Algoritmikus gondolkodás szintfelmérő az ELTE IK programozó BSC képzésére felvettek részére

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Algoritmikus gondolkodás szintfelmérő az ELTE IK programozó BSC képzésére felvettek részére"

Átírás

1 Algoritmikus gondolkodás szintfelmérő az ELTE IK programozó BSC képzésére felvettek részére A feladatok a HÓDítsd meg a biteket verseny (CC by NC-SA) kérdéseiből kerültek kiválogatásra. Megoldásukhoz semmilyen programozói előképzettségre nincs szükség. Az algoritmikus gondolkodás egyes szintjeit, problémamegoldást tesztelnek. A megoldókulcs tartalmazza az egyes szintek és azon belüli nehézségek megnevezéseit is. A feladatsor 16 kérdést tartalmaz, perc alatt megoldható. Összesen 72pont gyűjthető, melynek 80%-a 57,6pont. Emellett érdemes a Nemes Tihamér verseny feladatainak megoldása. Ezek kiemelt, kimondottan programok írásával kapcsolatos feladatok. A megoldókulccsal együtt elérhetőek: oldalon. 1. Soundex (1p) Dénes szeretne szavakat a kiejtésük alapján kódolni. Ehhez a következőket teszi: Megtartja az első betűt (érintetlenül). Az összes többi betű közül kihúzza az A, E, I, O, U, H, W és Y betűket. A többi betűt számokkal helyettesíti a következőképpen: o B, F, P vagy V 1 o C, G, J, K, Q, S, X vagy Z 2 o D vagy T 3 o L 4 o M vagy N 5 o R 6 Ha az előállított szóban egy szám többször szerepel, és a betűk, melyekből létrehozták ezeket, az eredeti szövegben közvetlenül egymás mellett álltak, csak egyszer tartja meg a jelölést. Ez akkor is érvényes, ha az első betű kerülne átalakításra. Végül csak az első 4 karaktert (beleértve az első megmaradt betűt) tartja meg. Ha nem lett 4 karakter hosszú az új szó, akkor hátulról 0-kal kiegészíti. A Következő szavakat így kódolta át: Euler E460 Gauss G200 Melyik kódot állítja elő a Hilbert szóból? Heilbronn H416 Kant K530 Lloyd L300 Lissajous L Labdák (1p) Számozott golyók gurulnak le egy rámpán. A golyók sorrendje aszerint változik, ahogy beesnek lyukakba. Ha egy golyó egy lyukhoz ér, amelyben van még hely, akkor a golyó beleesik. Máskülönben a golyó átgurul a lyuk fölött. A lyuk alján elhelyezett rugókkal kilőhetők a lyukba begurult golyók. ELTE IK alg. gondolkodás teszt CC by NC-SA 1

2 Például: 5 golyó mielőtt elkezd gurulni Miután a golyók megálltak A rugó indítása utáni végső helyzet Tíz golyó gurul az alábbi rámpán. A három lyukba (A, B, C) 3, 2 és 1 golyónyi hely van, ahogy az ábra is mutatja. A lyukak rugóit sorrend ben (A, B, C) indítjuk el, de csak azután, hogy minden golyó megállt. Milyen sorrendben állnak legvégül a golyók? 3. Önző mókusok (2p) A mókusok odukban élnek. Egy fán öt odú helyezkedik el egymás felett. A képen látható fán tizenhat mókus él, ami azt jelenti, hogy együtt élnek ebben az öt odúban. Minden nap minden mókus ellenőrzi, melyik szomszédos odúban található a legkevesebb mókus. Ez azt jelenti, hogy megszámolják, hány szomszédjuk van a felettük vagy az alattuk lévő odúban. A következő éjszaka eltöltésére minden mókus azt a szomszédos odút választja, amelyikben a legkevesebben aludtak. Ha az egymás alatti odukban ugyanannyian aludtak, a mókusok a saját odujukat részesítik előnyben a felettük vagy alattuk lévőhöz képest. ELTE IK alg. gondolkodás teszt CC by NC-SA 2

3 Ha például ma 5, 0, 0, 4 és 7 mókus alszik az odukban (fentről lefelé haladva), akkor holnap a következőképpen fog kinézni a helyzet: mind az 5 mókus, aki a legfelső odúban töltötte az éjszakát, a közvetlenül alattuk lévő odúba fog költözni (mivel 0 lakótárs jobb, mint 4). A legalsó barlang 7 mókusa feljebb fog költözni (4 lakótárs jobb, mint 6), és a 4, a legalsó odú fölötti odúban alvó mókus eggyel feljebb költözik (0 szomszéd jobb, mint 3). Ha ma kezdetben (fentről lefelé haladva) 6, 3, 3, 0 illetve 4 mókus található az egyes odukban, akkor hány nap múlva lesz végül minden mókus ugyanabban az odúban? 4. Papírhajtogatás (2p) A hódok kifejlesztették a papírhajtogatás nyelvét. A nyelv leírása az, ahogyan egy papírral egyenes éleket hajtunk. Ebben a nyelvben az utasításokat HAJTÁS-nak hívják. z = HAJTÁS(x,y) azt jelenti: hajts egy darab papírt úgy, hogy az x éle pontosan az y élére kerüljön. Így egy új él áll elő, melyet z-nek nevezünk. Például két utasítással egymásután: e = HAJTÁS(a,b) f = HAJTÁS(a,e) Vegyél egy négyszögletes papírt, melynek a b, d élei kétszer olyan hosszúak, mint az a, c élei. A papírt a hajtogatás alatt az asztalon kell hagynod (elfordítás nélkül). Hajtsd végre a következő utasításokat egymás után: e = HAJTÁS(c,a) f = HAJTÁS(c,d) g = HAJTÁS(a,f) Hogy néz ki a papír a hajtogatások után? A B C D ELTE IK alg. gondolkodás teszt CC by NC-SA 3

