tudósok krt. 2.) 2
3 Utasításfeldolgozás gyorsítása 1. Lehetőség: Mélyebb pipeline Ciklusidőt felére csökkentjük (órajel 2x) Ehhez minden fázist két részre kell bontanunk Megdupláztuk az átviteli sebességet! 3
4 Utasításfeldolgozás gyorsítása 2. Lehetőség: Szélesebb pipeline Minden fázisban több utasítást dolgozunk fel 4
5 Értékelés Mélység: k-szoros, szélesség: m-szeres Elméletileg m*k-szoros gyorsulás Gyakorlatilag több korlát: m*k nagy: sok utasítás fut egyszerre sok az egymásrahatás sokszor kell megállni a feloldáshoz romló hatékonyság széles pipeline m-el négyzetesen növő forwarding utak k hiába nagy órajel nem lehet tetszőlegesen nagy pl. pipeline regiszter írás/olvasás bele kell férjen k nagy: rossz spekulatív döntések drasztikus hatása pl. rossz elágazásbecsléskor sor tévesen elkezdett utasítás Tipikus értékek: Mélység: 5-30 Szélesség: 1-6 5
6 Példák Mélység Szélesség Pentium 5 1 Pentium Pro (1 bármilyen + 2 egyszerű) Pentium 4 Prescott 31 3 Intel Core 14 4 Intel Core i7 Nehalem 16 4 Intel Core i7 Haswell 14 4 Intel Atom 16 2 Alpha ARM Cortex A9 8 2 ARM Cortex A POWER7? 6 6
7 A pipeline szélesítése Hatékonyság kulcsa: Elég sok független utasítás Ki válogatja össze? Fordító: Statikus ütemezés VLIW/EPIC Processzor: Dinamikus ütemezés Szuperskalár processzor 7
8 Utasítások ütemezése A tisztán dinamikus és tisztán statikus megoldás között vannak köztes lehetőségek is Párhuzamosan végrehajtható csoportok kiválasztása Hozzárendelés a műveleti egységekhez Végrehajtás idejének meghatározása Szuperskalár Hardver Hardver Hardver EPIC Fordító Hardver Hardver Dinamikus VLIW Fordító Fordító Hardver VLIW Fordító Fordító Fordító 8
9 Széles pipeline dinamikus ütemezéssel 9
10 Szuperskalár processzorok A processzor több utasítást is le tud hívni egyszerre A processzor végzi a Párhuzamosan végrehajtható utasítások kiválogatását Az utasítások végrehajtó egységhez rendelését A függőségi analízist (mikor hajtható végre egy utasítás) Ha minden fázisban m új utasítás végrehajtása kezdődik meg m-utas szuperskalár processzor Kétféle megoldás: In-order: végrehajtási sorrend: program követése Out-of-order: átrendezi az utasításokat, hogy gyorsabb legyen program szemantikáját megtartja 10
11 In-order vs. Out-of-order Példa: i1: R1 R2 + R3 i2: R4 R1 R5 i3: R7 R8 R9 i4: R0 R2 R3 2-utas esetben: In-order: Out-of-order: Órajel Utasítások Órajel Utasítások 1: i1 1: i1, i3 2: i2, i3 2: i2, i4 3: i4 11
12 In-order szuperskalár pipeline Hagyományos egy-utas nem szuperskalár processzor Két-utas in-order szuperskalár processzor 12
13 IF Utasítás lehívás Most m utasítást kell lehívnia Ha az m utasítás sorban jön: Semmi gond: Memória szószélesség növelése (eddiginél több bájt lehívása a cache-ből) Ha ugrást tartalmaz: Ez már nehezebb Kiolvas elágazást becsül kiolvas: nincs rá idő! Az elágazásig hívjuk le az utasításokat Romlik a hatékonyság 13
14 ID Dekódolás Most m utasítást kell dekódolnia. Mik is a dekódolás feladatai? ALU vezérlőjelek előállítása Nem nehezebb m-re mint 1-re Operandusok kiolvasása Csak 1 regiszter tárolónk van! 2*m kiolvasásra nincs idő Több portos regisztertároló kell Bonyolult Adatfüggőségek detektálása...folyt... 14
