1. Táblabejárós feladat a lehetetlen észrevétele, belátása, bizonyítása:
|
|
- Hanna Fazekasné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Pepita Fekete és fehér ugye Te sem vagy sötét? A válogatás célja: Nem kezd úgy, hogy Nem értem! Ez nekem magas, meg hát nem is érdekel. Próbáld és menni fog! Beszélgessünk! Gondolkodás a gondolkodásról. Mi az a gondolat? Gondolkodhatunk-e ismeretek nélkül? A gondolkodás és a problémamegoldás öröme. Gondolkodás-e az emlékezés? Gondolkodás nélküli gyakorlat. Módszerek-technikák: felismerés, hasonló keresése, tervkészítés, ötletelés. Tanulható-e a gondolkodás? Ismeretek és gondolkodás. Részekre bontás, részek összerakása, összehasonlítás, összefüggések, modellezés, rendszer, csoportosítás, minősítés-értékelés, döntés, általánosítás, kivételek ellentmondások, hiányok felismerése, logikai lánc, alá-fölé rendelés, következtetés, új alkotása, a lényeg felismerése, azonos, hasonló, különböző, a mellébeszélés, stb. meg még ami apropóból aktuálisan eszünkbe jut. Egy-egy feladat megoldása után foglaljuk össze, miket állapítottunk meg, miben segített a korábbira hasonló felidézése, milyen különbségeket vettünk észre, mi volt a megoldáshoz vezető szikra. Kiemelten, ami nélkülözhetetlen a gondolkodáshoz : kíváncsiság, ismeretszerzés, önbizalom. Tanítható-e a gondolkodás? Tanulható-e a gondolkodás? Ahányan, annyi féleképpen Ne döntsük el, hogy tanulható-e! Ember és állat. Alkotás és idomítás. Kevés hozzá még a tudásunk. Agy-tréning és a testépítés, de honnan jön, kinek pattan be: az isteni szikra 1. Táblabejárós feladat a lehetetlen észrevétele, belátása, bizonyítása: 62 hektár terület pont olyan négyzetet formál, aminek két szemben lévő sarkáról 1-1 hektárnyi területe hiányzik. 1-1 hektár után a szuper-traktor vagy egyenesen folytatja a szántást, vagy jobbra, vagy balra fordul. Hány óra alatt végez a szántással, ha 1 óra kell 1 hektár bejárásához? Gyanús! Nagyon gyanús! 62 óra lenne? Ez olyan könnyű, hogy nem lehet feladat! Ebben valami trükknek kell lennie, ez egy beugrató kérdés. Olyasmi talán, aminek nyelvtanból is beugrottunk: Melyik a helyes: A./ A nap nyugaton kel fel. B./ A nap nyugoton kel fel. Megszívtuk, hiszen egyik sem. A nap keleten kel fel. Vagy még az oviban tréfáltak meg egy csalafinta kérdéssel: Egy kisegér és egy elefánt áll az eresz alatt. Melyik ázik meg? az elefánt! Miért? mert esik az eső Ki mondta, hogy esik? No szóval. Vigyázzunk! Képzeljük el, rajzoljuk le és próbáljuk ki! Vajon miért írja le a feladat azt, hogy hogyan mozog a traktor? Miért használja a feladat a bejárás szót? Volt már valami ilyesmi: Rajzold le egy vonallal úgy, hogy ne vedd fel a ceruzát! Nem mindig sikerült. (A königsbergi hidakról is bebizonyítottuk, hogy nem járhatók be úg,y hogy csak egyszer megyünk át mindegyiken. ) Lehet, hogy az a trükk, hogy nem megoldható? A szántóföld pont olyan, mint egy 8x8-as tábla, két hiányzó sarokkal. Ez is gyanús. Miért hiányzik a két sarok? És miért kettő? Gyanús, nagyon gyanús! Első próbálkozásra nem is sikerül leutánozni a traktor mozgását. Próbálkozzunk kisebb méretekkel! A szabályok sokszor könnyebben megérthetők kicsi méretekben. A 3x3-2 megoldható, de a 4x4-2 nem járható be. Aha! Itt lehet a beugrató. A 8x8-2 sem lesz bejárható. Talán megint valami páros-páratlan problémával állunk szemben? Jó sejtésnek tűnik, de hogyan bizonyíthatnánk? Hopp egy ötlet! Hiszen a 8x8 az egy sakktábla is lehetne, ami pepita színezésű. Nézzük csak! Bármelyik sötét mezőn áll a traktor, onnan csak világos mezőre léphet. Világosról meg mindig csak sötétre. Aha! Megvan! Ha kettővel több mező van az egyik színből, mint a másikból, akkor sohasem járható be egy vonallal A sarkok-letakarásának pont ez a hatása. Aha! Úgy van ez, mint amikor cseresznyét felezünk a tesómmal: egyet te, egyet én alapon. Vagy ugyanannyit kapunk, vagy 1-el kevesebbet, attól függően, hogy páros, vagy páratlan számú volt a kosárban. Kettő különbség nem lehet! A megoldás tehát vagy az, hogy lehetetlen, vagy csalafintán: 63, mert bejárandó +1 hektár is. Készítessünk közben vázlatokat egy (nem kockás, hanem) négyzethálós (számtan) füzetben!