4 5. Szigorúan titkos (3p) Xaver, Yvonne és Zoé rendszeresen lottóznak. Most tudódott ki, hogy valaki a városból nyerte meg a főnyereményt. Szívesen megtudnák, hogy közülük van-e a nyertes, de szeretnék titokban is tartani, ki az. Ezért a következőt teszik: Xaver és Yvonne feldob egy érmét. Xaver és Zoé feldob egy érmét. Yvonne és Zoé feldob egy érmét. Minden esetben csak a 2 érintett nézi meg az egyes érmedobások eredményét. Mindenki elmondja, hogy a két érme-feldobás eredménye azonos vagy különböző : Annak, aki nem nyerte meg a lottó főnyereményt, igazat kell válaszolnia. Ha valaki a lottó nyertese, akkor az eredmény ellenkezőjét kell válaszolnia. A képen egy példa látható az elvégzett érmefeldobásokkal és azzal a kitétellel, hogy Zoé nyerte meg a lottó főnyereményt. Nézd meg a következő helyzetet, ahol az érmefeldobás eredménye számodra nem ismert: A következő kijelentések közül melyik igaz? A. A barátok egyike sem nyert a lottón. B. A barátok egyike nyert a lottón, de nem tudjuk melyikük. C. A barátok egyike nyert a lottón, és pontosan tudjuk, ki. D. Nem tudjuk, hogy valaki nyert-e a lottón. 6. Sorok és oszlopok (3p) A jobb oldali diagramot a játéktábla alapján a következőképpen készítettük: Minden követ egy körrel ábrázolunk. 2 követ összekötünk egy vonallal, ha a játéktáblán ugyanabban a sorban vagy ugyanabban az oszlopban találhatóak. A köveken és a diagram köreiben szereplő betűk segítenek az ellenőrzésben. Az alábbi játéktáblán 6 kő található: Melyik diagram ábrázolja a 6 köves játéktáblánkat? ELTE IK alg. gondolkodás teszt CC by NC-SA 4

5 A B C D 7. Csillag mobilok (4p) A csillag-mobilok olyan művészeti alkotások, melyek szálakból, rudakból és csillagokból állnak. Egy szálon lóghat valahány számú csillag vagy egy rúd, melynek mindkét végén egy újabb csillag-mobil lóg. A képen egy egyszerű csillag-mobil látható. Számokkal és zárójelekkel így írhatjuk le: (-3 (-1 1) (1 1)) (2 3) A számok a következőket adhatják meg: vagy a rúd végének a távolságát attól a száltól, amelyen a rúd lóg, vagy a csillagok számát. A zárójelek a csillag-mobil felépítését mutatják. Hogy néz ki az a csillag-mobil, melyet így írtuk le? (-3 (-1 4) (2 (-1 1) (1 1))) (2 (-1 6) (2 3)) 8. Véletlen képek (4p) Egy gyárban a következő módszerrel készítenek csomagolópapírokat: A nyomtatógép színes köröket és négyszögeket tervez, majd ezeket papírlapokra nyomtatja. A masina minden alkalommal a következő utasításokat hajtja végre: ELTE IK alg. gondolkodás teszt CC by NC-SA 5

6 1. Tervezz egy kört, színezd ki egy véletlenszerűen kiválasztott színnel és nevezd el K-nak 2. Ismételd meg véletlenszerűen sokszor a következő 4 utasításból álló blokkot 2.a Tervezz egy véletlenszerűen kiválasztott színű és nagyságú négyszöget, majd nevezd N-nek 2.b Véletlenszerűen határozd meg K méretét NAGYnak vagy KICSInek 2.c Nyomtasd K-t egy véletlenszerűen kiválasztott helyre a papírlapon 2.d Nyomtasd N-t egy véletlenszerűen kiválasztott helyre a papírlapon Melyik papírlapot NEM ezzel a nyomtatógéppel készítették? A B C D 9. Bontsd részekre a számsort (5p) Egy különleges szövegkódoló rendszer minden betűt a 0 és 9 közötti számjegyekből készített kóddá alakít. A sajátossága az, hogy semelyik kód nem kezdődhet egy másik betű kódjával. Egy példa: Az X betűt 12-ként kódolja. Ekkor az Y-t kódolhatja 2-ként. Így sem a 12 nem kezdődik 2-vel, sem a 2 12-vel. Most a Z-t 11-ként kódolhatja, mivel sem 12 sem 2 nem kezdődik 11-gyel és a 11 sem kezdődik 2-vel vagy 12-vel. A 21 már nem engedélyezett a Z kódolására, hiszen 2-vel kezdődne, ami viszont már az Y-hoz tartozó kód. A BEBRAS szót a rendszer így kódolta: Melyik számsor jelölheti az A betűt? 10. Játék a golyókkal (5p) Emilnek van egy új játéka a számítógépén. A játék legalább három színes (piros vagy kék) golyóval kezdődik, amelyek egy csőben sorakoznak. Miután rákattint egy gombra, mindkét alsó golyó kiesik a csőből, valamint felülről új golyók esnek bele a csőbe. Ekkor két lehetőség van, a kattintás előtt legalul lévő golyó színétől függően: ELTE IK alg. gondolkodás teszt CC by NC-SA 6