15 ID Dekódolás Adatfüggőségek detektálása m-el négyzetesen bonyolódik! Az 1-es úton lévő utasítás: 1-es operandusreg. == 1-es úton az előbbi utasítás eredm. reg.? 2-es operandusreg. == 1-es úton az előbbi utasítás eredm. reg.? 1-es operandusreg. == 1-es úton a kettővel előbbi utasítás eredm. reg.? 2-es operandusreg. == 1-es úton a kettővel előbbi utasítás eredm. reg.? 1-es operandusreg. == 2-es úton az előbbi utasítás eredm. reg.? 2-es operandusreg. == 2-es úton az előbbi utasítás eredm. reg.? 1-es operandusreg. == 2-es úton a kettővel előbbi utasítás eredm. reg.? 2-es operandusreg. == 2-es úton a kettővel előbbi utasítás eredm. reg.? A 2-es úton lévő utasítás: ugyanez... 15
16 EX Végrehajtás Most m utasítást kell végrehajtania. m db ALU OK, nem probléma. Forwarding utak m2 van belőle bites sínek! Nem OK. Komoly probléma! 16
17 MEM Memóriaműveletek Most m utasítás akarja egyszerre. Két lehetőség: 2 portos adat cache Csak 1 memóriaműveletet engedünk egyszerre Ha az m-ből több is igényel MEM fázist, a többi vár (feldolgozási egymásrahatás) 17
18 WB Eredmény regiszter tárolás Több portos regiszter tároló kell 18
19 Az ARM Cortex A8 pipeline-ja 2-utas in-order 14 fázisú futószalag Utasításlehívás: 3 fázisú, külön életet él F0: utasításszámláló inkrementálás, ugráskor számolás F1: cím kiadása az utasításcache-nek. F2: Megjön az adat az utasításcache-től utasítássorba 19
20 Az ARM Cortex A8 pipeline-ja Dekódolás: 5 fázisú D0-D1: dekódolás (művelet, cél és forrásoperandusok) D2: utasítást pending/replay sorba teszi, vagy kivesz onnan D3: ellenőrzi, végrehajtjató-e a köv. 2 utasítás egyszerre D4: ALU vezérlőjelek előállítása 20
21 Az ARM Cortex A8 pipeline-ja Dekódolás: Pending sor: Itt várják be az utasítások a párjukat Replay sor: Végrehajtás alatt álló be nem fejezett utasításokat tárol Egymásrahatáskor megbecsli, mikor múlik el, és úgy időzíti Ha téved, újraindítja a replay sorból 21
22 Az ARM Cortex A8 pipeline-ja Végrehajtás: Műveleti egységek: 2x egész ALU 1x szorzó 1x load/store Korlátozások az utasításpárokra: Csak az egyik lehet ugrás Csak az egyik lehet load/store Csak az egyik lehet szorzás (csak az öregebb) 22
23 Az ARM Cortex A53 pipeline-ja 2-utas in-order 8 fázisú futószalag Fejlesztések: Dekódolás: 1 órajel Több műveleti egység Jóval kevesebb korlátozás az utasításpárokra szinte tökéletesen kihasználható a 2-utas futószalag Több forwarding út A TLB nagyobb és asszociatívabb Fejlettebb cache előbetöltő Jobb elágazásbecslés 23
24 Out-of-order szuperskalár pipeline Egy utas esetet már láttuk Nyilvántartásokat kell vezetni: Az utasítások végrehajtási állapotáról Műveleti egységek foglaltságáról Döntéseket kell hozni Utasítások műveleti egységekhez rendelése Bonyolúlt processzor Nem nehéz több utasra kiterjeszteni! Több IF és DS egység kell Egy ciklusban több utasítás lép be a tárolóba Egy ciklusban több utasítás végrehajtása is elindulhat 24
25 Az Intel Haswell pipeline-ja Széles, sorrenden kívüli szuperskalár 25
26 Az Apple Cyclone pipeline-ja 26