2 Miután végigkövettük a gondolatsort, beszéljük meg és szedjük részekre! Mi az, ami korábban tapasztaltakból emlékezetből ugrott be? Mik voltak a hasonlóságok? Rajzoltunk, kísérleteztünk, Milyen ötleteink jöttek? Honnan? Benne volt a buksinkban valami más témában, de észrevettük, hogy itt is működik. 2. rabkergetősdi Lásd hozzá /001/rabkergeto.html Előbb (hát persze!) próbálják ki a játékot. Úgy is, hogy a seriff kezd és úgy is, hogy a rab. Visszafelé gondolkodva: Rakjanak fel egy olyan állást, amiből akárhova lép a rab, veszíteni fog(2), majd egy olyant, ami az ezt megelőző lépés volt(3) és ami előtte (4). Próbáljanak meg újra játszani úgy, hogy mindketten törekedjenek az ábrán 2 -vel jelzett állás kialakítására. Nocsak! Még akkor sem sikerül, ha a rab nem menekül, hanem együttműködik? Vegyék észre, hogy ez soha nem sikerülhet az nélkül, hogy az egyik ne áthaladna valamelyik lépésével az ívelt úton. Vegyék észre, hogy csak akkor nyerhet a seriff (akkor persze, ha a rab nem hibázik), ha áthalad az ívelt vonalon. Vajon miért? Emlékezzünk a traktoros feladatra, és jön az isteni szikra : azért, mert most nem négyzet alakú a mező, még beszínezhető sakktábla-szerűen! Pepitára színezve vegyük észre: bármelyik lép, mindig csak vagy sötétről világosra, vagy világosról sötétre. Ámde! A kezdő állásban is, és a rab vesztő helyzetében is, azonos színű mezőkön állnak. Számoljuk ki, hogy lépésenként melyik milyen színű mezőn áll. 0. Rv Sv, 1. Rv Ss, 2 Rs Ss, 3. Rs Sv, 4 Rv Sv, 5.Rv Ss, 6. Rs Ss Vegyük észre, hogy a páros számozású állásokban mindig a seriff lép, a páratlanokban a rab. A rab 2 jelű vesztő állásában a rab lép, majd a seriff rálépve elfogja. Ám ez lehetetlen, mert a parti leírásából látjuk, hogy amikor a rab lép, akkor mindig különböző színű mezőn állnak. Ha megértették, akkor az alsó ábrasorba jelöljenek be kezdőállásokat úgy, hogy az első háromban el lehet, a második háromban nem lehet elfogni a rabot. Ezzel, azt is megértettük, hogy miért van az ívelt vonal. (Nemcsak takart a mező, de lehet egy átlós lépést is.)