7 Ha a legalsó golyó piros volt, egy kék színű golyó esik felülről a csőbe. Ha a legalsó golyó kék volt, három golyó esik felülről a csőbe, piros-kék-piros sorrendben. Amíg legalább három golyó van a csőben, Emil újra és újra rákattint a gombra. A játék akkor ér véget, ha kevesebb, mint három golyó marad a csőben. Egy példa: ha Emil ezzel a golyósorrenddel kezd, öt kattintás után csupán két kék golyó marad benn, és a játék véget ér. Emil felfedezi, hogy léteznek olyan golyósorrendek a játék kezdetén, amelyekkel a játék sohasem ér véget, mindegy hányszor kattint. Az ilyen golyósorrendeket végtelen sorozatoknak hívja. Az alábbi hármas kezdő-sorozatok melyike NEM végtelen sorozat? A B C D ELTE IK alg. gondolkodás teszt CC by NC-SA 7

8 11. Rövidítés vagy kitérő (6p) Az alábbi ábra egyirányú utak kapcsolatát ábrázolja. A kereszteződésekben található szám azt jelzi, hogy az S pontból hány egység hosszú a legrövidebb út az adott kereszteződésig. Az alábbi állítások közül melyik igaz mindig a két vastagon kiemelt (piros) kereszteződésről? A. A két kereszteződés közötti legrövidebb út hossza pontosan 8 egység. B. A két kereszteződés közötti legrövidebb út hossza 8 vagy 8-nál kevesebb egység. C. A két kereszteződés közötti legrövidebb út hossza 8 vagy 8-nál több egység. D. Semmi sem állapítható meg az adott kereszteződések közötti legrövidebb út hosszáról. 12. Igaz vagy hamis (6p) Alíz és Tomi igaz vagy hamis játékot játszanak az osztályterem mágnestáblájánál. Alíz hét különböző mágnest tesz a táblára. Ezután állításokat mond a mágnesek alakjáról, színéről, nagyságáról és elhelyezkedéséről. Egy állítás igaz, a többi hamis. Tamásnak ki kell találnia, melyik állítás igaz. Melyik állítás igaz? A. Van két mágnes X és Y úgy, hogy X sötétkék és Y világossárga és X Y felett van. B. Minden tetszőleges két X és Y mágnesre igaz, hogy ha X egy négyzet és Y egy kör, akkor X Y felett van. C. Minden tetszőleges két X és Y mágnesre igaz, hogy ha X kicsi és Y nagy, akkor X jobbra van Ytól. D. Minden tetszőleges két X és Y mágnesre igaz,hogy ha X világossárga és Y sötétkék, akkor X Y alatt van. ELTE IK alg. gondolkodás teszt CC by NC-SA 8

9 13. Kalózvadászat (7p) A Kalózvadászat játék a következőképpen folyik: a rendőrség és a kalóz felváltva lépnek. Amikor a rendőrség következik, a rendőrök egyikének a mellette lévő szabad helyre kell lépnie. A kalóz mindig két mezőt lép tovább. A játék akkor ér véget, ha a kalóz már csak olyan mezőre tud lépni, ahol rendőr áll. Ekkor a kalóz vesztett, a rendőrség pedig nyert. A rendőrség tehát megpróbálja a kalózt ilyen helyzetbe kényszeríteni. A játék a képen látható felállással kezdődik és a rendőrség kezd. Tegyük fel, hogy a kalóz nem hibázik. Van esélye a rendőrségnek, hogy nyerjen? Ha igen, hány lépésben? 14. Fogpiszkálós játék (7p) Helga és Béla egy társasjátékot játszanak: A játékban két halom fogpiszkáló van az asztalon és a játékosok felváltva kerülnek sorra. A soron következő játékosnak a következő lépéseket kell megtennie: (1) Teljesen elveszi az egyik kupacot az asztalról. (2) Szétosztja az asztalon maradt fogpiszkálókat két kisebb kupacra. Az a játékos nyer, aki két, pontosan egy-egy fogpiszkálóból álló kupacot hagy az asztalon. Helga kezdi a játékot. A játék 24 fogpiszkálóval indul két kupacba osztva. Melyik kezdő elosztásban tud nyerni Helga? 15. Mágikus masina (8p) A mágikus masina golyókból és gombokból áll, a golyók érméket tartalmazhatnak. A golyók és a gombok nyilakkal vannak összekötve. Az a golyó, melyből nyíl vezet egy gomb felé, az az adott gombnak a forrása. Az a golyó, melyhez egy gombból kiinduló nyíl vezet, az az adott gombnak a célja. Ha megnyomsz egy gombot, egymás után két dolog történik: 1) A masina megvizsgálja, hogy a gomb összes forrása tartalmaz-e legalább egy érmét. 2) Ha tartalmaz, a gomb az összes forrásából eltüntet egy érmét és az összes céljához hozzáad egy-egy érmét. Például, ha megnyomom a B gombot, a jobb felső golyóból eltűnik egy érme, a lenti golyóban pedig megjelenik egy érme. ELTE IK alg. gondolkodás teszt CC by NC-SA 9

10 Ha az adott gombokat a megfelelő sorrendben nyomjuk meg, a masina stabil állapotba kerül. Akármelyik gombot megnyomhatjuk, ez az állapot többé nem változik. A gombnyomások melyik sorrendjével érhetjük el a stabil állapotot? A legrövidebb sorozatot add meg! 16. Módosított Nim (8p) Jancsi és Juliska társasjátékot játszanak: 7 fehér és 3 fekete zsetonjuk van. A játékosok felváltva kerülnek sorra és vagy 1 vagy 2 vagy 3 fehér vagy 1 vagy 2 fekete zsetont vehetnek el az asztalról. Az a játékos nyer, aki az utolsó zsetont veszi el. Juliska kezd. Hány és milyen színű zsetont vegyen el, hogy biztosan nyerjen függetlenül attól, hogy Jancsi ezután mit lép? ELTE IK alg. gondolkodás teszt CC by NC-SA 10

Algoritmikus gondolkodás szintfelmérő teszt megoldókulcsa az ELTE IK programozó BSC képzésére felvettek részére

Algoritmikus gondolkodás szintfelmérő teszt megoldókulcsa az ELTE IK programozó BSC képzésére felvettek részére Algoritmikus gondolkodás szintfelmérő teszt megoldókulcsa az ELTE IK programozó BSC képzésére felvettek részére A feladatok a HÓDítsd meg a biteket verseny (CC by NC-SA) kérdéseiből kerültek kiválogatásra.

Részletesebben

Nyerni jó. 7.-8. évfolyam

Nyerni jó. 7.-8. évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni

Részletesebben

HÓDÍTSD MEG A BITEKET! INFORMATIKAI GONDOLKODÁST TÁMOGATÓ, NEMZETKÖZI BEBRAS KEZDEMÉNYEZÉS MAGYAR MEGVALÓSULÁSA SENIOR FELADATOK

HÓDÍTSD MEG A BITEKET! INFORMATIKAI GONDOLKODÁST TÁMOGATÓ, NEMZETKÖZI BEBRAS KEZDEMÉNYEZÉS MAGYAR MEGVALÓSULÁSA SENIOR FELADATOK HÓDÍTSD MEG A BITEKET! INFORMATIKAI GONDOLKODÁST TÁMOGATÓ, NEMZETKÖZI BEBRAS KEZDEMÉNYEZÉS MAGYAR MEGVALÓSULÁSA FELADATOK MI IS AZ E-HÓD? MI IS AZ E-HÓD? Az e-hód/hódítsd meg a biteket a nemzetközi BEBRAS-kezdeményezés

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

OLVASÁSI KÉPESSÉGEKET FEJLESZTŐ PROGRAM

OLVASÁSI KÉPESSÉGEKET FEJLESZTŐ PROGRAM OLVASÁSI KÉPESSÉGEKET FEJLESZTŐ PROGRAM 1. NAP PROGRAMJA Ezen a héten újabb, egymáshoz nagyon hasonló betűkkel játsszunk! Azonban ők már nem csak hárman vannak, hanem bizony nyolcan, így a dolgunk is nehezebb

Részletesebben

TAJ MAHAL SZABÁLY ÁTTEKINTÉS/ ÖSSZEFOGLALÓ

TAJ MAHAL SZABÁLY ÁTTEKINTÉS/ ÖSSZEFOGLALÓ TAJ MAHAL Cél: SZABÁLY ÁTTEKINTÉS/ ÖSSZEFOGLALÓ A legtöbb pontot összegyűjteni a játék végére. Játék előkészítése: A játéktábla felépítése: A játéktábla 12 tartományra van felosztva, minden tartomány 4

Részletesebben

Kris Burm játéka. Tartozékok

Kris Burm játéka. Tartozékok Kris Burm játéka Én legyek erősebb, vagy az ellenfelemet gyengítsem? Ezt a húzós kérdést kell feltenni magadnak minden egyes körödben. Tartozékok - 1 játéktábla - 30 fehér korong: 6 Tzaar, 9 Tzarnő és

Részletesebben

Infóka verseny. 1. Feladat. Számok 25 pont

Infóka verseny. 1. Feladat. Számok 25 pont Infóka verseny megoldása 1. Feladat. Számok 25 pont Pistike és Gyurika egy olyan játékot játszik, amelyben prímszámokat kell mondjanak. Az nyer, aki leghamarabb ér el 1000 fölé. Mindkét gyerek törekedik

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV.

meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D-89312 Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 2 LOGEO Egy

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HATODIK OSZTÁLY - Javítási útmutató 1. Melyik a legkisebb 3-mal osztható négyjegyű szám, amelynek minden számjegye különböző,

Részletesebben

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények: 1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

S A M U R A I. by Reiner Knizia

S A M U R A I. by Reiner Knizia S A M U R A I 2-4 játékos számára 10 év felett by Reiner Knizia Tartozékok: 3 x 13 db figura - Sisak, Buddha, Rizsmező 80 db jelzőlapka 20 db mind a négy színben 4 db japán karakteres paraván Játéktábla

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér.