27 Szuperskalár összefoglaló In-order: egyszerűbb Out-of-order: bonyolúltabb Adatáramlásos elven történő utasításvégrehajtás Táblázatok tartják nyilván a műveleti egységek, utasítások és regiszterek állapotát Miért szereti a programozó az out-of-order processzort? Mert nem kell kézzel optimalizálni az utasítás sorrendet (lásd: gyakorlat) A CPU automatikusan összeszedi és végrehajtja, amit végre lehet 27
28 Széles pipeline statikus ütemezéssel 28
29 A másik véglet Szuperskalár: a CPU keresgéli a független, párhuzamosan végrehajtható utasításokat A fordítóprogram is megteheti! Sőt, jobban! Több utasítást lát! Kapjunk vérszemet: Csináljon mindent a fordító! Párhuzamosan végrehajtható utasítások gyűjtése Utasítások műveleti egységhez rendelése Egymásrahatások detektálása és feloldása 29
30 A VLIW architektúra VLIW = Very Long Instruction Word 1 pipeline, de Nem utasításokon dolgozik, hanem utasításcsoportokon Ezek egy egységként haladnak a pipeline-ban Csoporton belüli utasításoknak nincs külön címe, az egész csoportnak közös címe van Csoportok szerepe: Független utasítások kijelölése Utasítások műveleti egységhez rendelése 30
31 A VLIW architektúra Nem használt pozíciókban: Meddig tart a végrehajtása? Amíg a benne lévő leglassabbé Döbbenet: A VLIW processzorok nem foglalkoznak egymásrahatásokkal! Mi van, ha adat-egymásrahatás van, és szünetet kellene beiktatni? Processzor fütyül rá Vegye észre a fordító! Iktasson be egy csupa csoportot 31
32 A VLIW architektúra Példa: Késleltetések: egész 1, memória 3, lebegőpontos 4 i1: R3 MEM[R1+0] i2: R4 MEM[R1+4] i3: D1 MEM[R1+8] i4: R5 R3 + R4 i5: R6 R3 R4 i6: D2 D1 * D1 i7: MEM[R2+0] R5 i8: MEM[R2+4] R6 i9: MEM[R2+8] D2 Egész 1. Egész 2. Mem 1. Mem 2. FP i1 i2 2. i i4 i5 5. i7 i8 i i9 FP 2. 32
33 A VLIW architektúra Nem sikerült elég sok párhuzamosítható utasítást találni rossz kihasználtság Tehát a fordítóprogram feladatai: Utasítások csoportokba rendezése A lehető legnagyobb kitöltöttségre törekedve Csoport utasításai párhuzamosan végrehajthatók legyenek Utasítások ütemezése Egymásrahatások felismerése Szükséges csupa szünetek beiktatása 33
34 A VLIW architektúra Tipikus utasításcsoport-méretek: 3-4, extrém esetben akár 28 utasítás Minden nehezet a fordító csinál processzornak alig marad dolga! VLIW processzorok tipikus alkalmazása: Olcsó, kis fogyasztású beágyazott rendszerek Ha fontos a kiszámítható, spekuláció és predikciómentes működés: DSP (pl. TMS320C6x 8 utasítás/csoport) Grafikus processzorok: sok egyszerű feldolgozóegység kell pl. ATI a Radeon HD óta napjainkig: VLIW3 ill. VLIW4 34
35 A VLIW architektúra Hátrányok: A program csak azon a processzoron fut, amire lefordították Nem lehet a processzorcsalád új tagjába Több műveleti egységet tenni Gyorsabb műveleti egységeket tenni Nagy probléma a transzparens cache megvalósítása! Memóriaműveletek sebessége nem lesz állandó Fordítóprogram nem tudja, hogyan ütemezzen VLIW processzorokban nincs cache Programok mérete igen nagy a sok miatt 35
36 A dinamikus VLIW architektúra A fordító csak csoportosít A processzor ütemez Észleli az egymásrahatásokat Szüneteket tud beiktatni Előnyök: Lehet cache-t csinálni! Lehet gyorsabb műveleti egységeket bevezetni Nem kell újrafordítani a programot 36