3 3. checkered toy Lásd hozzá: /001/checkered_toy0.html No! Az eddig feladatokban nekünk ugrott be a pepita színezés ötlete, ami a megoldáshoz vezetett. Itt meg eleve mind pepitában! Lehet, hogy megint szívatnak? Talán könnyebb lenne az első ízlelgetéskor színezés nélkül? Dafke! Csakazértis! Amolyan diákos ellenkezéssel, készítsük el úgy is, hogy nincsen színezés és praktikusan ketten versenyezzenek úgy, hogy az egyik a pepita színezés nélküli készletet használja! Észre fogjuk venni, hogy a 8x8-asban a színezés nélküli nyer, a hárombötűs-ben pedig a színezett készlettel gondolkozó. (A T és az Y betű felső része ugyanis: csak egyetlen módon rakható ki színhelyesen.) Az egyikben tehát segít a színezés, a másikban nehezít (A négyzet több lehetséges kirakása közül csak az előre megadott színezésű a jó megoldás, aminek megtalálásában, úgy tűnik: nem segít a pepita színezés.) 4. Pentominó pepitában ( _006/pentomino_ecakkal.pdf ) Könnyít vagy nehezít a 10x6-os kirakásában a pepita színezés? A 2339 féle megoldás közül nem olyan nehéz icipici odafigyeléssel rátalálni. A jól átgondolt színezés ezek számát jelentősen lecsökkentheti, ami sokkal többszöri próbálkozást igényel. Más a helyzet a 3x20-as kirakása esetén, mert ott felhasználható a színezési értelmezése. 8x8-as változatban (egy 4 db-ossal kiegészítve) már csak néhány megoldás létezik pepitában. (Ha csupán a négyzet helyét rögzítjük, akkor sincs félénél több.) 5. Soma pepitában (Soma: /001/soma.html ) Könnyít, vagy nehezít a 3x3x3-as kocka kirakásában a pepita színezés? 6. pepita-kígyó Igen népszerű kockakirakós, ami 27 db furatolt kockából gumival van összefűzve elforgathatóan Kell-e egyáltalán a pepita színezés a megoldáshoz, vagy csak így eladhatóbb a játék? 7. 'Knossos Labyrinth ( Egy professzionális példa arra, hogy egészen ördögi színezések is kitalálhatók. Mindössze 8 db dominó-elem. Pepitában is és minta nélkül is nagyon egyszerű lenne kirakni négyzetté
4 Forrás: Nagylaci ( Rabkergetősdi A seriff és a szökött rab a táblára rajzolt vonalak mentén felváltva egy-egy szomszédos mezőre lépnek. A seriff nyer, ha oda lép, ahol rab éppen tartózkodik. A rab nyer, ha 15 lépéspár után sem képes a seriff elkapni. (Lépéskényszer van, a soron következőnek akkor is lépnie kell, ha az kedvezőtlen.) Forrás: Nagylaci (
5 Forrás: Nagylaci (
6 Serhiy Grabarchuk : 'Checkered Toy' puzzle Elegáns kirakós. Nemcsak az elemekből kirakható TOY felirat miatt, de jól példázza, hogy az ábra (a színezés) segítheti is a megoldást és van, hogy ezzel nehezebb lesz a sok lehetségestől megkülönböztetett egyetlenre rátalálni.. Lásd: a bötűk kirakását megkönnyíti a pepita színezés. (Némi elemzéssel ugyanis 4 elem helye egyértelműen meghatározható, ami után már némi próbálgatással is kiadódik a megoldás.) A 8x8-as sakktábla kirakása "színhelyesen" igazi kihívás. (Még nem sikerült bizonyítanom, de úgy tűnik, hogy a sok 8x8-as közül csak egy lesz pepita.) Megjegyzés: A vastag vonalak mentén szétvágandó ábra szándékosan tartalmaz színezési hibát. Nem venném a lelkemre, hogy elrontsam a sikerélményedet a megoldás közlésével. Forrás: Nagylaci (
7 Serhiy Grabarchuk : 'Checkered Toy' puzzle Színezés nélkül próbáld meg a TOY-t is és a 8x8-ast is
8 Serhiy Grabarchuk: 'Knossos Labyrinth Feladat: A 8 db téglalapot úgy rakd össze négyzet-alakban, hogy a kép egy szabályos (*) labirintust alkosson. forrás: * szabályos alatt értsd: az útvonalak pontos találkozását úgy, hogy a négyzet oldalfelező pontjáról a teljes labi bejárása után lehet eljutni a közepébe. Forrás: Nagylaci (
9 Serhiy Grabarchuk: 'Knossos Labyrinth Feladat: A 8 db téglalapot úgy rakd össze négyzet-alakban, hogy a kép egy szabályos (*) labirintust alkosson. (*) szabályos alatt értsd: az útvonalak pontos találkozását úgy, hogy a négyzet oldalfelező pontjáról a teljes labi bejárása után lehet eljutni a közepébe.
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.
Szapora négyzetek Sorozatok 4. feladatcsomag
Sorozatok 3.4 Szapora négyzetek Sorozatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 sorozat tengelyes szimmetria összeszámlálás különböző szempontok szerint átdarabolás derékszögű elforgatás
1. ISMERKEDÉS A SAKK VILÁGÁVAL
1. ISMERKEDÉS A SAKK VILÁGÁVAL Hogyha gyakran sakkozom, szupererôm megkapom. Táblajáték sakk Társasjáték Tornáztatjuk az agyunkat Tornáztatjuk a testünket Készítsd el a saját koronádat! 3 Sakkjáték 2 játékos
A Mandorla kirakása. A Mandorla kirakott állapotban Már öt forgatással is jól összekeverhetjük
A Mandorla kirakása A Mandorla egy magyar fejlesztésű forgatós logikai játék, amelyen összesen 19 elem található háromféle színben, az elemeket pedig két kerék forgatásával tudjuk összekeverni. A Mandorlánál
Nyerni jó. 7.-8. évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni
1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:
1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér.
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat helyes megoldása 7 pontot ér. 1. Bence talált öt négyzetet, amelyek egyik oldalán az A,
Eszközök: logikai lapok, tangramkészlet, labirintus feladatlap, vonat-feladatlap, füzet, színes ceruzák, vizuális differencilás feladatlapok
A tanítás helye: Rákospalotai Meixner Általános Iskola és Alapfokú Művészeti Iskola (Budapest 1155 Tóth István utca 100.) A tanítás ideje: 2017. március 29. A tanító tanár neve: Szilvásiné Turzó Ágnes
48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.
8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük
Isola (1-1 db sötét és világos király-bábu és max. 45 db blokk-bábu) A lépések két fázisból állnak: (1.) bármelyik oldalszomszédos mezőre áttoljuk a
Isola (1-1 db sötét és világos király-bábu és max. 45 db blokk-bábu) A lépések két fázisból állnak: (1.) bármelyik oldalszomszédos mezőre áttoljuk a saját királyunkat (egyszersmind mutatva, hogy még tudunk
Rejtvény-változataikban: a legkevesebb lépésből álló (és/vagy visszalépés tiltása melletti) helycsere a feladat.
Halmák (helycserések): Előre felrakott állásból induló 'helycserés'-célú, vagy közlekedős játékok. Társas változataikban két, vagy több játékos versenyez saját bábuinak mielőbbi áttelepítésében, (általában
TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
88 Budapest, Bródy Sándor u. 6. ostacím: Budapest, f. 76 Telefon: 8-5, 7-89, Fax: 7-89 Nyilvántartásba vételi szám: E-6/ Javítókulcs. osztály megyei. Titkos üzenetet kaptál. Szerencsére a titkosírás kulcsa
1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont
2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van
VI.3. TORPEDÓ. A feladatsor jellemzői
VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont
Az alábbi szabály-elemek különböző kombinációi számos dámaváltozatot eredményeznek.
Verseny-céljukban üsd le mind jellegűek. Olyan lépés-szabállyal, amelyben az ellenfél egy-egy bábujának átugrása annak leütését eredményezi. Általánosabban, egy-egy előre felrakott kezdőállásból felváltva
Minden feladat teljes megoldása 7 pont
Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,
FOLYTATÁS A TÚLOLDALON!
ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;
Matematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
TANMENETJAVASLAT. Matematika. 1. osztály
TANMENETJAVASLAT Matematika 1. osztály 2 1. Tájékozódás a tanulók készségeirôl, képességeirôl Játék szabadon adott eszközökkel Tk. 5. oldal korongok, pálcikák építôkockák GONDOLKODÁSI MÛVELETEK ALAPOZÁSA
Hogyan óvjuk meg értékes festményeinket?
Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések
Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,
Módszerek, szervezési módok: Magyarázat, szemléltetés, beszélgetés, játéktevékenység, rajz Frontális, differenciált, páros
Az óra címe: Sokszögek építése poliminókból, a sokszögek területe Ajánlott évfolyamok: 3., 4., 5. ( Nagylaci elsősöknek is ajánlható kiemelései kékkel) Ajánlott időtartam: két tanítási óra lehetőleg egymás
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HATODIK OSZTÁLY - Javítási útmutató 1. Melyik a legkisebb 3-mal osztható négyjegyű szám, amelynek minden számjegye különböző,
mini-háromszöges kicsiknek (játssz velük: ügyesedjenek, okosodjanak)
VONALKÁZÓS mini-háromszöges kicsiknek (játssz velük: ügyesedjenek, okosodjanak) Végy elő gyufaszálakat és pl.: bab-, kukorica-, kávé- szemeket, (vagy rakd tele a táblát valami apró csokival ) Az előbbiekkel
47. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
7. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló NYOLADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Hány különböző módon lehet felírni az 102-et két pozitív négyzetszám összegeként? (Az összeadás sorrendje
1. TÁJÉKOZÓDÁS A SAKKTÁBLÁN 1
TÁJÉKOZÓDÁS A SAKKTÁBLÁN Egy híres sakkozó nevét kapod, ha jó úton jársz. Írd át színessel a név betûit! P O V G P O L G J Á R D U J T U T D I I T 2. Moziba mentek a bábok. Nézz körül a nézôtéren, és válaszolj
A fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
Pitagorasz tételhez elıkészítı problémafelvetı, motiváló feladatok
Pitagorasz tételhez elıkészítı problémafelvetı, motiváló feladatok 1.Területre vonatkozó feladat: Egy négyzet alakú halastó négy sarkán egy-egy fa áll. Kétszer akkorára akarják növelni a halastó területét
Alkossunk, játsszunk együtt!
SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák
Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag
Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,
Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.
lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,
az alapjáték részletes szabályai
dr. Nagy László ( jatektan.hu/kapcsolat ) 1144 Bp. Szentmihályi u. 19 Tel/fax.(36-1) 220-1916 PIKK-PAKK az alapjáték részletes szabályai Az ábrán mutatott nyitóállásból világos kezd. Az első lépésben,
Kedves Első Osztályos! Rajzold be az óvodai jeledet!
Kedves Első Osztályos! Rajzold be az óvodai jeledet! Ez a szép, színes feladatgyűjtemény segíti munkádat a matematika tanulásában. Érdekes, játékos feladatokon keresztül ismerkedhetsz meg a 20-as számkörrel.
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
Forrás: Nagylaci (http://www.jatektan.hu)
Felületesen és nem nagyon eltúlozva, ide lehetne sorolni az összes általánosabban ismert stratégiai(***) táblás játékot: a Malmot, a Dámát, a Sakkot, ) A rendszerezés során mégis csak azokat a megmaradókat
5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök
5.osztály 1.foglalkozás 5.osztály 2.foglalkozás hatszögéskörök cseresznye A cseresznye zöld száránál az egyeneshez képest 30-at kell fordulni! (30 fokot). A cseresznyék között 60 egység a térköz! Szétszedtem
Számalakzatok Sorozatok 3. feladatcsomag
Számalakzatok Sorozatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 13 18 év négyzetszámok háromszögszámok teljes indukció különbségi sorozatok Az ókori görögök szívesen játszottak a pozitív egész számokkal,
GYÜMÖLCSÖK GYŰJTÉSE ÉS VÁLOGATÁSA
World Robot Olympiad 2018 WeDo Regular kategória (10 éves korig) A játék leírása, szabályok és pontozás AZ ÉLELMISZER FONTOS ÜGY GYÜMÖLCSÖK GYŰJTÉSE ÉS VÁLOGATÁSA Verzió: január 15. Tartalomjegyzék 1.
Miért tanulod a nyelvtant?
Szilágyi N. Sándor Mi kell a beszédhez? Miért tanulod a nyelvtant? Nyelvtani kiskalauz (Részletek a szerző Ne lógasd a nyelved hiába! c. kötetéből, Anyanyelvápolók Erdélyi Szövetsége, 2000) 2. rész Térjünk
Haladási utasítások Programozási nyelvek
12. foglalkozás Haladási utasítások Programozási nyelvek Summary A számítógépek programozását általában nyelv felhasználásával, amely utasítások egy korlátozott szótára, amelynek engedelmeskedniük kell.
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy
A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.
Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.
A törzsszámok sorozatáról
A törzsszámok sorozatáról 6 = 2 3. A 7 nem bontható fel hasonló módon két tényez őre, ezért a 7-et törzsszámnak nevezik. Törzsszámnak [1] nevezzük az olyan pozitív egész számot, amely nem bontható fel
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása
Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;
V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői
V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai
A C, C+, D és D+ kategória játékának megoldása (matematika, osztályosok)
A, +, D és D+ kategória játékának megoldása (matematika, 9-2. osztályosok). Az Albrecht Dürer Biokémiai Kutatólaboratóriumban fejlesztették ki a következő játékot., D: A játék kezdetén a szervezők a kapott
XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály
1. feladat: XV. évfolyam Megyei döntő - 2016. február 20. MEGOLDÁSOK - 3. osztály Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel
6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög
FELADATOK ÉS MEGOLDÁSOK
3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó
FÖLDPRÖGETŐK TERMÉSZETTUDOMÁNYOS HÁZIVERSENY IV. FORDULÓ - Sakk 5 6. évfolyam
1. feladat FÖLDPRÖGETŐK Mielőtt elkezded a feladatok megoldását, tájékozódj a feladatokban szereplő figurák megengedett lépéseiről, illetve arról, hogy mit jelent az, ha egy bábu által a király sakkban
Írd le, a megoldások gondolatmenetét, indoklását is!
088 Budapest VIII., Bródy Sándor u. 6. Postacím: 4 Budapest, Pf. 76 Telefon: 7-8900 Fa: 7-890 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 05. április. NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
JÁTÉKTAN főiskolai jegyzet egy ma még nem létező tantárgyhoz
JÁTÉKTAN főiskolai jegyzet egy ma még nem létező tantárgyhoz pedagógushallgatóknak gyakorló pedagógusoknak gyerekekkel foglalkozóknak tehetség-gondozóknak Az Elmetorna kurzus blokk, egy 19 részes (szándék
Kedves Második Osztályos Tanuló!
Kedves Második Osztályos Tanuló! Reméljük, hogy az első osztályban megkedvelted a matematikát. Ebben a feladatgyűjteményben is sok érdekes feladattal találkozhatsz. Akad közöttük tréfás, gondolkodtató,
Játékszabály. Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc. A doboz tartalma:
Játékszabály Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc A doboz tartalma: 75 fakocka (15 15 db öt színből) 5 db kétoldalú játéktábla pontozótábla 5 db pontszám jelölő
IMAGES FOR CLASSROOM USE
IMAGES FOR CLASSROOM USE 2015 The LEGO Group. 57 BUTTERFLY 1 fehér világos 4x 3x 4x 5x 3x 5x A hernyó Hosszúság: 3 egység Magasság: 1 elem Szélesség: 1 egység 1. Építs három hernyót! Hasonlítsd össze őket
8 bivaly 2 tigris ellen
8 bivaly 2 tigris ellen A felrakott kezdőállásból induló versenyben a tigrisek nyernek akkor, ha már csak 3 bivaly maradt a táblán. A bivalyok nyernek, ha a tigriseket beszorítják és azok már nem tudnak
FÖLDPRÖGETŐK TERMÉSZETTUDOMÁNYOS HÁZIVERSENY IV. FORDULÓ - Sakk 7 8. évfolyam
1. feladat A. Egy sakkozó 40 partit jatszott és 25 pontot szerzett (a győzelemért egy pont, a döntetlenért fél pont, a vereségért nulla pont jár). Mennyivel több partit nyert meg, mint amennyit elvesztett?
OPTIKAI CSALÓDÁSOK. Vajon valóban eltolódik a vékony egyenes? A kávéházi fal. Úgy látjuk, mintha a vízszintesek elgörbülnének
OPTIKAI CSALÓDÁSOK Mint azt tudjuk a látás mechanizmusában a szem által felvett információt az agy alakítja át. Azt hogy valójában mit is látunk, nagy szerepe van a tapasztalatoknak, az emlékeknek.az agy
(de progit ne hagyd ki ) www.jatektan.hu/jatektan/ 2013/009/Folds.html )
Hajtogatósdikhoz mindenféle Arányosság (lineáris és négyzetes), mintakövető építkezés, logikai feladványok próbálgatással, ráérzéssel, gondolkodással, stb. (8 év felettieknek sorban, amíg el nem vesztik
BABY KOCKÁK. Minden Baby kockák játékunkhoz tartozik egy szülőknek szóló, játékötleteket tartalmazó inspirációs füzet.
BABY KOCKÁK Fejlődjünk a Baby kockákkal! A Baby kockákat a kisgyerekek motorikus képességeinek fejlesztésére tervezték. A kockák egymásra helyezésével fejlődik a kézügyesség, a kezek koordinációja és egyben
MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás
Soós Luca és Szári Laura MATEMATIKA FELADATGYŐJTEMÉNY. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás 0. 0.. Ő. JÁTÉK A FORMÁKKAL Nézd meg jól a képet! Mit gondolsz,
meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV.
meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D-89312 Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 2 LOGEO Egy
4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1.
4.Lecke / 1. 4. Lecke Körök és szabályos sokszögek rajzolása Az előző fejezetekkel ellentétben most nem újabb programozási utasításokról vagy elvekről fogunk tanulni. Ebben a fejezetben a sokszögekről,
FOLYTATÁS A TÚLOLDALON!
Országos döntő 1. nap ÖTÖDIK OSZTÁLY 1. 4 testvér (akik között nincsenek ikrek) beszélget születésük sorrendjéről. Kettő közülük hazudik, kettő igazat mond. András: Dávid a legfiatalabb. Boldizsár: Dávid
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló ÖTÖDIK OSZTÁLY 1. Többet eszel, mint én! mondta méltatlankodva Hernyó Álteknőcnek. Nem is igaz! válaszolta felháborodva Álteknőc. Mindketten
III.4. JÁRŐRÖK. A feladatsor jellemzői
III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:
Forrás: Nagylaci (http://www.jatektan.hu)
A Sakk az a legismertebb olyan táblás játék, amit egyre kevesebben ismernek. Ezernyi változata létezik. Sokan kedvelik, de még többen félre húzódnak, ha a lépés-szabályokra kérdezünk. 7-8 éves kor előtt
MATEMATIKA C 6. évfolyam 4. modul A KOCKA
MATEMATIKA C 6. évfolyam 4. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 4. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk
Feladatok a MATEMATIKA. standardleírás 2. szintjéhez
Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.
1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?
Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76
VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői
VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai
TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
Javítókulcs 4. osztály megyei 1. Titkos üzenetet kaptál, amelyben a hét minden napja le van írva egyszer, kivéve azt a napot, amelyiken találkozol az üzenet küldőjével. Minden betű helyett egy szimbólumot
Feladatok és megoldások. Kincsesláda: 10 pontos
Feladatok és megoldások Kincsesláda: Hogyan kell a térképen található hét aranypénz közül kettőt áthelyezni úgy, hogy mind Észak - Dél, mind pedig Kelet Nyugat irányban 5 pénzérme legyen? É K Ny Megoldás:
TŐTIKE. tologatós AMŐBA A szélére teszek, ezzel: a már fennlévőket eltolom. letologatós AMŐBA. TŐTIKÉK ( tervezz hozzá táblákat! )
Demo-játékok memoriter -szabályai TŐTIKE Pont, mint az AMŐBA, de itt már a négy is nyerő! Az induláskor üres a táblán ketten versenyeznek a nyerő négyesért. Egy lépésben, 1 db golyó tetszőleges helyre
Előadó: Horváth Judit
Előadó: Horváth Judit mindennapi élet életszituációk problémahelyzetek megoldása meggyőződés tanulási szokások - szövegmegértés - értelmezés - a gondolkodási műveletek használata - problémamegoldás Adott
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
2009. évi Országos Logikai Verseny instrukciós füzet 1. forduló Ismert típusok (90 perc) 1. Könnyű mint az ABC 2. Egyszerű hurokkereső 3.
2009. évi Országos Logikai Verseny instrukciós füzet 1. forduló Ismert típusok (90 perc) 1. Könnyű mint az ABC Írjon A, B és C betűket az ábra néhány mezőjébe (egy mezőbe maximum egyet) úgy, hogy minden
Kris Burm játéka. Tartozékok
Kris Burm játéka Én legyek erősebb, vagy az ellenfelemet gyengítsem? Ezt a húzós kérdést kell feltenni magadnak minden egyes körödben. Tartozékok - 1 játéktábla - 30 fehér korong: 6 Tzaar, 9 Tzarnő és
b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.
Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros
Megoldások 4. osztály
Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,
Szia Kedves Elsős! Remélem, jól megtanulsz írni év végéig! Jutalmad ez az érme lesz. Színezd ki, vágd ki, és viseld büszkén! Megérdemled! Jó munkát!
Szia Kedves Elsős! Ugye ismersz? Én vagyok BÖLCS BAGOLY! Remélem, jól megtanulsz írni év végéig! Jutalmad ez az érme lesz. Színezd ki, vágd ki, és viseld büszkén! Megérdemled! Jó munkát! 3 4. Játsszunk
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138
labirintusok, tetriszek és pakolós játékok
labirintusok, tetriszek és pakolós játékok 8. modul Készítette: Köves Gabriella Labirintusik, tetriszek, és pakolós játékok A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A tudatos
Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban
Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban MÁTRAI RITA1, KOSZTYÁN ZSOLT TIBOR2, SIKNÉ DR. LÁNYI CECÍLIA3 1,3 Veszprémi Egyetem, Képfeldolgozás és
Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK
Csak kezdőknek 1. Könnyű percek 15x15-ös vicces hagyományos egész oldalas skandi 19x15-ös plusz egy poén Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK 2. Lexikon nélkül Mozaikrejtvény szokatlan
Válogatás a kompetenciamérések
I. Válogatás a kompetenciamérések feladataiból Az ORSZÁGOS KOMPETENCIAMÉRÉS 2001-ben indult el, és mára már Európa és a világ szakmailag és szolgáltatásaiban legkorszerűbb mérési rendszerei között tartják
A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat!
Szülőktől még megértően elfogadom: a táblajátékok logikus gondolkodásra nevelnek, de mindig indulatosan reagálok, ha pedagógustól, újabban pedig, ha játékpedagógustól hallom az általános közhelyet. A pedagógus
Írd le, a megoldások gondolatmenetét, indoklását is!
0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,
Forrás: Nagylaci (http://www.jatektan.hu)
A ma élő legkisebb lélekszámú játékcsalád. A jövőben talán a teljes kihalás lehet sorsa. Reinkarnációval(*)! Korunk fejlesztései, amiknek Rubik Ernő Bűvös kockája volt az ötletadója. Miért ne lehetne olyan
Egy francia-sakk feladvány: Világos lép, és döntetlen az alsó sor az 1. sor!
Leüttetni az összes bábud! A játszmát a rendes sakkal ellentétben sötét kezdi. Döntetlen itt is lehetséges, például két különböző színű futó esetén. A királynak ebben a játékban nincsen kitüntetett szerepe
1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki
Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes
Óravázlat Matematika. 1. osztály
Óravázlat Matematika 1. osztály Készítette: Dr. Jandóné Bapka Katalin Az óra anyaga: Számok kapcsolatai, számpárok válogatása kapcsolataik szerint Osztály: 1. osztály Készség-és képességfejlesztés: - Megfigyelőképesség
A játéktábla 4 4 cm-es négyzetekből áll. Ezeket 1 cm-es varrásráhagyással
Ashte Kashte - Az ősi, keleti eredetű táblás játék, amely hasonlóságot mutat a ludóval és a pachisival. Kata ezt is elkészítette textilből, itt meg is osztja velünk hogyan is csinálta. Először tervezzük
Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5
D1. Egy pozitív egész számról az alábbi 7 állítást tették: I. A szám kisebb, mint 23. II. A szám kisebb, mint 25. III. A szám kisebb, mint 27. IV. A szám kisebb, mint 29. V. A szám páros. VI. A szám hárommal
Számolási eljárások 12. feladatcsomag
Számolási eljárások 3.12 Alapfeladat Számolási eljárások 12. feladatcsomag számok bontásának gyakorlása 20-as számkörben összeadás, kivonás gyakorlása 20-as számkörben A feladatok listája 1. Mennyi van