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ. Minden feladat helyes megoldása 7 pontot ér. 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat helyes megoldása 7 pontot ér. 1. Bence talált öt négyzetet, amelyek egyik oldalán az A,

Részletesebben

HÓDÍTSD MEG A BITEKET! INFORMATIKAI GONDOLKODÁST TÁMOGATÓ, NEMZETKÖZI BEBRAS KEZDEMÉNYEZÉS MAGYAR MEGVALÓSULÁSA JUNIOR FELADATOK

HÓDÍTSD MEG A BITEKET! INFORMATIKAI GONDOLKODÁST TÁMOGATÓ, NEMZETKÖZI BEBRAS KEZDEMÉNYEZÉS MAGYAR MEGVALÓSULÁSA JUNIOR FELADATOK HÓDÍTSD MEG A BITEKET! INFORMATIKAI GONDOLKODÁST TÁMOGATÓ, NEMZETKÖZI BEBRAS KEZDEMÉNYEZÉS MAGYAR MEGVALÓSULÁSA FELADATOK MI IS AZ E-HÓD? MI IS AZ E-HÓD? Az e-hód/hódítsd meg a biteket a nemzetközi BEBRAS-kezdeményezés

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben

Tartozékok. 4 játéktábla (sárga, vörös, zöld, kék) ezek együtt alkotják a pontsávot (1-100)

Tartozékok. 4 játéktábla (sárga, vörös, zöld, kék) ezek együtt alkotják a pontsávot (1-100) Tartozékok 4 játéktábla (sárga, vörös, zöld, kék) ezek együtt alkotják a pontsávot (1-100) 5 nagy alattvaló (1-1 minden színben) 5 kis alattvaló (1-1 minden színben) 5 láda 5 100/200-as lapka hátlap Fontos:

Részletesebben

A játékosok evőpálcikákat használva próbálják a sushikat tányérjukra helyezni különböző kombinációkban, hogy azokkal pontokat szerezzenek.

A játékosok evőpálcikákat használva próbálják a sushikat tányérjukra helyezni különböző kombinációkban, hogy azokkal pontokat szerezzenek. KAITEN SUSHI Egy Sushi bárban ízlésednek megfelelően számos ízletes sushit kaphatsz. De milyen kombinációban állítsuk össze a legfinomabb sushit? Ez már azon múlik, milyen ügyesen bánsz az evőpálcikákkal,

Részletesebben

e ee Tartalom A játék lényege E F H Mennyi színt látsz valójában? 12 nyílkártya 98 színkártya

e ee Tartalom A játék lényege E F H Mennyi színt látsz valójában? 12 nyílkártya 98 színkártya Mennyi színt látsz valójában? Wolfgang Warsch Játékosok: 2-5 személy Korhatár: 8 év felett Játékidő: kb. 15 perc Tartalom 12 nyílkártya 98 színkártya 3-3 piros, sárga, zöld és kék színű Előlap 10 27 22

Részletesebben

Megoldókulcs. Matematika D kategória (11-12. osztályosok) 2015. február 6.

Megoldókulcs. Matematika D kategória (11-12. osztályosok) 2015. február 6. Megoldókulcs Matematika D kategória (11-12. osztályosok) 2015. február 6. 1. Az ABC háromszög mindhárom csúcsából merőlegeseket állítunk a többi csúcs külső és belső szögfelezőire. Igazoljuk, hogy az így

Részletesebben

Egy negyedikes felvételi feladattól az egyetemi matematikáig

Egy negyedikes felvételi feladattól az egyetemi matematikáig Egy negyedikes felvételi feladattól az egyetemi matematikáig Tassy Gergely Veres Péter Gimnázium, Budapest ELTE Matematikatanár-délután Kombinatorika és gráfelmélet a középiskolában 2015. február 18. I.

Részletesebben

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal Feladatlap Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció pontos betartása. Ha például a feladat szövege adatok valamilyen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

Köszöntünk titeket a negyedik osztályban!

Köszöntünk titeket a negyedik osztályban! Köszöntünk titeket a negyedik osztályban! Ez a számolófüzet a tankönyv és feladatgyûjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematikaórán tanultakat. A következô

Részletesebben

OLVASÁS FEJLESZTÉSE 6.HÉT PROGRAMJA

OLVASÁS FEJLESZTÉSE 6.HÉT PROGRAMJA OLVASÁS FEJLESZTÉSE 6.HÉT PROGRAMJA OLVASÁS FEJLESZTÉSE 1.NAP PROGRAMJA Elsőként megismerkedünk azokkal a betűkkel, amelyekkel ezen a héten dolgozni fogunk. Ezek pedig: b,d,p Nem elég, hogy vizuálisan

Részletesebben

XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály

XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály 1. feladat: XV. évfolyam Megyei döntő - 2016. február 20. MEGOLDÁSOK - 3. osztály Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak

Részletesebben

Invariánsok (a matematikai problémamegoldásban)

Invariánsok (a matematikai problémamegoldásban) Invariánsok (a matematikai problémamegoldásban) Nagy V. Gábor SZTE Bolyai Intézet Eötvös Loránd Kollégium, Matematika Műhely Szeged, 2018. április 27. ELK 18 1. feladat: Poharak 1/9 Feladat. 11 pohár van

Részletesebben

Gábor Dénes Számítástechnikai Emlékverseny 2014/2015 Alkalmazói kategória, I. korcsoport 2. forduló

Gábor Dénes Számítástechnikai Emlékverseny 2014/2015 Alkalmazói kategória, I. korcsoport 2. forduló Gábor Dénes Számítástechnikai Emlékverseny 2014/2015 Alkalmazói kategória, I. korcsoport 2. forduló Kedves Versenyző! A feladatsor megoldására 90 perc áll rendelkezésre. A feladatok megoldásához használható

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete? 1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű

Részletesebben

10 éves kortól 2-6 játékos számára 40-120 perc játékidő

10 éves kortól 2-6 játékos számára 40-120 perc játékidő 10 éves kortól 2-6 játékos számára 40-120 perc játékidő Scoville története Wilbur Scoville 1865 január 22-én született. A világ ezután már nem lesz ugyanaz.1912-ben Scoville megalkotta a Scoville Organoleptic

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Megújuló és tiszta energia

Megújuló és tiszta energia World Robot Olympiad 2017 Regular Kategória SENIOR Játékleírás, szabályok és pontozás Sustainabots [Robotok a fenntarthatóságért] Megújuló és tiszta energia Ez a dokumentum a World Robot Olympiad magyarországi

Részletesebben

::JÁTÉKLAP:: Társasjáték Portál. Coloretto

::JÁTÉKLAP:: Társasjáték Portál. Coloretto Coloretto Tervezte: Michael Schacht Kiadja: ABACUSSPIELE Verlags GmbH & Co. KG, 63303 Dreieich info@abacusspiele.de www.abacusspiele.de 3-5 játékos részére, 8 éves kortól, játékidő kb. 30 perc Összefoglaló

Részletesebben

Harmadikos vizsga Név: osztály:

Harmadikos vizsga Név: osztály: . a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

A játékosok választanak különböző színű bábukat, mindenki 3 fél színből. Kettő a tényezőké, egy a szorzat bábu színe. Ezeket megjegyzik.

A játékosok választanak különböző színű bábukat, mindenki 3 fél színből. Kettő a tényezőké, egy a szorzat bábu színe. Ezeket megjegyzik. SAJÁT KÉSZÍTÉSŰ FEJLESZTŐ ESZKÖZÖK 1 2 3 3 4 5 6 7 4 Szerző: Szabó Ottilia 1. SZORZÁS MÁTRIX TÁBLA Eszközök: - szorzatokat tartalmazó tábla, a tényezők fent és bal oldalon - 20-30 bábu - 1-1 vagy 2-2 db

Részletesebben

Írd le, a megoldások gondolatmenetét, indoklását is!

Írd le, a megoldások gondolatmenetét, indoklását is! 088 Budapest VIII., Bródy Sándor u. 6. Postacím: 4 Budapest, Pf. 76 Telefon: 7-8900 Fa: 7-890 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 05. április. NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

Részletesebben

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt?

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? skombinatorika 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot írhatunk föl 2 db 1-es, 1 db 2-es és 1 db 3-as

Részletesebben

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből. 1 Kombináció, variáció, permutáció 1. Hányféleképpen rakhatunk be 6 levelet 1 rekeszbe, ha a levelek között nem teszünk különbséget és egy rekeszbe maximum egy levelet teszünk? Mivel egy rekeszbe legfeljebb

Részletesebben

Áttekintés. A játék célja. Marco Ruskowski és Marcel Süßelbeck játéka 2-4 játékos részére, 10 éves kortól.

Áttekintés. A játék célja. Marco Ruskowski és Marcel Süßelbeck játéka 2-4 játékos részére, 10 éves kortól. Marco Ruskowski és Marcel Süßelbeck játéka 2-4 játékos részére, 10 éves kortól. A püspök magas rangú látogatókat vár, de sajnos a nagy freskófestmény a katedrális mennyezetén sürgős renoválásra szorul.

Részletesebben

1. ISMERKEDÉS A SAKK VILÁGÁVAL

1. ISMERKEDÉS A SAKK VILÁGÁVAL 1. ISMERKEDÉS A SAKK VILÁGÁVAL Hogyha gyakran sakkozom, szupererôm megkapom. Táblajáték sakk Társasjáték Tornáztatjuk az agyunkat Tornáztatjuk a testünket Készítsd el a saját koronádat! 3 Sakkjáték 2 játékos

Részletesebben

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos özépiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIA II. (programozás) kategória 1. feladat: Legalább 2 bolygón volt élet

Részletesebben

FOLYTATÁS A TÚLOLDALON!