37 Az EPIC architektúra HP & Intel közös kutatási projektje Kezdés: 1994, első implementáció: 2002 (Intel Itanium) Cél: Fordítóra nagyobb feladatot bízni a párhuzamosság felderítésében A VLIW korlátai nélkül 37
38 Az EPIC architektúra VLIW-ben az utasítás csoportbeli helye a műveleti egységet is kijelölte: EPIC-ben nem. Utasításcsoport: párhuzamosan végrehajtható utasítások halmaza 38
39 Az EPIC architektúra Csoport összetétele: sablon meghatározza Pl. M memória, I egész, F lebegőpontos, B ugrás MFI: egy memória, ehy lebegőpontos és egy egész van benne MFI, MMI, MII, MIB, MMF, MFB, stb. Specifikáció rögzíti a megengedett kombinációkat Processzorcsalád bővítésekor ez csak bővülhet Egymásrahatásokat a processzor kezeli Utasításcsoport méretének semmi köze a műveleti egységek számához! 39
40 Az EPIC architektúra Lehet EPIC szuperskalár processzort készíteni: Több műveleti egységgel A CPU több csoport egyidejű végrehajtását végzi Lehet csoportokat láncolni Így jelezheti a fordító, hogy nem 3, hanem 6, 9, stb. független utasítást talált nem kell újrafordítani a programot, ha bővül és/vagy gyorsul a processzor 40
41 Összegzés 41
42 Összegzés Statikus ütemezés (VLIW és barátai): Fordító több utasítást tud áttekinteni, hogy feltöltse a pipeline-t Súlyos korlát: Csak egyazon basic blokk-on belüli utasításokat csoportosíthat! Hiszen nem tudja előre a feltételes elágazások kimenetelét Dinamikus ütemezés (szuperskalár): A processzor kevesebb utasítást tud áttekinteni Korlát: utasítástároló mérete Az utasítások csoportosításakor át tud lépni a basic blokk-ok határain! Hiszen van elágazásbecslője, rátanul az elágazások viselkedésére (lásd: spekulatív végrehajtás) 42
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Soron kívüli utasítás-végrehajtás Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-04-24 1 KÜLÖNBÖZŐ
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Pipeline utasításfeldolgozás Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-04-24 1 UTASÍTÁSOK
Számítógép Architektúrák
Soron kívüli utasítás-végrehajtás Horváth Gábor 2016. április 27. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Különböző késleltetésű műveletek Láttuk, hogy a lebegőpontos
SzA19. Az elágazások vizsgálata
SzA19. Az elágazások vizsgálata (Az elágazások csoportosítása, a feltételes utasítások használata, a műveletek eredményének vizsgálata az állapottér módszerrel és közvetlen adatvizsgálattal, az elágazási
Számítógép architektúrák záróvizsga-kérdések február
Számítógép architektúrák záróvizsga-kérdések 2007. február 1. Az ILP feldolgozás fejlődése 1.1 ILP feldolgozási paradigmák (Releváns paradigmák áttekintése, teljesítmény potenciáljuk, megjelenési sorrendjük
Számítógép architektúrák. A mai témák. A teljesítmény fokozás. A processzor teljesítmény növelése
Számítógép architektúrák A processzor teljesítmény növelése A mai témák CISC és RISC Párhuzamosságok Utasítás szintű párhuzamosságok Futószalag feldolgozás Többszörözés (szuperskalaritás) A függőségek
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?
