Koincidencia áramkör, jelterjedés hatása az átvitt jelre
|
|
- Nikolett Rácz
- 8 évvel ezelőtt
- Látták:
Átírás
1 Koincidencia áramkör, jelterjedés hatása az átvitt jelre 1. Bevezetés Gyakori feladat a méréstechnikában, amikor két jelenség egyidejűségét kell detektálni. Ha ezek a jelenségek olyan gyorsan követik egymást, hogy az ember számára érzékelhetetlenek, akkor elektronikai áramköröket hívhatunk segítségül. Az olyan áramköröket, amelyek két jel egyidejű érzékelését jelzik, koincidencia áramköröknek nevezzük. Ezek az áramkörök bizonyos értelemben szűrőkként is felfoghatók, ugyanis küldetésükből adódóan képesek arra, hogy egyidejű eseményeket kiszűrjenek véletlenszerű időpontban bekövetkező jelenségek közül. A koincidencia áramkörök egyik fontos felhasználási területe az orvosi elektronika. Nagyon fontos orvosi diagnosztikai berendezés a PET (pozitron-annihilációs tomográf). A betegnek rövid felezési idejű, pozitron-bomló radioaktív izotópot adnak, s a készülék meghatározza, hogy ez az izotóp a test mely részében milyen koncentrációban van jelen. Ebből a szövetek, szervek anyagcseréjére, elzáródásra vagy daganatra lehet következtetni. A mérés azon alapul, hogy egy elektron és egy pozitron találkozásakor két egyenként 511 kev energiájú foton keletkezik, amelyek az impulzus- és energiamegmaradásnak megfelelően egymással 180 os szöget bezárva távoznak (ez az annihiláció jelensége). Nagyenergiájú fotonokat többféle detektorral is lehet detektálni, problémát jelent, hogy ezek a detektorok detektálják a máshonnan (környezetből, természetes radioaktív anyagokból stb.) érkező fotonokat is. Ennek a problémának a megoldására kiválóan alkalmasak a koincidencia áramkörök. A folyamatot két, egymáshoz képest megfelelő pozícióban (egymással szemben) elhelyezett detektorral vizsgáljuk. A két detektor jelét koincidencia áramkörrel értékeltetjük ki, amelyik csak akkor jelez, ha mindkét detektorba ugyanabban a pillanatban (vagy csak nagyon kicsi időeltéréssel) érkezik a két foton. Ily módon jelentős mértékben csökkenthető a nem egyidejű foton-háttér, a vizsgált jelenséget kiemeltük a haszontalan zajból. A tomográfia (háromdimenziós helymeghatározás) is könnyebbé válik, hiszen a két egymással szemben levő detektor már kijelöl egy egyenest, amelyen a fotonokat kibocsátó pont elhelyezkedik (1. ábra). 1. ábra Elektron-pozitron annihiláció - 1 -
2 2. Koincidencia áramkörök felépítése A koincidencia áramkörök tipikusan digitális áramkörök, hiszen mindkét (esetleg több) bemenetükön vagy van jel, vagy nincs (ezt a két állapotot jelölhetjük 0-val illetve 1-el), s azt vizsgáljuk, hogy vajon egyszerre van-e jel a különböző bemeneteken. Természetesen az érzékelők analóg mennyiségeket érzékelnek, ezért először ezeket digitalizálni kell. Nagyon fontos a digitalizálásnál, hogy az az időbeli információt jól őrizze meg, hiszen ez a legfontosabb az egyidejűség eldöntése szempontjából. Ezért a professzionális elektronikában a koincidencia áramköröket egy time pick-off (időkijelölő) áramkör előzi meg, amely a bemeneti jelből digitális időzítő jelet állít elő. Erre többféle megoldás is létezik, mi egy egyszerű Schmitt-triggert használunk. Bár létezik ennél kifinomultabb megoldás is /mert az azonos időben keletkezett, de különböző amplitúdójú jelekre a Schmitt trigger más és más időpontban billen (lásd 2. ábra)/, a mi céljainkra - az áramkör működésének demonstrálására - azonban ez is megfelel. Az eddigieket összefoglalva: ahhoz, hogy egy koincidencia áramkör megbízhatóan működjön, az alábbi feltételeknek eleget kell tennie. a. Jelzése legyen független a beérkező jel amplitúdójától. b. A két jel beérkezése között eltelt idő legyen hangolható. Erre azért lehet szükség, mert esetleg a két detektort nem tudjuk, vagy nem sikerül a vizsgált jelenség helyétől azonos távolságban elhelyezni, a detektorok nem pontosan egyformák (pl. két különböző típusú detektor), vagy a kimeneti jelek valamilyen más (pl. elektronikai) oknál fogva késnek egymáshoz képest. Az így fellépő időkülönbözetet kompenzálni kell. c. A véletlenül fellépő koincidenciák arányát lehetőleg alacsony szinten kell tartani. Ezeknek a feltételeknek megfelelő áramkör blokkdiagramja a következő ábrán látható
3 A Schmitt-trigger billenési szintjével állítható be az a minimális jelamplitúdó, amire még az áramkör érzékeny. A Schmitt trigger hiszterézisének köszönhetően az áramkör zajtűrése is beállítható. Az első monostabil billenőkör feladata a csatornákba beérkező jelek időbeli eltolása. Az eltolás mértéke az áramkörbe kapcsolt RC-tag segítségével szabályozható. Ezzel az eltolással kompenzálhatjuk az egyidejű jelek bármely okból bekövetkező időbeli elcsúszását (pl. különböző detektortávolságok miatt). Ennek a legegyszerűbb technikai megvalósítása az, hogy a második monostabil kör az első monostabil impulzus lefutó élére billen be. Ezáltal az első monostabil impulzus-szélessége (amit az RC-taggal tudunk változtatni) tulajdonképpen az első és a második monostabil kör bebillenése közötti időkésést határozza meg. A második monostabil billenőkör a jelformálást végzi. Itt állíthatjuk be, hogy milyen széles jelek kerüljenek végül az ÉS kapu bemeneteire. Ezek a jelszélességek fogják majd megszabni, hogy a véletlen koincidenciáknak mekkora lesz a szerepe (lásd később). A koincidencia áramkör lelke az áramkör végén található ÉS kapu. Ennek kimenetén csak akkor kapunk jelet, ha két bemenetére azonos időpillanatban érkeznek az egyes csatornák jelei. Ez azt jelenti, hogy a bemenetein található jelek között van időbeli átfedés. Könnyen belátható, hogy ha az egyik jel τ 1, a másik jel τ 2 ideig tart, akkor (τ 1+τ 2) lesz az a maximális időkülönbség, amellyel érkező jeleket még egyidejűnek fog jelezni az áramkör. Ezt az időt a koincidencia áramkör felbontási idejének nevezzük. Ha nem kétbemenetű, hanem több-bemenetű ÉS kaput használunk, több jel időbeli egybeesését is vizsgálhatjuk. Ezek a többszörös koincidenciák elviekben nem különböznek a kétszeres koincidenciától, ezért ezekkel külön nem foglalkozunk. Az áramkör kimenetére kapcsolt számláló tulajdonképpen már nem része a koincidencia áramkörnek, de szükséges ahhoz, hogy megszámlálhassuk az egy időben érkező impulzusokat. Mivel különféle hangkártyák vannak forgalomban, ezért a panelen erre is ki van alakítva egy illesztő fokozat, melynek működésétől most eltekintünk. 3. Két véletlen jelsorozat detektálása koincidencia áramkörrel A két detektált jelsorozat olyan fizikai folyamatokból is származhat, amelyekben az impulzusok időbeli eloszlása egymáshoz képest véletlenszerűen alakul. Ilyenkor természetesen számolnunk kell azzal, hogy - 3 -
4 a ténylegesen egy időben bekövetkező események mellett (ha vannak ilyenek egyáltalán) bizonyos valószínűséggel fellépnek véletlen koincidenciák is. A véletlen koincidenciák száma a következő képlettel számolható: N rnd - véletlen koincidenciák száma időegység alatt τ 1, τ 2 - a jelformáló monostabil áramkör jeleinek szélessége N 1, N 2 - az ÉS kapu bemeneteire időegység alatt érkező impulzusok száma Ha a mérendő jelben a koincidenciák száma nagy az összes mért eseményhez képest, akkor a jelek nem tekinthetők függetleneknek. Ebben az esetben a következő képlet lesz érvényes: N f 1, N f 2 - a mérendő jelsorozat ágaiban mért, független (koincidenciát nem okozó) események száma (Figyelem: az (1) (2) és (3) egyenletekben szereplő N 1 és N 2 mennyiségek valószínűségi változók, amelyek értéke a várható értékük körül ingadozik. Emiatt a véletlen koincidenciák száma is valószínűségi változó lesz.) A mérést úgy kell megtervezni, hogy a véletlen koincidenciák várható száma lehetőleg ne legyen túl nagy (a valódiakhoz képest), ellenkező esetben nagyon nehéz az eredményből a valódi koincidenciákra következtetni. Az (1) képlet alapján úgy tűnik, hogy a véletlen koincidenciák számát az impulzusok időtartamának (τ 1+ τ 2 = felbontási idő) csökkentésével minden határon túl lehet csökkenteni. Ez azonban nincs így. Ennek az az oka, hogy a fizikai folyamatból egyszerre induló jelek az ÉS kapu bemenetére nem egyszerre érkeznek meg. Ilyet okozhat például az időkijelölő áramkör impulzusszélességeinek időbeli ingadozása elektronikus zajok miatt (ezt az angol szakirodalomban jitter -nek - remegésnek hívják arra utalván, hogy amikor oszcilloszkóppal figyeljük ezeket a jeleket, azok nem egy helyben állnak, hanem remegnek jobbra-balra az időtengely mentén). Ha most a felbontási időt a remegés időtartama alá csökkentjük, akkor egyes valódi koincidenciákat is elveszítünk, hiszen a remegés miatt egyesek kicsúsznak az átfedésből. Ezek miatt a véletlen koincidenciák száma nem csökkenthető minden határon túl. A konkrét méréskor viszont fontos ismerni az arányukat, ezért meg is kell tudni mérni őket. A mérés egyik lehetősége magában az (1) összefüggésben van: ismerve a koincidencia áramkör felbontási idejét, az N 1 és N 2 oldalági beütésszámok (számlálóval történő) megmérésével a véletlen koincidenciák száma meghatározható. Egy másik mérési mód a koincidencia áramkör elhangolásán alapul. Ugyanis, ha az egyik csatornában a késleltető monostabil áramkörrel a valódi koincidenciákat időben eltoljuk egymáshoz képest, akkor ezek már biztosan nem esnek egybe. Megszűnnek a valódi koincidenciák, s ezért az áramkör csak a véletlen koincidenciákat méri. Ellenőrző kérdések: - 4 -
5 E1: Milyen feltételeknek kell megfelelnie egy koincidencia áramkörnek? E2: Mit értünk egy koincidencia áramkör felbontási ideje alatt? E3: Mi szabja meg a véletlen koincidenciák arányát? E4: Mitől függ, hogy a felbontási időt mennyire lehet csökkenteni? E5: Miért van szükség az időbeli eltolásra, és hogyan lehet megvalósítani? E6: Milyen szerepe van a jelformáló áramkörnek és hogyan lehet megvalósítani? Elméleti feladatok: F1: Egy pozitron-emittáló radioaktív preparátumot (amely gamma sugárzást is emittál) két detektorral, és hozzájuk kapcsolt koincidencia berendezéssel vizsgálunk. Az A esetben a detektorok közelebb vannak a preparátumhoz (szimmetrikusan), a B esetben távolabb. Az A és a B esetben mért oldalági beütésszámok arányai 100:1. Melyik esetben lesz nagyobb a valódi/véletlen koincidenciák aránya? Miért? F2: Próbáljon tiltó (antikoincidencia) áramkört tervezni. Az áramkörnek két bemenete és egy kimenete van. A két bemenet szerepe nem szimmetrikus: az egyik bemenetére adott jel mindig áthalad az áramkörön, kivéve amikor a másik bemenetre tiltó jel (vétó) érkezik. (A tiltó bemenetre adott jel tehát soha sem halad át, csak a másik bemenet jeleinek áthaladását vezérli). Mit kellene a gyakorlaton szereplő kapcsoláson változtatni, hogy ilyen tulajdonságú áramkörré alakítsuk? Hogyan kellene beállítani az egyes elemeket egy ilyen üzemmódban? Vajon hol van szükség ilyen áramkörre? 4. Mérőfej kompenzáció. Jelterjedés hatásának bemutatása. Ha méréseinket oszcilloszkóppal végezzük, a mért jelet az oszcilloszkóp bemenetére kell vezetnünk. Erre a célra BNC csatlakozós árnyékolt kábeleket használunk. A következőkben ezek használatát sajátítjuk el. Az oszcilloszkóp-mérőkábel végén lévő, érintkezővel ellátott szondát mérőfejnek nevezzük. Többféle mérőfej létezik. Két nagy csoportjukat alkotják az aktív és a passzív működésűek, de használnak speciális mérőfejeket is úgy mint: árammérő nagyfeszültségű demodulációs egyenirányítós, stb. A mérőfej feladatai a következők: a mérendő jel alakhű átvitele a mérőhegyről a kábelen keresztül az oszcilloszkóp bemenetére a mérendő jel amplitúdójának leosztása/erősítése annak megakadályozása, hogy az oszcilloszkóp leterhelje a mérendő áramkört, amivel meghamisítaná a mérés eredményét egyes speciális jelek átalakítása Mi egy egyszerű, passzív, 1:1 és 1:10-es leosztással rendelkező mérőfejet használunk. Az oszcilloszkópunk bemeneti ellenállása 1 MΩ, bemeneti kapacitása 25 pf. A mérőkábel kapacitása tipikusan ~20-30 pf, a koaxiális kábel kapacitása ~100 pf/m
6 Ez a bemeneti impedancia esetenként (pl. nagy bemeneti ellenállású áramkörök vizsgálata esetén) túl kicsi lehet, és így leterhelheti a mérendő áramkört. Azon kívül, hogy csökkenhet a mérendő jel amplitúdója, oszcilláció is felléphet a vizsgált körben. Ilyen esetben az oszcilloszkóp már nem tekinthető ideális műszernek, hanem sokkal inkább elefántnak a porcelánboltban. Megoldást erre a problémára a mérőfej impedanciájának megnövelése jelent, aminek legelterjedtebb módszere a mérendő jel 1:10-es leosztása a mérőfejen belül. Az 1:1 és 1:10-es feszültség leosztás között a mérőfejen található kapcsolóval választhatunk. A 8. ábrán látható, hogy a bemeneti jel egy komplex (azaz ellenállást és nem-rezisztív elemet esetünkben kondenzátort is tartalmazó) feszültségosztóra kerül. Az R 1-C 1 osztóban C 1 változtatható, míg az R 2-C 3 osztó fix értékű elemekből áll, melyek az oszcilloszkópon belül találhatók. Az így kialakított elrendezésben az osztók közösen biztosítják az 1:10-es feszültségleosztást (és ezzel a kompenzációt), az oszcilloszkóp 1 MΩ-os bemeneti impedanciája mellett. A mérőfejben található kapacitás változtatható. Ennek oka az, hogy minden kábel kapacitása különböző. Így mindig az adott elrendezésnek (azaz kábel kapacitásnak) megfelelően kell beállítani a kompenzáló kapacitás értékét. Egyenáram esetén a 9 MΩ - 1 MΩ soros ellenállásokon történik a feszültségosztás. Váltakozó áram esetén viszont más a helyzet: A mérőfejben található kapacitás értékét tehát R 1 = 9R 2 esetén a mérőkábel, és az oszcilloszkóp kapacitások párhuzamos eredőjének (C e = 25 pf + 30 pf = 55 pf) 1/9-edére kell beállítanunk C 1= ~6 pf. Ilyen beállítás mellett bármilyen frekvencián 1:10 lesz a feszültségosztás a mérőfej és az oszcilloszkóp bemenete között. A gyakorlatban ez a beállítás egy tetszőleges frekvenciájú kalibrációs négyszögjel segítségével történik. Használjuk erre a célra astabil multivibrátorunk kimeneti négyszögjelét! Ezt a négyszögjelet rákapcsoljuk a mérőfejen keresztül (melyet 10x-es állásba kapcsolunk) az oszcilloszkóp bemenetére. A képernyőn látható jelalak változik, ahogy a mérőfej kompenzáló kapacitást változtatjuk -- minél tökéletesebb négyszögjelre kell törekedni. Ha be tudjuk állítani a szabályos négyszögjelet, az azt jelenti, hogy a - 6 -
7 komplex feszültségosztónkkal kompenzálni tudtuk a mérőkábelünk kapacitását, és a mérendő jeleink alakhűen jutnak el az oszcilloszkóphoz. A mérési elrendezést a 8. ábra szemlélteti. Elméleti feladat: F3:Méretezzen egy 1/2-es leosztású kompenzált mérőfejet! A kábel kapacitása legyen most is 30pF, az oszcilloszkóp bemeneti ellenállása 1 MΩ, kapacitása 25 pf. Mi a véleménye egy leosztás nélküli (1/1- es) mérőfejről? A mérőpanel sémája Az V. mérőpanel 1. áramköre a 9. ábrán látható kapcsolást valósítja meg. R1, R2, C1, Z1, TP1 és BNC3 elemeket nem használjuk a méréseinkhez. Ellenőrző kérdések: E1: Rajzolja fel emlékezetből a 10x-es mérőfej és az oszcilloszkóp bemenetének kapcsolását! E2: Hogyan számoljuk egy aluláteresztő szűrő -3 db-es törésponti frekvenciájának értékét a szűrő paraméterei alapján? E3: Hogy néz ki a túlkompenzált és az alulkompenzált négyszögjel a képernyőn? E4: Ha másik mérőhelyről kér már kompenzált mérőfejet, újra kell-e azt kompenzálni? Miért? E5: Meghosszabbítható-e a 10x-es mérőfej kábele, ha távol van a mérendő jel? E6: Miért négyszögjel segítségével célszerű elvégezni a mérőfej kompenzációt? 5. Jelvisszaverődések kábelvégekről Az elméleti elektrodinamika leírja, hogy az elektromágneses jelek egy része az útjukba kerülő impedanciákról visszaverődik, ha az impedanciák illesztése nem megfelelő. Szabad kábelvégződésről a jel a beeső jellel azonos fázisban, míg rövidre zárt végről ellenfázisban verődik vissza. A visszaverődött jel késve ér vissza, mivel az elektromágneses jelek is véges sebességgel - fénysebességgel - terjednek. A terjedési idő már néhány méteres kábelhossz esetén is könnyedén mérhető. A visszavert jelek megváltoztatják a mért jel alakját. Mivel a visszaverődési jel-tranziensek néhány μs alatt lejátszódnak, alacsony frekvenciás jeleknél (10 Hz 1 khz) ez általában nem okoz gondot. Nagyobb frekvenciájú jeleknél több méter hosszú mérőkábel esetén (pl. amikor a detektor egy erősen sugárveszélyes helyen van, s onnan a jeleket egy tőle messzebb fekvő, sugárzás által védett helyre kell vezetni) ezt a problémát ki kell küszöbölni
8 A megoldás a kábelek és a további áramköri elemek impedancia illesztésén keresztül lehetséges. Jelvisszaverődés nem történik, ha a kábel a hullámimpedanciájával megegyező értékű ellenállással van lezárva 1. A mérés során ezt a gyakorlatban is kipróbáljuk. 6. Mérés A mérés során egy panelen elkészített koincidencia áramkör tulajdonságait vizsgáljuk. A két véletlen jelsorozatot számítógéppel állítjuk elő, ezeket a számítógép a hangkártya jobb és baloldali kimenetén adja ki. Maguk a jelsorozatok a számítógépen találhatók wav formátumban, a c:\koincidencia könyvtárban. Ezeket például bármilyen médialejátszó programmal megnyithatjuk. Mérési feladatok: M1: Jelgenerátor segítségével állítson elő 5 khz frekvenciájú, 5 V csúcsfeszültségű négyszög jelet, melynek feszültségszintjei 0 V és 5 V. Ezzel a jellel vizsgálja a koincidencia mérőkártya egyes blokkjainak (lásd 3. ábra) kimenetén mérhető jeleket, és ezek helyzetét egymáshoz képest (ehhez az oszcilloszkópot szinkronizáltassa az egyik jelsorozat jeleivel, és így azokhoz, mint viszonyítási pontokhoz képest mérheti a másik jelsorozatot). A mérőkártya tápfeszültsége ±15 V legyen! A megfelelő bekötéshez használja a 10. ábrán látható képet. Vizsgálja meg a potenciométerek szerepét is ezen négyszögjelek segítségével. 10. ábra Koincidencia mérőpanel 1 Lezárás alatt a hullámimpedanciával (amit egy kábel esetén a geometriai méretek és az anyagminőségek szabnak meg) megegyező nagyságú ellenállás kábelvéghez való csatlakoztatását értjük
9 M2: Vizsgálja a koincidencia áramkört valódi koincidenciákat (is) tartalmazó jelsorozatok segítségével, melyet a számítógép hangkártyájával állíthat elő a fentebb említett könyvtárban található fileok lejátszásával. M3: Indítsa el az Audacity, ismerkedjen meg az alapvető használatával, és elemezze a c:\koincidencia könyvtárban található jelsorozatokat! M4: Mérje meg nagysebességű számlálók segítségével a c:\koincidencia könyvtárban található szimulált jelsorozatokban a valódi koincidenciák számát! M5: Határozza meg a koincidencia áramkörrel a jelekben található (azaz a szimulált mérésben fellépő) véletlen koincidenciák számát az (1) összefüggés felhasználásával. (A felbontási időt oszcilloszkóp segítségével határozza meg, az oldalági beütésszámokat pedig számlálóval!) M6: Mérje meg a véletlen koincidenciák számát az előbbi jelsorozat időbeli eltolásával is. Hasonlítsa össze a 4. feladatban kapott értékekkel, és diszkutálja az eredményt. M7: A mért valódi és véletlen koincidenciák számát összehasonlítva vizsgálja az egyes mérések pontosságát, megbízhatóságát! M8: Vizsgálja a kompenzációs mérőfejet modellező kapcsolást! a) Adjon a 9. ábrán látható áramkör bemenetére függvénygenerátorról 100 Hz-es szinuszjelet! Eltávolított jumper (JP1) mellett mérje BNC2-n az áramkör kimeneti feszültségét oszcilloszkóppal, koaxiális kábelen keresztül! b) Növelje a frekvenciát, és mérje meg a kimeneten a -3 db-es törésponti frekvenciát (f T)! c) A törésponti frekvencián állítsa át a függvénygenerátor jelét négyszög jelre! Figyelje meg a jelalakot, majd állítsa vissza a függvénygenerátort szinuszos jelre! d) Jumper-rel zárja rövidre JP1-et! Ezzel bekapcsoltuk a változtatható kapacitású kondenzátort az áramkörbe. Változtassa CT 1 értékét! Magyarázza a tapasztaltakat! e) Állítsa be CT 1-et úgy, hogy pontosan(!) a 100 Hz-en beállított amplitúdót mérje a kimeneten! Változtassa a frekvenciát! Mi történik a jel amplitúdójával? Magyarázza a tapasztaltakat! f) Állítsa át a függvénygenerátor jelét négyszög jelre! Figyelje meg most is a jelalakot! Írja le mit tapasztalt, majd állítsa vissza a függvénygenerátort szinuszos jelre! g) Toldja meg az oszcilloszkóphoz csatlakozó kábelt egy másik, kb. 500 mm hosszú koaxiális kábellel! Hogyan változik a kimeneti jel amplitúdója? Vizsgálja meg most is a mért jelet úgy, hogy a bemenetre négyszögjelet kapcsol! Magyarázza a tapasztaltakat! M9: 10x-es leosztású mérőfej vizsgálata. a) Csatlakoztassa a mérőkábelt az oszcilloszkópon található kalibrációs mérőpontra! 10x-esállásban a mérőfejben lévő beépített, változtatható kapacitás segítségével állítson be a képernyőn szabályos négyszögjelet! b) Az előző pont szerinti elrendezésben hosszabbítsa meg a jel útját az oszcilloszkópig kb. 1 m hosszú koaxiális kábel betoldásával. Most is vizsgálja a képernyőn a mért négyszögjelet. Magyarázza a látottakat! M10: Jeltovábbítás és visszaverődés vizsgálata hosszú kábelen. a) Kapcsoljon 300 khz-es négyszögjelet az oszcilloszkóp bemenetére kb. 1 m hosszú koaxiális kábellel, T- elosztón keresztül! A T-elosztó szabad felére kössön 10 m hosszú koaxiális kábelt! Figyelje meg jól az oszcilloszkóp képernyőjén látható jelalakot a következő esetekben: a koaxiális kábel vége szabad a koaxiális kábel vége rövidre van zárva a koaxiális kábel vége 50 Ω-al van lezárva. Magyarázza a tapasztalt jelenségeket! - 9 -
Koincidencia áramkör tulajdonságainak tanulmányozása
Koincidencia áramkör tulajdonságainak tanulmányozása 1. Bevezetés Gyakori feladat a méréstechnikában, amikor két jelenség egyidejűségét kell detektálni. Ha ezek a jelenségek olyan gyorsan követik egymást,
Billenő áramkörök (multivibrátorok) Jelterjedés hatása az átvitt jelre
Billenő áramkörök (multivibrátorok) Jelterjedés hatása az átvitt jelre. Bevezetés Multivibrátorok típusai A billenőkörök pozitívan visszacsatolt univerzális digitális áramkörök, melyeket négyszögjelek
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
M ű veleti erő sítő k I.
dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Elektronika 2. TFBE5302
Elektronika 2. TFBE5302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE
M I S K O L C I E G Y E T E M GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ÉS ELEKTRONIKAI INTÉZET DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE MECHATRONIKAI MÉRNÖKI BSc alapszak hallgatóinak MÉRÉSI
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
Mûveleti erõsítõk I.
Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú
Billenő áramkörök Jelterjedés hatása az átvitt jelre
Billenő áramkörök Jelterjedés hatása az átvitt jelre Berta Miklós 1. Billenőkörök A billenőkörök pozitívan visszacsatolt digitális áramkörök. Kimeneti feszültségük nem folytonosan változik, hanem két meghatározott
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
Elektronikus műszerek Analóg oszcilloszkóp működés
1 1. Az analóg oszcilloszkópok általános jellemzői Az oszcilloszkóp egy speciális feszültségmérő. Nagy a bemeneti impedanciája, ezért a voltmérőhöz hasonlóan a mérendővel mindig párhuzamosan kell kötni.
Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem
Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
Elektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
1. ábra A Wien-hidas mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!
Abszolút és relatív aktivitás mérése
Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés
Koincidencia áramkörök
Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van
DTMF Frekvenciák Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet DTMF Frekvenciák Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: Bevezető A Proto Board 2. mérőkártya olyan
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
MŰVELETI ERŐSÍTŐK MÉRÉSE
MISKOLCI EYETEM ILLMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKI- ELEKTRONIKI TNSZÉK DR. KOÁCS ERNŐ MŰELETI ERŐSÍTŐK MÉRÉSE FŐISKOLI SZINTŰ, LEELEZŐ TOZTOS ILLMOSMÉRNÖK HLLTÓKNK MÉRÉSI UTSÍTÁS 2003. MŰELETI ERŐSÍTŐS
Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
A/D és D/A konverterek vezérlése számítógéppel
11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,
Koincidencia mérés. (Segédlet) BME, NTI 2011.
Koincidencia mérés (Segédlet) BME, NTI 2011. 1 Bevezető A koincidencia szó események egybeesését jelenti. A magfizikában gyakran történnek olyan események, amelyek egyidejűleg több részecske kibocsátásával
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert
1. ábra A PWM-áramkör mérőpanel kapcsolási rajza
1. ábra A PWM-áramkör mérőpanel kapcsolási rajza 2. ábra A PWM-áramkör mérőpanel beültetési rajza SZINUSZOS OSZCILLÁTOROK: SZINTETIZÁLT SZINUSZOS ÁRAMKÖRÖK MÉRÉSI UTASÍTÁS 1/6 Nyomókapcsolók balról jobbra:
* Egyes méréstartományon belül, a megengedett maximális érték túllépését a műszer a 3 legkisebb helyi értékű számjegy eltűnésével jelzi a kijelzőn.
I. Digitális multiméter 1.M 830B Egyenfeszültség 200mV, 2, 20,200, 1000V Egyenáram 200μA, 2, 20, 200mA, 10A *!! Váltófeszültség 200, 750V 200Ω, 2, 20, 200kΩ, 2MΩ Dióda teszter U F [mv] / I F =1.5 ma Tranzisztor
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
Nagyfrekvenciás rendszerek elektronikája házi feladat
Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös
BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató
Aktív Szűrő Mérése - Mérési Útmutató A mérést végezte ( név, neptun kód ): A mérés időpontja: - 1 - A mérés célja, hogy megismerkedjenek a Tina Pro nevű simulációs szoftverrel, és elsajátítsák kezelését.
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)
MŰVELETI ERŐSÍTŐS KPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) mérések célja: megismerni a leggyakoribb alap- és alkalmazott műveleti erősítős kapcsolások jellemző tulajdonságait. mérések elméleti
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
7. Az analóg oszcilloszkópok általános jellemzői
1 7. Az analóg oszcilloszkópok általános jellemzői Az oszcilloszkóp egy speciális feszültségmérő. Nagy a bemeneti impedanciája, ezért a voltmérőhöz hasonlóan a mérendővel mindig párhuzamosan kell kötni.
Modulációk vizsgálata
Modulációk vizsgálata Mérés célja: Az ELVIS próbapanel használatának és az ELVIS műszerek, valamint függvénygenerátor használatának elsajátítása, tapasztalatszerzés, ismerkedés a frekvencia modulációs
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)
MŰVELETI ERŐSÍTŐS KPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) mérések célja: megismerni a leggyakoribb alap- és alkalmazott műveleti erősítős kapcsolások jellemző tulajdonságait. mérések elméleti
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR Mikroelektronikai és Technológiai Intézet Analóg és Hírközlési Áramkörök Laboratóriumi Gyakorlatok Készítette: Joó Gábor és Pintér Tamás OE-MTI 2011 1.Szűrők
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
Tájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított), a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított, a 27/2012 (VIII. 27.) NGM rendelet
Elektronika 2. TFBE1302
Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3
LCD kijelzős digitális tároló szkóp FFT üzemmóddal
LCD kijelzős digitális tároló szkóp FFT üzemmóddal Type: HM-10 Y2 Y Pos Trig Level HOLD Y1 Bemenet vál. Bemenet Ablak pozició Kijelző 1) Y Pos jel baloldalon egy kis háromszög 0V helyzetét mutatja 2) Trig
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.09.18. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
Wien-hidas oszcillátor mérése (I. szint)
Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet
2. MÉRÉS. Poto Board 4. mérőkártya. (Rádiós és optikai jelátvitel vizsgálata)
2. MÉRÉS Poto Board 4. mérőkártya (Rádiós és optikai jelátvitel vizsgálata) COM 3 LAB BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Tartalom Bevezető.
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.03.02. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
Elvis általános ismertető
Elvis általános ismertető Az NI ELVIS rendszer egy oktatási célra fejlesztett különleges LabVIEW alkalmazás. A LabWIEW alapjaival amikor megismerkedtünk, akkor csak virtuális műszereket hoztunk létre.
1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása
Mechatronika, Optika és Gépészeti Informatika Tanszék M7 A mérés célja: A mérés során felhasznált eszközök: A mérés során elvégzendő feladatok: 1. A mérés tárgya: Műveleti erősítők alkalmazása D524 Analóg
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből álló hálózatok
Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
MPLC-06-MIO 1 analóg és 3 digitális bemeneti állapotot átjelző interfész. Műszaki leírás
MPLC-06-MIO analóg és digitális bemeneti állapotot átjelző interfész MultiCom Fejlesztő és Szolgáltató Kft. H -1033 Budapest, Szőlőkert u. 4. Tel.: 437-8120, 437-8121, Fax.: 437-8122, E-mail: multicomkft@multicomkft.hu,
Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola. GVT-417B AC voltmérő
Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola Elektronikus anyag a gyakorlati képzéshez GVT-417B AC voltmérő magyar nyelvű használati útmutatója 2010. Budapest Tartalomjegyzék
Bevezetés az elektronikába
Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az
EB134 Komplex digitális áramkörök vizsgálata
EB34 Komplex digitális áramkörök vizsgálata BINÁRIS ASZINKRON SZÁMLÁLÓK A méréshez szükséges műszerek, eszközök: - EB34 oktatókártya - db oszcilloszkóp (6 csatornás) - db függvénygenerátor Célkitűzés A
UTP kábelszegmens átviteltechnikai paramétereinek vizsgálata (HW1-B)
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI KAR HÍRADÁSTECHNIKA INTÉZET Infokommunikációs Hálózatok labormérési útmutató UTP kábelszegmens átviteltechnikai paramétereinek vizsgálata (HW1-B) Dr. Wührl Tibor Eszes András
SYS700-PLM Power Line Monitor modul DDC rendszerelemek, DIALOG-III család
DDC rendszerelemek, DIALOG-III család KIVITEL ALKALMAZÁS A az energiaellátás minőségi jellemzőinek mérésére szolgáló szabadon programozható készülék. Épületfelügyeleti rendszerben (BMS), valamint önállóan
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja
Rogowski-tekercses árammérő rendszer tervezése és fejlesztése
Rogowski-tekercses árammérő rendszer tervezése és fejlesztése Fekete Ádám, Schmidt László, Szabó László, Dr. Varga László Fekete Ádám és Varga Balázs Budapest, 2013.04.24 Transzformátorok és mérőváltók
Házi Feladat. Méréstechnika 1-3.
Házi Feladat Méréstechnika 1-3. Tantárgy: Méréstechnika Tanár neve: Tényi V. Gusztáv Készítette: Fazekas István AKYBRR 45. csoport 2010-09-18 1/1. Ismertesse a villamos jelek felosztását, és az egyes csoportokban
Szint és csillapítás mérés
Összeállította: Mészáros István tanszéki mérnök A mérés célja az átviteltechnikai alapméréseknél használt mérőadó és mérővevő megismerése, valamint a különböző csillapítás és szint definíciók méréssel
Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,
Beütésszám átlagmérő k
Beütésszám átlagmérő k A beütésszám átlagmérők elsősorban a radioaktív sugárforrások intenzitásának ellenőrzésére és mérésére szolgálnak Természetesen használhatjuk más jeladók esetében is, amikor például
Elektronikai laboratóriumi gyakorlatok. Bevezető előadás
Elektronikai laboratóriumi gyakorlatok Bevezető előadás Elérhetőségek Nukleáris Technikai Intézet Laboratórium: R. ép. II. emelet 214. terem Tárgyfelelős: Dr. Pór Gábor (por@reak.bme.hu) Laborvezető: Farkas
A mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata
ARM programozás 6. Óra ADC és DAC elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az ADC? ADC -> Analog Digital Converter Analóg jelek mintavételezéssel
Elektronika IV (Analóg és hírközlési áramkörök II) 8. mérés: AD és DA átalakítók
Elektronika IV (Analóg és hírközlési áramkörök II) 8. mérés: AD és DA átalakítók 2017. október 4. A méréshez felhasznált eszközök: HAMEG HM400 RIGOL DS1054 LEAPTRONIX LA-2025 HAMEG HM8040-3 HAMEG HM8030-5
Zárt mágneskörű induktív átalakítók
árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre
DIÓDÁS ÉS TIRISZTOROS KAPCSOLÁSOK MÉRÉSE
M I S K O C I E G Y E T E M GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA EEKTOTECHNIKAI ÉS EEKTONIKAI INTÉZET Összeállította D. KOVÁCS ENŐ DIÓDÁS ÉS TIISZTOOS KAPCSOÁSOK MÉÉSE MECHATONIKAI MÉNÖKI BSc alapszak hallgatóinak
Kezelési leírás Agilent DSO-X 2002A
Kezelési leírás Agilent DSO-X 2002A [1] Tartalom 1. Kezelőszervek... 3 1.1. Horizontal (horizontális eltérítés/nagyítás)... 3 1.2. Vertical (vertikális eltérítés/nagyítás)... 3 1.3. Run Control... 3 1.4.
Első egyéni feladat (Minta)
Első egyéni feladat (Minta) 1. Készítsen olyan programot, amely segítségével a felhasználó 3 különböző jelet tud generálni, amelyeknek bemenő adatait egyedileg lehet változtatni. Legyen mód a jelgenerátorok
minipet labor Klinikai PET-CT
minipet labor Klinikai PET-CT Pozitron Emissziós Tomográfia A Pozitron Emissziós Tomográf (PET) orvosi képalkotó eszköz, mely háromdimenziós funkcionális képet ad. Az eljárás lényege, hogy a szervezetbe
1. ábra a függvénygenerátorok általános blokkvázlata
A függvénygenerátorok nemszinuszos jelekből állítanak elő kváziszinuszos jelet. Nemszinuszos jel lehet pl. a négyszögjel, a háromszögjel és a fűrészjel is. Ilyen típusú jeleket az úgynevezett relaxációs
TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó
TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó Bevezetés A TxBlock-USB érzékelőfejbe építhető, kétvezetékes hőmérséklet távadó, 4-20mA kimenettel. Konfigurálása egyszerűen végezhető el, speciális
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák
I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?
TULAJDONSÁGOK LEÍRÁS. Működési módok. Maszkoláselleni tulajdonság
COBALT COBALT Plus COBALT Pro DIGITÁLIS DUÁLTECHNOLÓGIÁS MOZGÁSÉRZÉKELŐ cobalt_hu 07/15 A COBALT / COBALT Plus / COBALT Pro a védett területen történő mozgás érzékelését teszi lehetővé. Ez a kézikönyv
Egyszerű kísérletek próbapanelen
Egyszerű kísérletek próbapanelen készítette: Borbély Venczel 2017 Borbély Venczel (bvenczy@gmail.com) 1. Egyszerű áramkör létrehozása Eszközök: áramforrás (2 1,5 V), izzó, motor, fehér LED, vezetékek,
OMRON FOTOELEKTROMOS KAPCSOLÓK E3NT
E3NT Tárgyreflexiós érzékelõ háttér- és elõtér elnyomással 3 m-es érzékelési távolság (tárgyreflexiós) 16 m-es érzékelési távolság (prizmás) Analóg kimenetes típusok Homloklapfûtéssel ellátott kivitelek
Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?
Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre
25.B 25.B. 25.B Impulzustechnikai alapáramkörök Impulzusok elıállítása
5.B Impulzustechnikai alapáramkörök Impulzusok elıállítása Értelmezze a félvezetı elemek és a mőveleti erısítı kapcsoló üzemmódját, a stabil- és a kvázistabil állapotot! Magyarázza el a tranzisztoros vagy
MaxiCont. MOM690 Mikroohm mérő
MOM690 Mikroohm mérő A nagyfeszültségű megszakítók és szakaszolók karbantartásának fontos része az ellenállás mérése. A nagy áramú kontaktusok és egyéb átviteli elemek ellenállásának mérésére szolgáló
2. Elméleti összefoglaló
2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges
TELEPÍTÉSI ÚTMUTATÓ 40404 V1.0
TELEPÍTÉSI ÚTMUTATÓ 40404 V1.0 Készlet tartalma: M Távirányító D,I 2 /16 Ohmos hangszóró E Vezérlő egység R Infra vevő Csatlakozó pontok F Tápellátás 230V N Tápellátás 230V I Bal hangszóró ( piros vezeték