FOLYTATÁS A TÚLOLDALON! ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;

Részletesebben

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap 2001. február 7. 1. A jéghegyeknek csak 1/9 része van a vízfelszín felett. Hány tonnás az a jéghegy, amelynek víz alatti része 96 tonna tömegű? A válasz:

Részletesebben

Függőleges. Vízszintes

Függőleges. Vízszintes 1. Fejtsd meg a rejtvényt! A főmegfejtés bizonyos karakterei a többi meghatározás egyes betűi alapján lesznek megfejthetőek. A meghatározásokat a lenti táblázatba írd, a megfelelő sorba. (10 pont a meghatározásokért

Részletesebben

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége

Részletesebben

Kedves Első Osztályos! Rajzold be az óvodai jeledet!

Kedves Első Osztályos! Rajzold be az óvodai jeledet! Kedves Első Osztályos! Rajzold be az óvodai jeledet! Ez a szép, színes feladatgyűjtemény segíti munkádat a matematika tanulásában. Érdekes, játékos feladatokon keresztül ismerkedhetsz meg a 20-as számkörrel.

Részletesebben

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon!

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon! Név: Osztály: Próba érettségi feladatsor 2013 április 16 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen

Részletesebben

PLC Versenyfeladat. XIV. Országos Irányítástechnikai Programozó Verseny Budapest, március Összeállította az EvoPro Kft.

PLC Versenyfeladat. XIV. Országos Irányítástechnikai Programozó Verseny Budapest, március Összeállította az EvoPro Kft. PLC Versenyfeladat XIV. Országos Irányítástechnikai Programozó Verseny Budapest, 2008. március 19-21. Összeállította az EvoPro Kft. Általános bemutatás A feladatban szereplő eszköz egy 8x8 képpontos LED-mátrix

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

æ A GYAKORLAT (* feladatok nem kötelezőek)

æ A GYAKORLAT (* feladatok nem kötelezőek) æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával

Részletesebben

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban

Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban Speciális szükségletű felhasználók navigációjának vizsgálata különböző multimédiás alkalmazásokban MÁTRAI RITA1, KOSZTYÁN ZSOLT TIBOR2, SIKNÉ DR. LÁNYI CECÍLIA3 1,3 Veszprémi Egyetem, Képfeldolgozás és

Részletesebben

IV. Felkészítő feladatsor

IV. Felkészítő feladatsor IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII,

Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII, Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII, 2016 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a

Részletesebben

Műveletek egész számokkal

Műveletek egész számokkal Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.

Részletesebben

WP1 Vezérlő Használati Útmutató

WP1 Vezérlő Használati Útmutató WP1 Vezérlő Használati Útmutató Lásd a kötési diagram. 24Volt 9Volt A vezérlő egy 9V-os Rain Bird szolenoidot működtet. Győződjön meg róla, hogy a szelepeket a vezérlővel összekötő vezeték, kisfeszültségű

Részletesebben

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT 88 Budapest, Bródy Sándor u. 6. ostacím: Budapest, f. 76 Telefon: 8-5, 7-89, Fax: 7-89 Nyilvántartásba vételi szám: E-6/ Javítókulcs. osztály megyei. Titkos üzenetet kaptál. Szerencsére a titkosírás kulcsa

Részletesebben

Adam Kałuża játéka Piotr Socha rajzaival J á t é k s z a b á l y

Adam Kałuża játéka Piotr Socha rajzaival J á t é k s z a b á l y Adam Kałuża játéka Piotr Socha rajzaival Játékszabály A JÁTÉK ELŐKÉSZÍTÉSE Az első játék előtt le kell választani a sablonról a zsetonokat és a játékos jelölőket. TÁRSASJÁTÉK 2 4 FŐ RÉSZÉRE JÁTÉKIDŐ KB.

Részletesebben

Formális nyelvek és automaták

Formális nyelvek és automaták Formális nyelvek és automaták Nagy Sára gyakorlatai alapján Készítette: Nagy Krisztián 2. gyakorlat Ismétlés: Megjegyzés: Az ismétlés egy része nem szerepel a dokumentumban, mivel lényegében a teljes 1.

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

Rátz László Matematikai kvízverseny 5. osztály

Rátz László Matematikai kvízverseny 5. osztály Rátz László Matematikai kvízverseny 5. osztály 2010. november 26. 1. feladat Ez a különleges óra a pontos időt mutatja. Az első sor ötórás intervallumokat számol (minden ötóránként vált szürkére), a második

Részletesebben

Felhasználói kézikönyv a minősítési értékelő modul használatához

Felhasználói kézikönyv a minősítési értékelő modul használatához Felhasználói kézikönyv a minősítési értékelő modul használatához Létrehozva: 2015.02.24. Utolsó módosítás: 2015.04.09. Tartalomjegyzék 1 A dokumentum célja... 4 2 A rendszer elérése... 5 2.1 Technikai

Részletesebben

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez

Feladatok a MATEMATIKA. standardleírás 3. szintjéhez Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Feladatok a MATEMATIKA standardleírás 3. szintjéhez 2016. Oktatáskutató és Fejlesztő

Részletesebben

::JÁTÉKLAP:: Társasjáték Portál. Klánok. (Clans)