A mai témák. Számítógép architektúrák. CISC és RISC. A teljesítmény fokozás. További előnyök. A RISC gondolat
A mai témák Számítógép architektúrák A processzor teljesítmény növelése CISC és RISC Párhuzamosságok Utasítás szintű párhuzamosságok Futószalag feldolgozás Többszörözés (szuperskalaritás) A függőségek
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
Számítógép Architektúrák
1. Információfeldolgozási modellek Horváth Gábor 2016. február 18. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Adminisztratív információk Horváth Gábor Hálózati
Számítógép Architektúrák
Számítógép Architektúrák Utasításkészlet architektúrák 2015. április 11. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
Hardver Ismeretek IA32 -> IA64
Hardver Ismeretek IA32 -> IA64 Problémák az IA-32-vel Bonyolult architektúra CISC ISA (RISC jobb a párhuzamos feldolgozás szempontjából) Változó utasításhossz és forma nehéz dekódolni és párhuzamosítani
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Információfeldolgozási modellek Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 02/01/2018 1 ADMINISZTRATÍV
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
Számítógép Architektúrák
Cache memória Horváth Gábor 2016. március 30. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Már megint a memória... Mindenről a memória tehet. Mert lassú. A virtuális
Számítógép Architektúrák
SIMD feldolgozás Horváth Gábor 2016. május 20. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Hatékony utasításfeldolgozás Hogyan tettük eddig hatékonnyá az utasítás-végrehajtást?
Architektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes
Architektúra, cache irıl lesz szó? Alapfogalmak Adat cache tervezési terének alapkomponensei Koschek Vilmos Fejlıdés vkoschek@vonalkodhu Teljesítmény Teljesítmény növelése Technológia Architektúra (mem)
VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek)
SzA35. VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) Működési elvük: Jellemzőik: -függőségek kezelése statikusan, compiler által -hátránya: a compiler erősen
Számítógép Architektúrák
Multiprocesszoros rendszerek Horváth Gábor 2015. május 19. Budapest docens BME Híradástechnikai Tanszék ghorvath@hit.bme.hu Párhuzamosság formái A párhuzamosság milyen formáit ismerjük? Bit szintű párhuzamosság
Bevezetés. Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Bevezetés Motiváció Soros és párhuzamos végrehajtás, soros és párhuzamos programozás Miért? Alapfogalmak
Számítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
Számítógép architektúrák. A processzor teljesítmény növelése
Számítógép architektúrák A processzor teljesítmény növelése A mai témák CISC és RISC Párhuzamosságok Utasítás szintű párhuzamosságok Futószalag feldolgozás Többszörözés (szuperskalaritás) A függőségek
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
Adatok ábrázolása, adattípusok
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Magas szintű optimalizálás
Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU
Készítette: Trosztel Mátyás Konzulens: Hajós Gergely
Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A
Módosított ábra: szaggatott nyíl: a fejlődési ív Az ábrából kimaradt a mobil szegmens (hordozható számítógépek). Y tengely: ár.
2009. 09. 23. 1 2 3 Módosított ábra: szaggatott nyíl: a fejlődési ív Az ábrából kimaradt a mobil szegmens (hordozható számítógépek). Y tengely: ár. A value PC hez hasonló idővonalat kell elképzelni hozzá.
Grafikus csővezeték 1 / 44
Grafikus csővezeték 1 / 44 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve Raszterizálás
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
Digitális rendszerek. Digitális logika szintje
Digitális rendszerek Digitális logika szintje CPU lapkák Mai modern CPU-k egy lapkán helyezkednek el Kapcsolat a külvilággal: kivezetéseken (lábak) keresztül Cím, adat és vezérlőjelek, ill. sínek (buszok)
Dr. Illés Zoltán zoltan.illes@elte.hu
Dr. Illés Zoltán zoltan.illes@elte.hu Operációs rendszerek kialakulása Op. Rendszer fogalmak, struktúrák Fájlok, könyvtárak, fájlrendszerek Folyamatok Folyamatok kommunikációja Kritikus szekciók, szemaforok.
Bevezetés az informatikába
Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Vezérlésfolyam gráf és X86 utasításkészlet
Vezérlésfolyam gráf és X86 utasításkészlet Kód visszafejtés. Izsó Tamás 2016. november 3. Izsó Tamás Vezérlésfolyam gráf és X86 utasításkészlet / 1 Intervallum algoritmus Procedure Intervals(G={N, E, h})
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális
A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem)
65-67 A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) Két fő része: a vezérlőegység, ami a memóriában tárolt program dekódolását és végrehajtását végzi, az
Teljesítmény: időegység alatt végrehajtott utasítások száma. Egységek: MIPS, GIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS. Mai nagyteljesítményű GPGPU k: 1-2
2009. 10. 21. 1 2 Teljesítmény: időegység alatt végrehajtott utasítások száma. Egységek: MIPS, GIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS. Mai nagyteljesítményű GPGPU k: 1-2 PFLOPS. (Los Alamosban 1 PFLOPS os
(11) Lajstromszám: E 006 221 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA
!HU000006221T2! (19) HU (11) Lajstromszám: E 006 221 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 0 7178 (22) A bejelentés napja:
Szenzorhálózatok programfejlesztési kérdései. Orosz György
Szenzorhálózatok programfejlesztési kérdései Orosz György 2011. 09. 30. Szoftverfejlesztési alternatívák Erőforráskorlátok! (CPU, MEM, Energia) PC-től eltérő felfogás: HW közeli programozás Eszközök közvetlen
Számítógép architektúra
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Számítógép architektúra Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Irodalmi források Cserny L.: Számítógépek
Máté: Számítógép architektúrák
Elágazás jövendölés ok gép megjövendöli, hogy egy ugrást végre kell hajtani vagy sem. Egy triviális jóslás: a visszafelé irányulót végre kell hajtani (ilyen van a ciklusok végén), az előre irányulót nem
Számítógép Architektúrák
Horváth Gábor (szerk.) Számítógép Architektúrák 2012.09.27. 2 A szerzők elérhetőségei: Név E-mail cím Szoba Horváth Gábor ghorvath@hit.bme.hu I.B.116. Lencse Gábor lencse@hit.bme.hu I.B.118. Tartalomjegyzék
Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD
M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak
ARM Cortex magú mikrovezérlők
ARM Cortex magú mikrovezérlők 3. Cortex-M0, M4, M7 Scherer Balázs Budapest University of Technology and Economics Department of Measurement and Information Systems BME-MIT 2018 32 bites trendek 2003-2017
elektronikus adattárolást memóriacím
MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása
Számítógép architektúrák II.
Számítógép architektúrák II. 2009 Órai jegyzet (Dr. Broczkó Péter anyagához) AnNo és Broadcast jegyzeteinek frissített változata A jegyzet készítői az esetleges hibákért semmilyen felelősséget nem vállalnak,
* 800 MHz/PC-3200/ATA-100. SPECint_base2000/f c Pentium III. Pentium * 800 MHz/PC-2667/ATA-100 * * * * *
SzA42. A processzorok fejlődésének hatékonysági határa (ennek alapvető oka és megnyilvánulási formái, hogyan változik az Intel és az AMD x86 családok hatékonysága az órafrekvencia növelésekor, a két család
Processzor (CPU - Central Processing Unit)
Készíts saját kódolású WEBOLDALT az alábbi ismeretanyag felhasználásával! A lap alján lábjegyzetben hivatkozz a fenti oldalra! Processzor (CPU - Central Processing Unit) A központi feldolgozó egység a
Assembly. Iványi Péter
Assembly Iványi Péter További Op. rsz. funkcionalitások PSP címének lekérdezése mov ah, 62h int 21h Eredmény: BX = PSP szegmens címe További Op. rsz. funkcionalitások Paraméterek kimásolása mov di, parameter
Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat
1 2 3 Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat XT: 83. CPU ugyanaz, nagyobb RAM, elsőként jelent
Számítógép Architektúrák
Számítógép Architektúrák Lokalitástudatos programozás 2015. április 2. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
Digitális rendszerek. Mikroarchitektúra szintje
Digitális rendszerek Mikroarchitektúra szintje Mikroarchitektúra Jellemzők A digitális logika feletti szint Feladata az utasításrendszer-architektúra szint megalapozása, illetve megvalósítása Példa Egy
ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD
Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.