::JÁTÉKLAP:: Társasjáték Portál. Klánok. (Clans) Klánok (Clans) Tervezte: Leo Colovini Kiadja: Winning Moves Deutschland GmbH Leugallee 99 40545 Düsseldorf info@winningmoves.de http://www.winningmoves.de/ 2-4 játékos részére, 10 éves kortól, játékidő

Részletesebben

Tájékozódás számvonalon, számtáblázatokon

Tájékozódás számvonalon, számtáblázatokon Matematika A 2. évfolyam Tájékozódás számvonalon, számtáblázatokon 12. modul Készítette: Bóta Mária Kőkúti Ágnes matematika A 2. évfolyam 12 modul Tájékozódás számvonalon, számtáblázatokon modulleírás

Részletesebben

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT Javítókulcs 4. osztály megyei 1. Titkos üzenetet kaptál, amelyben a hét minden napja le van írva egyszer, kivéve azt a napot, amelyiken találkozol az üzenet küldőjével. Minden betű helyett egy szimbólumot

Részletesebben

Tervező: Thomas Lewandowicz. Grafika: Ewa Kotowska BEVEZETŐ ÉS A JÁTÉK CÉLJA

Tervező: Thomas Lewandowicz. Grafika: Ewa Kotowska BEVEZETŐ ÉS A JÁTÉK CÉLJA Tervező: Thomas Lewandowicz Grafika: Ewa Kotowska BEVEZETŐ ÉS A JÁTÉK CÉLJA A királyság elvette ezt a tengerparti területet és átadta az új báróknak. A bárók hamar felfedezték, hogy ezen vidék igazi értéke

Részletesebben

Kombinatorika. Permutáció

Kombinatorika. Permutáció Kombinatorika Permutáció 1. Adva van az 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegy. Hány különböző 9-jegyű szám állítható elő ezekkel a számjegyekkel, ha a számjegyek nem ismétlődhetnek? Mi van akkor, ha a szám

Részletesebben

ZAPP ZERAPP. 1/6. 1 láthatatlan varázslat fuvallata 1 szabály. Az első játék előtt... Játékszabály

ZAPP ZERAPP.  1/6. 1 láthatatlan varázslat fuvallata 1 szabály. Az első játék előtt... Játékszabály ZAPP ZERAPP Játékszabály Fordította: Sütő Gábor Hang nélkül, magányosan trónol az örök csönd titokzatos hegye az elhagyatott tájon. Nincs szó, nincs hang, egy szélfuvallat sem érezhető... Ősidők óta különleges

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldás

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldás Megoldás 1. Melyik mondat állítás a következőek közül? A: Szép idő van ma? B: A 100 szép szám. C: Minden prímszám páratlan. D: Bárcsak újra nyár lenne! Az állítás olyan kijelentő mondat, melyről egyértelműen

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

PISA2006. Nyilvánosságra hozott feladatok matematikából

PISA2006. Nyilvánosságra hozott feladatok matematikából PISA2006 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Autózás 5 Füzetkészítés 7 Kerékpárok 10 Nézd a tornyot 12 Testmagasság Autózás M302 AUTÓZÁS Kati autózni ment. Útközben egy macska

Részletesebben

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében

Részletesebben

Kódelméleti elemi feladatgyűjtemény Összállította: Hraskó András és Szőnyi Tamás

Kódelméleti elemi feladatgyűjtemény Összállította: Hraskó András és Szőnyi Tamás Kódelméleti elemi feladatgyűjtemény Összállította: Hraskó András és Szőnyi Tamás 1. Mérlegelés 1.1 Egy cég 10 szériában gyártott egész kg-os súlyokat. Az első szériában 1, a másodikban 2, a harmadikban

Részletesebben

Szapora négyzetek Sorozatok 4. feladatcsomag

Szapora négyzetek Sorozatok 4. feladatcsomag Sorozatok 3.4 Szapora négyzetek Sorozatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 sorozat tengelyes szimmetria összeszámlálás különböző szempontok szerint átdarabolás derékszögű elforgatás

Részletesebben

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es? 8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy

Részletesebben

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;

;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ; . A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem

Részletesebben

LECTIO játékszabályok

LECTIO játékszabályok LECTIO játékszabályok Thomas H. Jung játéka A latin Lectio (ejtsd: lekció) szó jelentése választás. Ebben a játékban az a játékos győz, aki a legjobb döntéseket hozza és elsőként fekteti le összes kövét.

Részletesebben

Számtan, mértan, origami és a szabványos papírméretek

Számtan, mértan, origami és a szabványos papírméretek Számtan, mértan, origami és a szabványos papírméretek A papír gyártása, forgalmazása és feldolgozása során szabványos alakokat használunk. Ezeket a méreteket a szakirodalmak tartalmazzák. Az alábbiakban

Részletesebben

3. Az y=x2 parabolához az y=x egyenletű egyenes mely pontjából húzható két, egymásra merőleges érintő?

3. Az y=x2 parabolához az y=x egyenletű egyenes mely pontjából húzható két, egymásra merőleges érintő? Észforgató középiskolásoknak 1.Egy tálba egymás után felütünk tíz darab tojást. A tojások közül kettő romlott, de ez csak a feltöréskor derül ki. A záptojások az összes előttük feltört tojást használhatatlanná

Részletesebben