Számítógépes alapismeretek
Számítógépes alapismeretek 1. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Programtervező Informatikus BSc 2008 / Budapest
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI
5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a
Digitális rendszerek. Utasításarchitektúra szintje
Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
VEZÉRLŐEGYSÉGEK. Tartalom
VEZÉRLŐEGYSÉGEK Tartalom VEZÉRLŐEGYSÉGEK... 1 Vezérlőegységek fajtái és jellemzői... 2 A processzor elemei... 2 A vezérlés modellje... 2 A vezérlőegységek csoportosítása a tervezés módszere szerint...
egy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
Elvonatkoztatási szintek a digitális rendszertervezésben
Budapest Műszaki és Gazdaságtudományi Egyetem Elvonatkoztatási szintek a digitális rendszertervezésben Elektronikus Eszközök Tanszéke eet.bme.hu Rendszerszintű tervezés BMEVIEEM314 Horváth Péter 2013 Rendszerszint
GPU Lab. 4. fejezet. Fordítók felépítése. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc
4. fejezet Fordítók felépítése Grafikus Processzorok Tudományos Célú Programozása Fordítók Kézzel assembly kódot írni nem érdemes, mert: Egyszerűen nem skálázik nagy problémákhoz arányosan sok kódot kell
Programozási nyelvek (ADA)
Programozási nyelvek (ADA) Kozsik Tamás előadása alapján Készítette: Nagy Krisztián 3. előadás Programozási nyelv felépítése szabályok megadása Lexika Milyen egységek építik fel? Szintaktikus szabályok
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás
Szűrő architektúrák FPGA realizációjának vizsgálata
Szűrő architektúrák FPGA realizációjának vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Szántó Péter, 2013. Bevezetés Az FPGA-ban megvalósítandó jelfeldolgozási feladatok közül a legfontosabb
Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor
Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív
Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel)
Pannon Egyetem Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel) 1. tétel: Neumann és Harvard számítógép architektúrák összehasonlító
Memóriák - tárak. Memória. Kapacitás Ár. Sebesség. Háttértár. (felejtő) (nem felejtő)
Memóriák (felejtő) Memória Kapacitás Ár Sebesség Memóriák - tárak Háttértár (nem felejtő) Memória Vezérlő egység Központi memória Aritmetikai Logikai Egység (ALU) Regiszterek Programok Adatok Ez nélkül
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.20.) 3. előadás A SZÁMÍTÓGÉP- RENDSZEREK FELÉPÍTÉSE 1. Processzorok: 3. előadás CPU felépítése,
Máté: Számítógép architektúrák
Az GOTO offset utasítás. P relatív: P értékéhez hozzá kell adni a két bájtos, előjeles offset értékét. Mic 1 program: Main1 P = P + 1; fetch; goto() goto1 OP=P 1 // Main1 nél : P=P+1 1. bájt goto P=P+1;
Multimédia hardver szabványok
Multimédia hardver szabványok HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler
Központi vezérlőegység
Központi vezérlőegység A számítógép agya a központi vezérlőegység (CPU: Central Processing Unit). Két fő része a vezérlőegység (CU: Controll Unit), ami a memóriában tárolt program dekódolását és végrehajtását
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS 2015. 09. 06. Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés:
Utasításfajták Memóriacímzés Architektúrák Végrehajtás Esettanulmányok. 2. előadás. Kitlei Róbert november 28.
2. előadás Kitlei Róbert 2008. november 28. 1 / 21 Adatmozgató irányai regiszter és memória között konstans betöltése regiszterbe vagy memóriába memóriából memóriába közvetlenül másoló utasítás nincsen
Labor gyakorlat Mikrovezérlők
Labor gyakorlat Mikrovezérlők ATMEL AVR ARDUINO 1. ELŐADÁS BUDAI TAMÁS Tartalom Labor 2 mikrovezérlők modul 2 alkalom 1 mikrovezérlők felépítése, elmélet 2 programozás, mintaprogramok Értékelés: a 2. alkalom
Párhuzamos programozási modellek
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Párhuzamos programozási modellek Osztályozás Párhuzamos rendszerek Flynn-féle osztályozása Párhuzamos
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Cache memória Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-03-27 1 MÁR MEGINT A MEMÓRIA...
1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat
1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat 2. Mit tudsz Blaise Pascalról? Ő készítette el az első szériában gyártott számológépet. 7 példányban készült el.
Cache, Cache és harmadszor is Cache
Cache, Cache és harmadszor is Cache Napjainkban, a XXI. században bátran kijelenthetjük, hogy a számítógépek korát éljük. A digitális rendszerek mára a modern ember életének meghatározó szereplőjévé váltak.
FPGA áramkörök alkalmazásainak vizsgálata
FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg A SZÁMÍTÓGÉP- RENDSZEREK FELÉPÍTÉSE DE TTK v.0.1 (2007.02.20.) 1. Processzorok: CPU felépítése, utasítás-végrehajtás;
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése Beágyazott rendszerek Fehér Béla Raikovich Tamás
Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet
Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei Kutató Intézet kisszámítógépes rendszerekben Tudományos számításokban gyakran nagy mennyiségű aritmetikai művelet elvégzésére van
Számítógép Architektúrák I-II-III.
Kidolgozott államvizsgatételek Számítógép Architektúrák I-II-III. tárgyakhoz 2010. június A sikeres államvizsgához kizárólag ennek a dokumentumnak az ismerete nem elégséges, a témaköröket a Számítógép
Jelfeldolgozás a közlekedésben
Jelfeldolgozás a közlekedésben 2015/2016 II. félév 8051 és C8051F020 mikrovezérlők Fontos tudnivalók Elérhetőség: ST. 108 E-mail: lovetei.istvan@mail.bme.hu Fontos tudnivalók: kjit.bme.hu Aláírás feltétele:
DSP architektúrák dspic30f család
DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,
UNIX / Linux rendszeradminisztráció
UNIX / Linux rendszeradminisztráció VIII. előadás Miskolci Egyetem Informatikai és Villamosmérnöki Tanszékcsoport Általános Informatikai Tanszék Virtualizáció Mi az a virtualizáció? Nagyvonalúan: számítógép
SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1
INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép
Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István
Laborgyakorlat 3 A modul ellenőrzése szimulációval Dr. Oniga István Szimuláció és verifikáció Szimulációs lehetőségek Start Ellenőrzés után Viselkedési Funkcionális Fordítás után Leképezés után Időzítési
Nagy Gergely április 4.
Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az
Architektúra, megszakítási rendszerek
Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép
Bepillantás a gépházba
Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt
MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek
MSP430 programozás Energia környezetben Kitekintés, további lehetőségek 1 Még nem merítettünk ki minden lehetőséget Kapacitív érzékelés (nyomógombok vagy csúszka) Az Energia egyelőre nem támogatja, csak
sallang avagy Fordítótervezés dióhéjban Sallai Gyula
sallang avagy Fordítótervezés dióhéjban Sallai Gyula Az előadás egy kis példaprogramon keresztül mutatja be fordítók belső lelki világát De mit is jelent, az hogy fordítóprogram? Mit csinál egy fordító?
Fordító részei. Fordító részei. Kód visszafejtés. Izsó Tamás szeptember 29. Izsó Tamás Fordító részei / 1
Fordító részei Kód visszafejtés. Izsó Tamás 2016. szeptember 29. Izsó Tamás Fordító részei / 1 Section 1 Fordító részei Izsó Tamás Fordító részei / 2 Irodalom Izsó Tamás Fordító részei / 3 Irodalom Izsó
Bevitel-Kivitel. Eddig a számítógép agyáról volt szó. Szükség van eszközökre. Processzusok, memória, stb
Input és Output 1 Bevitel-Kivitel Eddig a számítógép agyáról volt szó Processzusok, memória, stb Szükség van eszközökre Adat bevitel és kivitel a számitógépből, -be Perifériák 2 Perifériákcsoportosításá,
Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus