Energetikai mérnök MSc képzés, Atomenergetika specializáció: Záróvizsga tételek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Energetikai mérnök MSc képzés, Atomenergetika specializáció: Záróvizsga tételek"

Átírás

1 Energetikai mérnök MSc képzés, Atomenergetika specializáció: Záróvizsga tételek Specializációfelelős: Dr. Aszódi Attila egyetemi tanár, BME NTI Oktatástechnikai információk: január verzió

2 Közös blokk: Energiaellátás és gazdálkodás (6 kr) tárgycsoport Tárgyak: Energiaellátás és -gazdálkodás A (4 kr) + Energiaellátás és -gazdálkodás B (2 kr) Energiaellátás és -gazdálkodás A és Energiaellátás és -gazdálkodás B Záróvizsga kérdések A. Strukturális kérdések/1 1. Mi volt az elmúlt évtizedben az energetikában végbement paradigmaváltás lényegi része? 2. Mit értünk az energiaellátás és az energiafelhasználás hatásfoka alatt? Mit jellemez-nek ezek a mutatók? 3. Milyen alrendszerekből épül fel az energiaellátás? Mi ezen alrendszerek feladat? 4. Mit nevezünk közvetlen, kapcsolt, illetve kombinált ciklusú energiatermelésnek? Ad-jon példákat! 5. Milyen előnyei vannak a kapcsolt energiatermelésnek? 6. Mitől és hogyan függ a kapcsolt energiatermeléssel elérhető tüzelőanyag megtakarí-tás? B. Strukturális kérdések/2 1. Mit értünk koncentrált, decentralizált és fogyasztóközeli energiaellátáson? 2. Mit jelent az egy-, két-, három-, ill. négyvezetékes energiaellátási mód? Mi a prosumer? 3. Hogyan épül fel (elemek, funkciók) egy (táv)hőellátó rendszer? 4. Milyen műszaki megoldásokkal valósítható meg a ko-, tri- és poligenerációs energiatermelés és ellátás? C. Gazdasági/gazdálkodási kérdések/1 1. Milyen költségképző tényezők határozzák meg az energia (villamos vagy hő) költségszerkezetét? 2. Milyen összefüggés van a tartalékok és a korlátozás (nem szolgáltatás) költségei kö-zött? 3. Mi a feladat és hogyan érhető el a primer szabályozási tartalék? 4. Mi a feladat és hogyan érhető el a szekunder szabályozási tartalék? 5. Mi a feladat és hogyan érhető el a tercier szabályozási tartalék? D. Gazdasági/gazdálkodási kérdések/2 1. Hogyan változnak üzemidő és termelőtípus függvényében a változó költségek? 2. Hogyan kell a szűrőgörbét (sceering curve) meghatározni? 3. Mire és hogyan használható a szűrőgörbe? E. Gazdasági/gazdálkodási kérdések/3 1. Hogyan fogalmazható meg az erőforrásallokációs feladat (egyenletek formájában)? 2. Milyen kapcsolat van az erőmű termelési függvényei (hatásfok, hőfogyasztás, fajlagos hőfogyasztás, fajlagos költség, határköltség) között? Hogyan határozható meg az op-timális terhelési állapot? 3. Milyen módszerekkel végezhető el valós körülmények (nagy számú, különböző) ter-melő egység között az erőforrásallokáció? F. Gazdasági/gazdálkodási kérdések/4

3 1. Mik a közjavak és mi az externália (külső költség)? 2. Mit értünk reverzibilis és irreverzibilis externálián? Adjon energetikai vonatkozású példákat! 3. Energetikai példákon keresztül mutassa be a flow és a stock típusú szennyezés kö-zötti különbséget? 4. Vázlattal mutassa be a környezetszennyezés folyamatát! 5. Hogyan határozható meg szabad versenyt feltételezve az optimális mértékű környezetszennyezés? G. Gazdasági/gazdálkodási kérdések/5 1. Ismertesse az externáliák kezelésére szolgáló Pigou-féle elgondolást! 2. Ismertesse az externáliák kezelésére szolgáló Coase-féle elgondolást! 3. Hogyan határozható meg az energetikai folyamat externális költsége? 4. Milyen dózis-hatás függvényeket ismer? Röviden jellemezze ezeket? H. Decentralizált energiaellátás/1 1. Milyen jellegzetességei vannak a decentralizált energiaellátásnak? Milyen technoló-giai eszközökkel valósítható meg? 2. Milyen szempontokat kell figyelembe venni a decentralizált energiaellátás kialakítása során? 3. Milyen megoldási módok lehetségesek a decentralizált energiaellátásra? Röviden adja meg ezek jellemzőit! I. Decentralizált energiaellátás/2 1. Hogyan épül fel a félautonóm rendszerű decentralizált energiaellátó rendszer? 2. Hogyan épül fel az autonóm rendszerű decentralizált energiaellátó rendszer? 3. Hogyan épül fel a nem autonóm rendszerű decentralizált energiaellátó rendszer? J. Decentralizált energiaellátás/3 1. Milyen üzemviteli stratégiák alkalmazhatók félautonóm energiaellátó rendszer eseté-ben? Jellemezze ezeket a stratégiákat (megvalósítás, előny/hátrány)! 2. Mit értünk ellátásbiztonság alatt? Mely tényezők határozzák meg az ellátásbiztonság szintjét? 3. Hasonlítsa össze és rangsorolja az egyes decentralizált energiaellátási módokat a tisz-tán vásárló típustól kiindulva a tisztán autonóm típusig bezárólag! K. Megbízhatóság/1 1. Mit értünk a megbízhatóság mint összetett fogalom alatt? 2. Mi a használhatóság, hibamentesség, fenntarthatóság és a fenntartásellátás? 3. Hogyan csoportosíthatók a működési eltérések, mik ezek jellemzői? 4. Milyen okok válthatnak ki meghibásodást? Röviden magyarázza az egyes okokat! 5. A bekövetkezés jellege alapján hogyan csoportosíthatók a meghibásodások? Válaszá-hoz készítsen magyarázó ábrát! 6. A működőképesség elvesztésének jellege alapján hogyan csoportosíthatók a meghibásodások? 7. A bekövetkezés időbelisége alapján hogyan csoportosíthatók a meghibásodások? L. Megbízhatóság/2

4 1. Adja meg a következő fogalmak, ill. mennyiségek meghatározását: hibamentesség valószínűsége, pillanatnyi és átlagos meghibásodási ráta, MTBF! 2. Milyen (matematikai) kapcsolat van a megbízhatósági függvény és a meghibásodási ráta között? 3. Hogyan változik a meghibásodási ráta az üzemidő függvényében ( kádgörbe )? Jellemezze az egyes szakaszokat! 4. Hogyan határozható meg az összetett rendszer eredő megbízhatósági függvénye? M. Megbízhatóság/3 1. Hasonlítsa össze megbízhatóság szempontjából a hideg- és a melegtartalékolt rend-szert! 2. Hogyan határozható meg az energetikai létesítmény (pl. erőmű) megbízhatósági függvénye? 3. Mi a hibafa elemzés célja? 4. Milyen elemekből épül fel a hibafa? N. Energia menedzsment/1 1. Miért szükséges és milyen célkitűzések rendelhetők hozzá az intézményi energiagazdálkodáshoz? 2. Röviden ismertesse az energiagazdálkodási mátrixot (felépítés, alkalmazás módja és célja)! 3. Milyen stratégiai lépésekből áll az intézményi energiagazdálkodás folyamata? Milyen feladatokat kell az egye lépésekben (fázisokban) elvégezni? 4. Milyen stratégiai megközelítés alkalmazható az intézményi energiagazdálkodásban? 5. Röviden jellemezze a szervezeti kultúra típusokat, különös figyelemmel az energiagazdálkodási folyamatokra és feladatokra! O. Energia menedzsment/2 1. Mi a feladata és hogyan épül fel az intézményi energiapolitika(i dokumentum)? 2. Hol és hogyan helyezhető el a szervezeti struktúrán belül az energiagazdálkodási szervezet? 3. Kiket és milyen eszközökkel lehet motiválni az energiagazdálkodási célkitűzések el-érése érdekében? 4. Milyen elvárásokat támasztunk az intézményi energiagazdálkodási információs rendszerekkel szemben? 5. Az egyes szervezeten belüli szinteknek milyen energiagazdálkodással kapcsolatos információkat célszerű eljuttatni? 6. Milyen formában van szükség az energiagazdálkodással kapcsolatos marketing tevékenységekre? Budapest, június 22. Forrás: ftp://ftp.energia.bme.hu/pub/energetika%20msc%20zarovizsga/zv_kerdesek_es_temakorok_energiaellatas_es_gazdalkodas.pdf

5 Közös blokk: Energetika (7 kr) tárgycsoport Tárgyak: Energiapiacok (2 kr) + Energetikai projektmenedzsment (2 kr) + Energia, kockázat, kommunikáció (3 kr) Energetikai projektmenedzsment Záróvizsga kérdések Jelenleg nem elérhető! Bercsi Gábortól (gabor.bercsi@gmail.com), a tárgy meghívott oktatójától kértük már ben, ám mostanáig nem kaptuk meg. Energia, kockázat, kommunikáció Záróvizsga kérdések 1. Kockázat - különböző definíciók, mértékegységek. Ipari, energetikai kockázatok, a villamosenergia-termelés kockázatai. 2. Kockázatérzékelés. A szubjektív kockázatérzékelés (risk perception) tipikus elemei, a fő elemek részletes ismertetése. 3. Az atomenergia használatának kockázatai (mérnöki kockázat és szubjektív kockázatérzékelés szempontjából). 4. A nagy atomerőművi balesetek (TMI, Csernobil, Fukushima) kommunikációjának tanulságai. 5. Kommunikáció nukleáris veszélyhelyzetben. Sajtóközlemény írásának szabályai. Az INES skála ismertetése, a besorolás fő szabályai. Példák az INES skála egyes szintjeihez. Budapest, május 19. Dr. Aszódi Attila és Boros Ildikó Energiapiacok Záróvizsga kérdések 1. Közszolgáltatások regulációja, liberalizációja, a villamosenergia-piac működésére vonatkozó szabályozás. 2. Villamosenergia-rendszer tervezése, ellátásbiztonsága, együttműködése, minősége, szolgáltatási színvonala, zavarok, válsághelyzetek kezelése. 3. Villamosenergia-ellátás értéklánca, szereplők, piacszervezés, hozzáférés a hálózatokhoz, határkeresztezésekhez. 4. Piaci szereplők döntéseit meghatározó árak, ön- és határköltségek, költséggörbék. 5. A villamos energia, mint áru jellemzői, kereskedési formák, termékek a villamosenergiakereskedelemben. 6. Fogyasztói beszerzési szerkezet optimalizálása. 7. Egyedileg nem mérhető fogyasztók beszerzésének tervezése, elszámolása.

6 8. Volatilitás, kockázatok az energiakereskedelemben, a kockázatkezelés, csökkentés lehetőségei. 9. Piaci versenytorzítás lehetőségei, mérőszámok, versenytorzítás ellenőrizhetősége, hatása. 10. Mérlegköri rendszer, mérés, elszámolás. 11. Rendszerfejlesztés, erőművek létesítése, hálózatfejlesztés. 12. Megújuló és kapcsolt termelés piacra lépésének elősegítése. Budapest, május 17. Dr. Gerse Károly

7 Közös blokk: Erőművi technológia (7 kr) tárgycsoport Tárgyak: Erőművi technológia (4 kr) +Energiarendszerek vízüzeme (3 kr) 1. Hagyományos hőerőművek (gáz és gőzkörfolyamatok) technológiai rendszerei és folyamatai: belső alrendszerek és feladataik, a gőzerőművek strukturális és technoló-giai felépítése, energiafolyamok, energiaátalakítási folyamatok és technológiák, al-rendszer és eredő rendszerhatásfok meghatározása. 2. Túlterhelés a hagyományos hőerőművek technológiai folyamataiban/1: a túlterheléshez kapcsolódó fogalmak és magyarázatuk, gőzerőmű optimális terhelési állapota (elvi), túl- és részterhelés hatása a gőzerőmű főbb jellemzőire (hőfogyasztás, hatás-fok). 3. Túlterhelés a hagyományos hőerőművek technológiai folyamataiban/2: a túlterhe-lés megvalósításának módjai és ezek hatása a főbb technológiai berendezésekre (ka-zán, turbina, tápvízrendszer hőcserélői, kondenzátor). 4. Túlterhelés a hagyományos hőerőművek technológiai folyamataiban/3: a gázturbi-nás erőművek túlterhelése és túlterhelhetősége, a túlterhelés technológiai következ-ményei. 5. Részterhelés és teljesítményszabályozás a hagyományos hőerőművek technológiai folyamataiban/1: a gőzerőművek teljesítményszabályozásának lehetőségei, techno-lógiai beavatkozási pontok és ezek következményei. 6. Részterhelés és teljesítményszabályozás a hagyományos hőerőművek technológiai folyamataiban/2: a gőzerőművek teljesítményszabályozásának hatásai a rendszer (erőmű) eredő és részhatásfokaira, valamint a tápvízrendszer-gőzturbina együttesre. 7. Részterhelés és teljesítményszabályozás a hagyományos hőerőművek technológiai folyamataiban/3: a gáz- és gáz/gőz kombinált ciklusú, valamint kapcsolt energiater-melést megvalósító erőművek teljesítményszabályozásának hatásai a rendszer (erőmű) eredő és részhatásfokaira, valamint a technológiai elemekre. 8. Kondenzációs és hűtővízellátási rendszer/1: a kondenzátorok típusai (felületi, ke-verő ) technológiai, termikus folyamatai (hőátvitel, anyag- és energiamérlegek, hűtő-vízigény meghatározás, üzemviteli kérdések). 9. Kondenzációs és hűtővízellátási rendszer/2: kondenzációs gőzerőművek vízvesztesé-gei és vízigényei, vízellátás, hűtővízellátási rendszerek, hűtési módok (frissvízhűtés, visszahűtéses rendszerek, száraz hűtési rendszerek), technológiai jellemzői, mérete-zési elvei. 10. Erőművi technológiai segédrendszerek: kazán és turbina segédrendszerei (tüzelő-anyag ellátás és előkészítés, salak, pernye és füstgázeltávolítás, segédgőz-rendsze-rek). 11. Korszerű erőművi technológiák, fejlesztési irányok/1: gőzerőművek fejlesztési irá-nyai (SC és USC körfolyamatok, erőművi anyagok). 12. Korszerű erőművi technológiák, fejlesztési irányok/2: gáz/gőz kombinált ciklusú erőművek fejlesztési irányai (2P és 3P körfolyamatok, teljesítmény-növelés, mikro egysé-gek). 13. Energiatárolási technológiák: tárolási technológiák csoportosítása, jellemzőik; CAES (compressed air energy storage); a megújulók kombinációja tárolási technológiákkal. 14. Különleges erőművi technológiák: megújuló bázisú (geotermia, biomassza, nap) ORC, OFC, Kalina-körfolyamatok. 15. Szubkritikus (kezdőnyomású) gőzerőművek vízüzeme: gőzerőmű kapcsolás, fő berendezések és káros vízüzemi folyamatok, szerkezeti anyagok, vízgőz munkaközeg tisztasága, kondicionálása, korróziótermék transzportja.

8 16. Szuperkritikus (kezdőnyomású) gőzerőművek vízüzeme: gőzerőmű kapcsolás, fő berendezések és káros vízüzemi folyamatok, szerkezeti anyagok, vízgőz munkaközeg tisztasága, kondicionálása, korróziótermék transzport. 17. Nyomottvizes atomerőművek primerköri vízüzeme: fő és mellékvízkör, szerkezeti anyagok, hőhordozó tisztasága, adagolt vegyszerek, korróziótermék és aktivitáshor-dozó transzport. 18. Nyomottvizes atomerőművek szekunderköri vízüzeme: gőzfejlesztők és gőzturbina, káros vízüzemi folyamatok, szerkezeti anyagok, vízgőz munkaközeg tisztasága, kondicionálása, korrózió és eróziótermék transzport. 19. Hűtővíz rendszerek vízüzeme: típusok, káros vízüzemi folyamatok, szerkezeti anya-gok, hűtővíz tisztasága, beavatkozási lehetőségek május Dr. Ősz János és Dr. Bihari Péter Forrás: ftp://ftp.energia.bme.hu/pub/energetika%20msc%20zarovizsga/zv_temakorok_es_kerdesek_eromuvi_technologia_2015.pdf

9 Specializációs blokk: Termohidraulika (9 kr) tárgycsoport Tárgyak: Atomerőművi üzemzavar-elemzések (6 kr) + CFD módszerek és alkalmazások (3 kr) 1. Sorolja föl a mélységi védelem céljait és a megvalósításához alkalmazott fizikai gátakat! Sorolja föl a leggyakoribb üzemzavar-elemzési módszereket és azok jellemzőit! Ismertesse az egyszeres meghibásodás elvét, a legkedvezőtlenebb EM meghatározásának módszerét! 2. Mi a különbség a konzervatív és a BEPU elemzések között? Ismertesse a BEPU elemzéshez használt GRS módszer főbb lépéseit! Sorolja föl a reálisan konzervatív elemzési módszerben figyelembe veendő konzervatív feltételezéseket! 3. Ismertesse az urán-dioxid és a cirkónium ötvözetek főbb tulajdonságait! Milyen méretváltozások történnek a normál üzemelés során? Melyek a hasadási termékek felhalmozódásának következményei? Ismertesse a normál üzem során bekövetkező elsődleges és másodlagos sérüléseket! 4. Ismertesse a kiégett kazetták nedves tárolásával kapcsolatos követelményeket! Mutassa be a pihentető medencében történő hűtőközeg-vesztéses üzemzavar főbb jellemzőit. Melyek a fűtőelem-sérülések főbb jellemzői normál üzemvitel mellett nedves és száraz tárolókban, illetve RIA és LOCA során? 5. Mi a tervezés biztonsági célja, hogyan valósul meg? Melyek a külső és belső veszélyek amelyeket figyelembe kell venni (tevezéskor, biztonsági elemzéskor)? Hogyan valósítható meg a biztonsági cél? Mi tartozik a tervezési alapba? Mit jelent a tervezési alap kockázatorientált meghatározása? Hogyan vezethető le a szűrési valószínűség és szűrési szint? 6. Hogyan történik a létesítmények kockázat alapú kategorizálása? Melyek a főbb veszélyek és hatásaik? Minek van azonnali hatása és milyen veszély az aminek van kifejlődési ideje? (példákkal) Mi a telephelyvizsgálat lényege? Sorolja fel és jellemezze azokat a külső veszélyeket, amelyek a konténment tervezési alapjába tartoznak! 7. Ismertesse a PSA elemzések műszaki és számítási céljait, szintjeit és terjedelmi változatait! Ismertesse a PSA elemzések főbb lépéseit és azok részfeladatait! 8. Ismertesse, hogy atomerőmű esetében milyen típusú változások/változtatások értékelését támogatja a PSA! Ismertesse, hogy milyen döntési területek integrál magába a kockázatszempontú döntéshozatal módszertana! 9. Anyag-, impulzus- és energia-megmaradási egyenletek, megmaradási egyenletek általános alakja (integrális és differenciális), állapotegyenletek 10. A turbulens áramlások fő jellemzői, azok számításának módszerei (RANS, LES, DNS), turbulenciamodellek fő típusai 11. A véges térfogatok módszer alapjai, differenciasémák (centrális, upwind) és azok tulajdonságai 12. Hibaforrások és bizonytalanságok a CFD (Computational Fluid Dynamics) elemzésekben, BPG (Best Practice Guidelines) Budapest, május 21. Dr. Aszódi Attila és Dr. Tóth Sándor

10 Specializációs blokk: Nukleáris méréstechnika (9 kr) tárgycsoport Tárgyak: Reaktorszabályozás és műszerezés (3 kr) + Nukleáris mérések (3 kr) + Nukleáris létesítmények szabályzatai és engedélyezése (3 kr) Jelenleg nem elérhető. Kérjük, keressék meg a tárgyak előadóit!

11 Specializációs blokk: Üzemtan 1 (8 Kr) tárgycsoport Tárgyak: Atomreaktorok üzemtana (4 kr) + Reaktortechnika alapjai (2 kr) + Atomerőművi szimulációs gyakorlatok (2 kr) 1. Reaktivitás-visszacsatolások üzemvitelre gyakorolt hatása, hőfoktényezők definíciója, jelentősége, ezek függése üzemeltetési paraméterektől (hőmérsékletek, bórsavkoncentráció stb.) 2. Xenon-mérgezettség időbeli alakulása, hatása a reaktivitástartalékra, reaktorindítás és - leállítás, teljesítmény-változtatás, teljesítményreaktorok térbeli xenonlengése 3. Az üzemelő és a leállított reaktor, mint sugárforrás; neutron- és gamma-sugárzás forrásai; remanens hő 4. Az atomreaktor, mint hőforrás; a reaktorfizikai és hőtechnikai jellemzők közötti kapcsolat, fűtőelem-kötegek közötti, kötegen belüli és axiális hőforrás-eloszlás 5. Hőtechnikai korlátok; aszimmetriák és ezek okai, mérhető mennyiségek, bizonytalanságok 6. Reaktorok szabályozása: szabályozókazetták, differenciális és integrális értékesség, kiégő mérgek szerepe, bórsavas szabályozás 7. Aktívzóna-monitorozás, felügyelet: in- és ex-core detektorok 8. Fűtőelemek üzemi viselkedése; burkolatsérülések, mikor- és makrohibák, detektálás módjai 9. Optimalizációs algoritmusok 10. Reaktortartály károsodása, felügyelete, roncsolásmentes vizsgálatok 11. Numerikus módszerek differenciálegyenletek megoldására (Euler + Runge-Kutta) május Dr. Czifrus Szabolcs és Dr. Fehér Sándor

12 Specializációs blokk: Üzemtan 2 (4 Kr) tárgycsoport Tárgyak: Atomreaktorok üzemtana (4 kr) 1. Reaktivitás-visszacsatolások üzemvitelre gyakorolt hatása, hőfoktényezők definíciója, jelentősége, ezek függése üzemeltetési paraméterektől (hőmérsékletek, bórsavkoncentráció stb.) 2. Xenon-mérgezettség időbeli alakulása, hatása a reaktivitástartalékra, reaktorindítás és - leállítás, teljesítmény-változtatás, teljesítményreaktorok térbeli xenonlengése 3. Az üzemelő és a leállított reaktor, mint sugárforrás; neutron- és gamma-sugárzás forrásai; remanens hő 4. Az atomreaktor, mint hőforrás; a reaktorfizikai és hőtechnikai jellemzők közötti kapcsolat, fűtőelem-kötegek közötti, kötegen belüli és axiális hőforrás-eloszlás 5. Hőtechnikai korlátok; aszimmetriák és ezek okai, mérhető mennyiségek, bizonytalanságok 6. Reaktorok szabályozása: szabályozókazetták, differenciális és integrális értékesség, kiégő mérgek szerepe, bórsavas szabályozás 7. Aktívzóna-monitorozás, felügyelet: in- és ex-core detektorok 8. Fűtőelemek üzemi viselkedése; burkolatsérülések, mikro- és makrohibák, detektálás módjai január 11. Dr. Czifrus Szabolcs és Dr. Fehér Sándor

13 Specializációs blokk: Sugárvédelem (8 kr) tárgycsoport Tárgyak: Radioaktív hulladékok biztonsága (2 kr) + Radioaktív anyagok terjedése (3 kr) + Atomerőművi kémia (3 kr) 1. Mutassa be a radioaktív hulladékok csoportosításának, osztályozásának teljes rendszerét és annak sugárvédelmi alapjait, magyarázatát! 2. Ismertesse a nukleáris energiatermeléssel kapcsolatban keletkező radioaktív hulladék összetevőit, ezek jellemző képviselőit, valamint a minősítés feladatait, problémáit! 3. Ismertesse a radioaktív hulladékok kezelésének műveleti elemeit! 4. Ismertesse a radioaktív hulladékok átmeneti és végleges elhelyezésének módszereit, az elhelyezés megítélésére alkalmas kritériumokat, és néhány gyakorlati megoldást! 5. Ismertesse a homogén vízi közegben végbemenő terjedés leírására alkalmas számítási megoldásokat, a terjedési modellek fő elemeit! 6. Ismertesse a levegőben végbemenő terjedés leírására alkalmas számítási megoldásokat, a terjedési modellek fő elemeit! 7. Mutassa be a heterogén környezeti közegekben (talaj, kőzetek) alkalmazható terjedési számítások sajátosságait! 8. Ismertesse a biológiai rendszerekben végbemenő migrációs folyamatok leírására szolgáló modelleket és azok felhasználását a dóziskonverziós tényezők meghatározására! 9. Radioaktív izotópok keletkezése az atomerőművekben: hasadóanyagok, transzmutációs termékek, hasadási termékek, aktiválási termékek. A fűtőelemmeghibásodások típusai, meghatározásuk módszerei. 10. Az atomerőművekben alkalmazott radioanalitikai módszerek, a primerköri és a szekunderköri vízüzem fontosabb jellemzői, vízkezelés. 11. Az atomerőművek szerkezeti anyagainak korróziója, sugártűrése. Kontamináció az atomerőművekben, dekontaminálási eljárások. 12. Radioaktív izotópok kibocsátása az atomerőműből a környezetbe, a kibocsátás ellenőrzése. Atomerőmű hulladékainak kezelése, feldolgozása, vegyészeti ellenőrzés, üzemi és hatósági környezetellenőrzés. Budapest, június 4. Dr. Szalóki Imre és Dr. Zagyvai Péter

Energetikai mérnök MSc képzés, Atomenergetika szakirány záróvizsga tételei. Energetika

Energetikai mérnök MSc képzés, Atomenergetika szakirány záróvizsga tételei. Energetika A hallgatók egy-egy tételt húznak három tárgycsoportból. Az Energetika tárgycsoportból minden hallgató számára kötelező vizsgázni. A másik két csoportot a diplomaterv feladatlapon szereplőkkel megegyezően

Részletesebben

Energetikai mérnök MSc képzés, Atomenergetika szakirány záróvizsga tételei. Energetika

Energetikai mérnök MSc képzés, Atomenergetika szakirány záróvizsga tételei. Energetika A hallgatók egy-egy tételt húznak három tárgycsoportból. Az Energetika tárgycsoportból minden hallgató számára kötelező vizsgázni. A másik két csoportot a diplomaterv feladatlapon szereplőkkel megegyezően

Részletesebben

Záróvizsga tételek Energetikai mérnöki mesterszak (MSc), Atomenergetika szakirány

Záróvizsga tételek Energetikai mérnöki mesterszak (MSc), Atomenergetika szakirány Záróvizsga tételek Energetikai mérnöki mesterszak (MSc), Atomenergetika szakirány A hallgatók egy-egy tételt húznak három tárgycsoportból. Az Energetika tárgycsoportból minden hallgató számára kötelező

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Tárgy: Javaslat egyes alap- és mesterképzési szakok tanterveinek módosítására

Tárgy: Javaslat egyes alap- és mesterképzési szakok tanterveinek módosítására Tárgy: egyes alap- és mesterképzési szakok tanterveinek módosítására Előterjesztő: Dr. Bihari Péter oktatási dékánhelyettes BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR A. az energetikai

Részletesebben

A tételhez segédeszközök nem használható.

A tételhez segédeszközök nem használható. A vizsgafeladat ismertetése A központilag összeállított tételsor a következő témaköröket tartalmazza: Erőművi blokkok és a villamosenergia-rendszer együttműködése Blokküzemeltetés gazdaságossága, javításának

Részletesebben

Atomerőművek. Záróvizsga tételek

Atomerőművek. Záróvizsga tételek Energetikai mérnök BSc képzés - Atomenergetika szakirány Atomerőművek Záróvizsga tételek 1. (AE) Mely reaktortípusok tartoznak a III. generációs reaktorok közé? Ismertesse az EPR fő jellemzőit, berendezéseit!

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek.

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. www.atomeromu.hu Paks déli részén a 6-os számú főút és a Duna között Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. Az urán 235-ös izotópját lassú neutronok

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 7. Villamosenergia termelés, szállítás, tárolás Hunyadi Sándor

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 7. Villamosenergia termelés, szállítás, tárolás Hunyadi Sándor A 2015. LVII-es energiahatékonysági törvényben meghatározott auditori és energetikai szakreferens vizsga felkészítő anyaga II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 7. Villamosenergia

Részletesebben

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Írta: PÁTZAY GYÖRGY Lektorálta: ELTER ENIKŐ ATOMENERGETIKA ÉS NUKLEÁRIS TECHNOLÓGIA

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar ÚTMUTATÓ

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar ÚTMUTATÓ Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar ÚTMUTATÓ az energetikai mérnök mesterszak (MSc) 2009/2010. tanév 1. félévében beiratkozott hallgatói részére Összeállította: Dr. Gács Iván

Részletesebben

SUGÁRVÉDELMI HELYZET 2003-BAN

SUGÁRVÉDELMI HELYZET 2003-BAN 1 SUGÁRVÉDELMI HELYZET 2003-BAN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2003-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Mi történt a Fukushimában? A baleset lefolyása

Mi történt a Fukushimában? A baleset lefolyása Mi történt a Fukushimában? A baleset lefolyása Dr. Petőfi Gábor főosztályvezető-helyettes Országos Atomenergia Hivatal XXXVI. Sugárvédelmi Továbbképző Tanfolyam 2011. május 3-5., Hajdúszoboszló www.oah.hu

Részletesebben

PAKS NPP GENERAL OVERVIEW OF THE WWER-440 TECHNOLOGY

PAKS NPP GENERAL OVERVIEW OF THE WWER-440 TECHNOLOGY PAKS NPP GENERAL OVERVIEW OF THE WWER-440 TECHNOLOGY October 2012 Vietnami szakemberek képzése a paksi atomerőműben Bodnár Róbert, Kiss István MVM Paksi Atomerőmű Zrt. Attila Szőke Head of Section Paks

Részletesebben

Energetikai mérnök BSc képzés, Atomenergetika szakirány záróvizsga tételei Atomerőművek termohidraulikája és üzemtana

Energetikai mérnök BSc képzés, Atomenergetika szakirány záróvizsga tételei Atomerőművek termohidraulikája és üzemtana Atomerőművek termohidraulikája és üzemtana 13. (TH+ÜT) Aktívzóna-monitorozás, in- és ex-core detektorok, üzemi mérések. Budapest, 2013. május 17. Dr. Aszódi Attila és Dr. Czifrus Szabolcs Hő- és atomerőművek

Részletesebben

Nemzeti Nukleáris Kutatási Program

Nemzeti Nukleáris Kutatási Program Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Nemzeti Nukleáris Kutatási Program 2014-2018 Horváth Ákos Főigazgató, MTA EK foigazgato@energia.mta.hu Előzmények 2010. Elkészül a hazai nukleáris

Részletesebben

Energiapolitika hazánkban - megújulók és atomenergia

Energiapolitika hazánkban - megújulók és atomenergia Energiapolitika hazánkban - megújulók és atomenergia Mi a jövő? Atom vagy zöld? Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet Energetikai Szakkollégium, 2004. november 11.

Részletesebben

Energia, kockázat, kommunikáció 7. előadás: Kommunikáció nukleáris veszélyhelyzetben

Energia, kockázat, kommunikáció 7. előadás: Kommunikáció nukleáris veszélyhelyzetben Energia, kockázat, kommunikáció 7. előadás: Kommunikáció nukleáris veszélyhelyzetben Boros Ildikó Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet Atomerőművi kríziskommunikáció

Részletesebben

A PAKSI ATOMERŐMŰ NUKLEÁRISBALESET- ELHÁRÍTÁSI RENDSZERE SUGÁRVÉDELMI SZEMPONTBÓL

A PAKSI ATOMERŐMŰ NUKLEÁRISBALESET- ELHÁRÍTÁSI RENDSZERE SUGÁRVÉDELMI SZEMPONTBÓL Sugárvédelmi Nívódíj pályázat A PAKSI ATOMERŐMŰ NUKLEÁRISBALESET- ELHÁRÍTÁSI RENDSZERE SUGÁRVÉDELMI SZEMPONTBÓL Manga László 1, Lencsés András 1, Bana János 1, Kátai- Urbán Lajos 2, Vass Gyula 2 1 MVM

Részletesebben

KÉPZÉSI TÁJÉKOZTATÓ. I. A Képzésre vonatkozó információk

KÉPZÉSI TÁJÉKOZTATÓ. I. A Képzésre vonatkozó információk KÉPZÉSI TÁJÉKOZTATÓ I. A Képzésre vonatkozó információk 1.1. A Képzés megnevezése Reaktortechnika szakmérnöki szakirányú továbbképzés Az oklevélben szereplő szakirányú képzettség megnevezése: Reaktortechnikai

Részletesebben

Aktuális kutatási trendek a villamos energetikában

Aktuális kutatási trendek a villamos energetikában Aktuális kutatási trendek a villamos energetikában Prof. Dr. Krómer István 1 Tartalom - Bevezető megjegyzések - Általános tendenciák - Fő fejlesztési területek villamos energia termelés megújuló energiaforrások

Részletesebben

Szabályozás. Alapkezelő: Országos Atomenergia Hivatal Befizetők: a hulladék termelők Felügyelet: Nemzeti Fejlesztési Miniszter

Szabályozás. Alapkezelő: Országos Atomenergia Hivatal Befizetők: a hulladék termelők Felügyelet: Nemzeti Fejlesztési Miniszter PURAM Dr. Kereki Ferenc Ügyvezető igazgató RHK Kft. Szabályozás Az Atomenergiáról szóló 1996. évi CXVI. Tv. határozza meg a feladatokat: 1. Radioaktív hulladékok elhelyezése 2. Kiégett fűtőelemek tárolása

Részletesebben

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba

Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Maghasadás Szabályozatlan- és szabályozott láncreakció Atombomba és a hidrogénbomba Felfedezése 1934 Fermi: transzurán izotóp előállítása neutron belövellésével 1938 Fermi: fizikai Nobel-díj 1938 Hahn:

Részletesebben

Sajtótájékoztató február 11. Kovács József vezérigazgató

Sajtótájékoztató február 11. Kovács József vezérigazgató Sajtótájékoztató 2009. február 11. Kovács József vezérigazgató 1 Témakörök 2008. év értékelése Piaci környezet Üzemidő-hosszabbítás Teljesítménynövelés 2 Legfontosabb cél: A 2008. évi üzleti terv biztonságos

Részletesebben

Energetikai gazdaságtan. Bevezetés az energetikába

Energetikai gazdaságtan. Bevezetés az energetikába Energetikai gazdaságtan Bevezetés az energetikába Az energetika feladata Biztosítani az energiaigények kielégítését környezetbarát, gazdaságos, biztonságos módon. Egy szóval: fenntarthatóan Mit jelent

Részletesebben

Közérthető összefoglaló. a KKÁT üzemeltetési engedélyének módosításáról. Kiégett Kazetták Átmeneti Tárolója

Közérthető összefoglaló. a KKÁT üzemeltetési engedélyének módosításáról. Kiégett Kazetták Átmeneti Tárolója Közérthető összefoglaló a KKÁT üzemeltetési engedélyének módosításáról Kiégett Kazetták Átmeneti Tárolója Bevezetés A világ iparilag fejlett országaihoz hasonlóan a nukleáris technológiát Magyarországon

Részletesebben

Az építészeti öregedéskezelés rendszere és alkalmazása

Az építészeti öregedéskezelés rendszere és alkalmazása DR. MÓGA ISTVÁN -DR. GŐSI PÉTER Az építészeti öregedéskezelés rendszere és alkalmazása Magyar Energetika, 2007. 5. sz. A Paksi Atomerőmű üzemidő hosszabbítása előkészítésének fontos feladata annak biztosítása

Részletesebben

4. Az energiatermelés és ellátás technológiája 1.

4. Az energiatermelés és ellátás technológiája 1. 4. Az energiatermelés és ellátás technológiája 1. Közvetlen energiatermelés (egy termék, egy technológia) hő fűtőmű erőmű Kapcsolt energiatermelés (két termék, egy technológia) fűtőerőmű Kombinált ciklusú

Részletesebben

Magyarországi nukleáris reaktorok

Magyarországi nukleáris reaktorok Tematika 1. Az atommagfizika elemei 2. Magsugárzások detektálása és detektorai 3. A nukleáris fizika története, a nukleáris energetika születése 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

Miért van szükség új erőművekre? Az erőmű építtetője. Új erőmű a régi üzemi területen. Miért Csepelre esett a választás?

Miért van szükség új erőművekre? Az erőmű építtetője. Új erőmű a régi üzemi területen. Miért Csepelre esett a választás? Csepel III Erőmű 2 Miért van szükség új erőművekre? A technikai fejlődés folyamatosan szükségessé teszi az erőműpark megújítását. Megbízható, magas hatásfokú, környezetbarát erőműpark tudja biztosítani

Részletesebben

A Csepel III beruházás augusztus 9.

A Csepel III beruházás augusztus 9. A Csepel III beruházás 2010. augusztus 9. Áttekintés 1. Anyavállalatunk, az Alpiq 2. Miért van szükség gáztüzelésű erőművekre? 3. Csepel III beruházás 4. Tervezés és engedélyeztetés 5. Ütemterv 6. Csepel

Részletesebben

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás Dr. Tóth László egyetemi tanár klímatanács elnök TARTALOM Energia hordozók, energia nyerés (rendelkezésre állás, várható trendek) Energia termelés

Részletesebben

Környezetbarát elektromos energia az atomerőműből. Pécsi Zsolt Paks, november 24.

Környezetbarát elektromos energia az atomerőműből. Pécsi Zsolt Paks, november 24. Környezetbarát elektromos energia az atomerőműből Pécsi Zsolt Paks, 2011. november 24. Jövőképünk, környezetpolitikánk A Paksi Atomerőmű az elkövetkezendő évekre célul tűzte ki, hogy az erőműben a nukleáris

Részletesebben

Harmadik generációs atomerőművek és Paks 2

Harmadik generációs atomerőművek és Paks 2 Harmadik generációs atomerőművek és Paks 2 Prof. Dr. Aszódi Attila A Paksi Atomerőmű kapacitásának fenntartásáért felelős államtitkár, ME / PTNM Egyetemi tanár, BME NTI aszodiattila.blog.hu Wigner 115

Részletesebben

Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt.

Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt. Az atomenergia jövője Magyarországon Új blokkok a paksi telephelyen Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt. 2015. Szeptember 24. Háttér: A hazai villamosenergia-fogyasztás 2014: Teljes villamosenergia-felhasználás:

Részletesebben

A Nukleáris Technikai Intézet és az atomenergetikai

A Nukleáris Technikai Intézet és az atomenergetikai A Nukleáris Technikai Intézet és az atomenergetikai képzések Budapest, 2012. április 24. A BME NTI Atomtörvény adta országos oktatási feladatok Az intézet két tanszékből áll: Nukleáris Technika Tanszék

Részletesebben

I. Nagy Épületek és Társasházak Szakmai Nap Energiahatékony megoldások ESCO

I. Nagy Épületek és Társasházak Szakmai Nap Energiahatékony megoldások ESCO I. Nagy Épületek és Társasházak Szakmai Nap 2017.03.29. Energiahatékony megoldások ESCO AZ ESCO-RÓL ÁLTALÁBAN ESCO 1: Energy Service Company ESCO 2: Energy Saving Company Az ESCO-k fűtési, világítási rendszerek,

Részletesebben

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0 A paksi atomerőmű Készítette: Szanyi Zoltán RJQ7J0 Történelmi áttekintés 1896 Rádióaktivitás felfedezése 1932 Neutron felfedezése magátalakulás vizsgálata 1934 Fermi mesterséges transzurán izotópot hozott

Részletesebben

ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai

ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai Takács Antal MTA EK Siklósi András Gábor OAH XII. Nukleáris technikai Szimpózium 2013 Gázhűtésű reaktorok és PWR-ek összehasonlítása

Részletesebben

STRATÉGIA: Növekedésre programozva

STRATÉGIA: Növekedésre programozva STRATÉGIA: Növekedésre programozva 1) MODERN KONCEPCIÓ: SMART ENERGY MANAGEMENT: Az energiatermelés, kereskedelem és összetett szolgáltatások rugalmas és kifinomult kombinációja. A piacon egyedülálló.

Részletesebben

Energetikai mérnök alapszak tanterve 2010

Energetikai mérnök alapszak tanterve 2010 Energetikai mérnök alapszak tanterve 2010 Tantárgy kredit 1 2 3 félévek 4 5 6 7 NEPTUN kód e gy l kr v/f e gy l kr v/f e gy l kr v/f e gy l kr v/f e gy l kr v/f e gy l kr v/f e gy l kr v/f BME 40 TERMÉSZETTUDOMÁNYOS

Részletesebben

Energetikai mérnök BSc képzés, Atomenergetika szakirány záróvizsga tételei Atomerőművek termohidraulikája és üzemtana

Energetikai mérnök BSc képzés, Atomenergetika szakirány záróvizsga tételei Atomerőművek termohidraulikája és üzemtana Atomerőművek termohidraulikája és üzemtana 13. (TH+ÜT) Aktívzóna-monitorozás, in- és ex-core detektorok, üzemi mérések. Budapest, 2013. május 17. Dr. Aszódi Attila és Dr. Czifrus Szabolcs Hő- és atomerőművek

Részletesebben

Energiatárolás szerepe a jövő hálózatán

Energiatárolás szerepe a jövő hálózatán Energiatárolás szerepe a jövő hálózatán Horváth Dániel 60. MEE Vándorgyűlés, Mátraháza 1. OLDAL Tartalom 1 2 3 Európai körkép Energiatárolás fontossága Decentralizált energiatárolás az elosztóhálózat oldaláról

Részletesebben

235 U atommag hasadása

235 U atommag hasadása BME Oktatóreaktor 235 U atommag hasadása szabályozott láncreakció hasadási termékek: pl. I, Cs, Ba, Ce, Sr, La, Ru, Zr, Mo, stb. izotópok több mint 270 hasadási termék, A=72 és A=161 között keletkezik

Részletesebben

A Célzott Biztonsági Felülvizsgálat (CBF) intézkedési tervének aktuális helyzete

A Célzott Biztonsági Felülvizsgálat (CBF) intézkedési tervének aktuális helyzete A Célzott Biztonsági Felülvizsgálat (CBF) intézkedési tervének aktuális helyzete XII. MNT Nukleáris Technikai Szimpózium, 2013. dec. 5-6. Vilimi András 71 A paksi atomerőmű látképe 500 MW 500 MW 500 MW

Részletesebben

Megújuló energia akcióterv a jelenlegi ösztönzési rendszer (KÁT) felülvizsgálata

Megújuló energia akcióterv a jelenlegi ösztönzési rendszer (KÁT) felülvizsgálata Megújuló energia akcióterv a jelenlegi ösztönzési rendszer (KÁT) felülvizsgálata dr. Matos Zoltán elnök, Magyar Energia Hivatal zoltan.matos@eh.gov.hu Energia másképp II. 2010. március 10. Tartalom 1)

Részletesebben

A szabályozott láncreakció PETRÓ MÁTÉ 12.C

A szabályozott láncreakció PETRÓ MÁTÉ 12.C A szabályozott láncreakció PETRÓ MÁTÉ 12.C Rövid vázlat: Történelmi áttekintés Az atomreaktor felépítése és működése Reaktortípusok Érdekességek: biztonság a világ atomenergia termelése Csernobil Kezdetek

Részletesebben

1. TÉTEL 2. TÉTEL 3. TÉTEL

1. TÉTEL 2. TÉTEL 3. TÉTEL 2 1. TÉTEL 1. A.) Ismertesse a főgőz rendszer üzemi állapotát és paramétereit! Ismertesse a főgőz rendszer fő berendezéseinek (GF biztonsági szelep, rockwell, AR, KR) feladatát, felépítését és működését!

Részletesebben

Felkészülés a radioaktív hulladékok kezelésének hatósági ellenőrzésére

Felkészülés a radioaktív hulladékok kezelésének hatósági ellenőrzésére Országos Atomenergia Hivatal 1.22. sz. útmutató Felkészülés a radioaktív hulladékok kezelésének hatósági ellenőrzésére Verzió száma: 3. 2005. október Kiadta: Dr. Rónaky József, az OAH főigazgatója Budapest,

Részletesebben

A determinisztikus és a valószínűségi elemzések közös pontjainak meghatározása

A determinisztikus és a valószínűségi elemzések közös pontjainak meghatározása A determinisztikus és a valószínűségi elemzések közös pontjainak meghatározása Lajtha Gábor, Karsa Zoltán lajtha@nubiki.hu, karsa@nubiki.hu TSO szeminárium OAH, 2017. május 31 Tartalom Háttér, előzmények

Részletesebben

MET ENERGIA FÓRUM, 2011. Erőművek létesítése befektetői szemmel

MET ENERGIA FÓRUM, 2011. Erőművek létesítése befektetői szemmel Magyar Energetikai Társaság MET ENERGIA FÓRUM, 2011 Balatonalmádi, 2011. június 8-9. Erőművek létesítése befektetői szemmel Dr. Korényi Zoltán 1 TARTALOM 1. A BEFEKTETŐ GYÖTRELMEI 2. AZ ERŐMŰVEK ÉLETPÁLYÁJA

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2014-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

2016. november 17. Budapest Volent Gábor biztonsági igazgató. Biztonsági kultúra és kommunikáció

2016. november 17. Budapest Volent Gábor biztonsági igazgató. Biztonsági kultúra és kommunikáció 2016. november 17. Budapest Volent Gábor biztonsági igazgató Biztonsági kultúra és kommunikáció MVM Paksi Atomerőmű Zrt. jelenleg egy atomerőmű működik az országban a hazai villamosenergia-termelés több

Részletesebben

1. TÉTEL. 2.) Ismertesse a füstgáz-kéntelenítő gipszszuszpenziós rendszerét!

1. TÉTEL. 2.) Ismertesse a füstgáz-kéntelenítő gipszszuszpenziós rendszerét! 1. TÉTEL 1.) Ismertesse a keresztáramú szűrőmosó üzemét, tálcaszint vízszórók téli-nyári üzemét, az olajlefölözést, az iszapoló üzemét, ismertesse a ventilátorok főbb hibaforrásait, a Dávidtorony kialakításait,

Részletesebben

«A» Energetikai gazdaságtan 2. nagy-zárthelyi Sajátkezű névaláírás:

«A» Energetikai gazdaságtan 2. nagy-zárthelyi Sajátkezű névaláírás: «A» Energetikai gazdaságtan Név: 2. nagy-zárthelyi Sajátkezű névaláírás: Munkaidő: 90 perc Azonosító: Gyakorlatvezető: Farkas Patrik Lipcsei Gábor Buzea Klaudia Zárthelyi hallgatói értékelése Mennyiség

Részletesebben

A Nukleáris Technikai Intézet és az atomenergetikai képzések

A Nukleáris Technikai Intézet és az atomenergetikai képzések A Nukleáris Technikai Intézet és az atomenergetikai képzések Prof. Dr. Aszódi Attila egyetemi tanár, BME Nukleáris Technikai Intézet A Atomtörvény adta országos oktatási feladatok Az intézet két tanszékből

Részletesebben

KKV Energiahatékonysági Stratégiák. Ifj. Chikán Attila ALTEO Nyrt. 2015.05.20.

KKV Energiahatékonysági Stratégiák. Ifj. Chikán Attila ALTEO Nyrt. 2015.05.20. KKV Energiahatékonysági Stratégiák Ifj. Chikán Attila ALTEO Nyrt. 2015.05.20. Áttekintés 1. Az energiahatékonyság fejlesztésének irányai 2. Energetikai rendszerek üzemeltetésének kiszervezése 3. Az ALTEO

Részletesebben

A VVER-1200 gőzfejlesztők és a szekunderkör vízüzeme

A VVER-1200 gőzfejlesztők és a szekunderkör vízüzeme A VVER-1200 gőzfejlesztők és a szekunderkör vízüzeme OAH TSO szeminárium Dr. Ősz János Budapest, 2016. június 7. Vízüzem A konstrukció, szerkezeti anyag és a vízkémia harmonikus egysége a gőzfejlesztők

Részletesebben

Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék

Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Egy fizikai rendszer energiája alatt értjük azt a képességet, hogy ez a rendszer munkát képes végezni egy másik fizikai

Részletesebben

Erőművi technológiák összehasonlítása

Erőművi technológiák összehasonlítása Erőművi technológiák összehasonlítása Dr. Kádár Péter peter.kadar@t-online.hu 1 Vázlat Összehasonlítási szempontok - Hatásfok - Beruházási költség - Üzemanyag költség - CO2 kibocsátás - Hálózati hatások

Részletesebben

Nukleáris energetika. Kérdések 2015 tavaszi félév

Nukleáris energetika. Kérdések 2015 tavaszi félév Nukleáris energetika. Kérdések 2015 tavaszi félév 1. Előadás: Alapismeretek energetikából, nukleáris fizikából NE-1.1. Soroljon fel energia mennyiségeket tartalmazó összefüggéseket a mechanikából, a hőtanból,

Részletesebben

«A» Energetikai gazdaságtan 2. nagy-zárthelyi MEGOLDÁS. Zárthelyi hallgatói értékelése Mennyiség 1:kevés 10:sok Teljesíthetőség 1:könnyű 10:nehéz

«A» Energetikai gazdaságtan 2. nagy-zárthelyi MEGOLDÁS. Zárthelyi hallgatói értékelése Mennyiség 1:kevés 10:sok Teljesíthetőség 1:könnyű 10:nehéz «A» Energetikai gazdaságtan 2. nagy-zárthelyi MEGOLDÁS Sajátkezű névaláírás: MEGOLDÁS Munkaidő: 9 perc Tegyen X-et a megfelelő -be! Azonosító: 7 Tisztelt Hallgató! Zárthelyi hallgatói értékelése Mennyiség

Részletesebben

Adaptív menetrendezés ADP algoritmus alkalmazásával

Adaptív menetrendezés ADP algoritmus alkalmazásával Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet

Részletesebben

Napenergia kontra atomenergia

Napenergia kontra atomenergia VI. Napenergia-hasznosítás az épületgépészetben és kiállítás Napenergia kontra atomenergia Egy erőműves szakember gondolatai Varga Attila Budapest 2015 Május 12 Tartalomjegyzék 1. Napelemmel termelhető

Részletesebben

A HINKLEY POINT C ATOMERŐMŰ GAZDASÁGI VIZSGÁLATA A RENDELKEZÉSRE ÁLLÓ ADATOK ALAPJÁN

A HINKLEY POINT C ATOMERŐMŰ GAZDASÁGI VIZSGÁLATA A RENDELKEZÉSRE ÁLLÓ ADATOK ALAPJÁN A HINKLEY POINT C ATOMERŐMŰ GAZDASÁGI VIZSGÁLATA A RENDELKEZÉSRE ÁLLÓ ADATOK ALAPJÁN Putti Krisztián, Tóth Zsófia Energetikai mérnök BSc hallgatók putti.krisztian@eszk.rog, toth.zsofia@eszk.org Tehetséges

Részletesebben

ÉVINDÍTÓ SA JTÓTÁ JÉKOZTATÓ OAH évindító sajtótájékoztató

ÉVINDÍTÓ SA JTÓTÁ JÉKOZTATÓ OAH évindító sajtótájékoztató ÉVINDÍTÓ SA JTÓTÁ JÉKOZTATÓ 2015.01.27. OAH évindító sajtótájékoztató 1 Biztonság Megelőzés Kiemelten fontos a biztonságos üzemelés, az események, üzemzavarok és balesetek megelőzése a létesítményekben.

Részletesebben

Nukleáris energetika

Nukleáris energetika Nukleáris energetika Czibolya László a főtikára A Kárpát-medence magyar energetikusainak 16. találkozója Budapest, 2012. október 4. Témakörök Az ről Az energia ellátás fenntarthatósága Termelés és biztonság

Részletesebben

ATOMERŐMŰVEK VALÓSZÍNŰSÉGI BIZTONSÁGI ELEMZÉSE

ATOMERŐMŰVEK VALÓSZÍNŰSÉGI BIZTONSÁGI ELEMZÉSE ATOMERŐMŰVEK VALÓSZÍNŰSÉGI BIZTONSÁGI ELEMZÉSE Bareith Attila bareith@nubiki.hu 2015. június 15. Terminológia Eredetileg a valószínűségi kockázatelemzés (Probabilistic Risk Assessment PRA) kifejezést vezették

Részletesebben

Nukleáris alapú villamosenergiatermelés

Nukleáris alapú villamosenergiatermelés Nukleáris alapú villamosenergiatermelés jelene és jövője Dr. Aszódi Attila igazgató, egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet Villamosenergia-ellátás Magyarországon

Részletesebben

Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség

Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség mint I. fokú hatóság KÖZLEMÉNY környezetvédelmi hatósági eljárás megindulásáról Az ügy tárgya: A MVM Paks II. Atomerőmű Fejlesztő Zrt. által

Részletesebben

Hagyományos és modern energiaforrások

Hagyományos és modern energiaforrások Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk

Részletesebben

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Molnár Ágnes Mannvit Budapest Regionális Workshop Climate Action and renewable package Az Európai Parlament 2009-ben elfogadta a megújuló

Részletesebben

SZAKKÉPZÉSI KERETTANTERV az 55 xxx xx BIOMASSZA ENERGETIKAI GÉPÉSZETI SZAKTECHNIKUS SZAKKÉPESÍTÉS-RÁÉPÜLÉSHEZ SEE-REUSE

SZAKKÉPZÉSI KERETTANTERV az 55 xxx xx BIOMASSZA ENERGETIKAI GÉPÉSZETI SZAKTECHNIKUS SZAKKÉPESÍTÉS-RÁÉPÜLÉSHEZ SEE-REUSE SZAKKÉPZÉSI KERETTANTERV az 55 BIOMASSZA ENERGETIKAI GÉPÉSZETI SZAKTECHNIKUS SZAKKÉPESÍTÉS-RÁÉPÜLÉSHEZ I. A szakképzés jogi háttere A szakképzési kerettanterv a nemzeti köznevelésről szóló 2011. évi CC.

Részletesebben

Épületenergetika EU direktívák, hazai előírások

Épületenergetika EU direktívák, hazai előírások Épületenergetika EU direktívák, hazai előírások Tervezett változások az épületenergetikai rendelet hazai szabályozásában Baumann Mihály adjunktus PTE PMMK EU direktívák hazai rendeletek EPBD - Épületenergetikai

Részletesebben

Nukleáris energetika

Nukleáris energetika Nukleáris energetika Czibolya László a Magyar főtikára A Kárpát-medence magyar energetikusainak 16. találkozója Budapest, 2012. október 4. Témakörök Az ről Az energia ellátás fenntarthatósága Termelés

Részletesebben

Kriszton Lívia Környezettudomány szakos hallgató Csorba Ottó Mérnök oktató, ELTE Atomfizikai Tanszék Január 15.

Kriszton Lívia Környezettudomány szakos hallgató Csorba Ottó Mérnök oktató, ELTE Atomfizikai Tanszék Január 15. Készítette: Témavezető: Kriszton Lívia Környezettudomány szakos hallgató Csorba Ottó Mérnök oktató, ELTE Atomfizikai Tanszék 2013. Január 15. 1. Bevezetés, célkitűzés 2. Atomerőművek 3. Csernobil A katasztrófa

Részletesebben

MET 7. Energia műhely

MET 7. Energia műhely MET 7. Energia műhely Atomenergetikai körkép Paks II. a kapacitás fenntartásáért Nagy Sándor vezérigazgató MVM Paks II. Atomerőmű Fejlesztő Zrt. 2012. december 13. Nemzeti Energia Stratégia 2030 1 Fő célok:

Részletesebben

Quo vadis nukleáris energetika

Quo vadis nukleáris energetika Quo vadis nukleáris energetika Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Győr Az előadás vázlata Energiaéhség Energiaforrások Maghasadás és magfúzió Nukleáris energetika Atomerőmű működése

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (2)

Modulzáró ellenőrző kérdések és feladatok (2) Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.

Részletesebben

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra Feladatsor a Föld napjára oszt:.. 1. Mi a villamos energia mértékegysége(lakossági szinten)? a MJ (MegaJoule) b kwh (kilówattóra) c kw (kilówatt) 2. Napelem mit állít elő közvetlenül? a Villamos energiát

Részletesebben

A belügyminiszter. Az R. 1. melléklet I. fejezet 2.4. pont d) és i) alpontja helyébe a következő rendelkezés lép:

A belügyminiszter. Az R. 1. melléklet I. fejezet 2.4. pont d) és i) alpontja helyébe a következő rendelkezés lép: A belügyminiszter /2017. ( ) BM rendelete az atomenergia alkalmazásával kapcsolatos sajátos tűzvédelmi követelményekről és a hatóságok tevékenysége során azok érvényesítésének módjáról szóló 5/2015 (II.27.)

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (2)

Modulzáró ellenőrző kérdések és feladatok (2) Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.

Részletesebben

Atomerőművek biztonsága

Atomerőművek biztonsága Mit is jelent a biztonság? A biztonság szót nagyon gyakran használjuk a köznapi életben is. Hogy mit is értünk alatta általánosságban, illetve technikai rendszerek esetén, azt a következő magyarázat szerint

Részletesebben

Radioaktív hulladékok kezelése az atomerőműben

Radioaktív hulladékok kezelése az atomerőműben Radioaktív kezelése az atomerőműben 1 Elter Enikő, Feil Ferenc MVM Paksi Atomerőmű Zrt. Tartalom Célok, feladatmegosztás Hulladékkezelési koncepciók Koncepció megvalósítás folyamata A kis és közepes aktivitású

Részletesebben

BME Járműgyártás és -javítás Tanszék. Javítási ciklusrend kialakítása

BME Járműgyártás és -javítás Tanszék. Javítási ciklusrend kialakítása BME Járműgyártás és -javítás Tanszék Javítási ciklusrend kialakítása A javítási ciklus naptári napokban, üzemórákban vagy más teljesítmény paraméterben meghatározott időtartam, amely a jármű, gép új állapotától

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 5/2. előadás: Atomreaktorok Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 5. Hasadás, láncreakció U-235: termikus neutronok

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

A villamosenergia-termelés szerkezete és jövője

A villamosenergia-termelés szerkezete és jövője A villamosenergia-termelés szerkezete és jövője Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai Intézet Energetikáról Másként Budapest, Magyar Energetikusok Kerekasztala,

Részletesebben

Sugárvédelmi vonatkozású fejezetek az atomerőművek biztonsága című készülő könyvben

Sugárvédelmi vonatkozású fejezetek az atomerőművek biztonsága című készülő könyvben Sugárvédelmi vonatkozású fejezetek az atomerőművek biztonsága című készülő könyvben Pázmándi Tamás, Sági László, Zagyvai Péter MTA KFKI Atomenergia Kutatóintézet XXXVI. Sugárvédelmi Továbbképző Tanfolyam,

Részletesebben

Radioaktív Hulladékokat Kezelő Kft. KKÁT kamrák létesítési engedélyének módosítása. Közérthető összefoglaló

Radioaktív Hulladékokat Kezelő Kft. KKÁT kamrák létesítési engedélyének módosítása. Közérthető összefoglaló Radioaktív Hulladékokat Kezelő Kft. KKÁT 25-33 kamrák létesítési engedélyének módosítása Közérthető összefoglaló Készítette: RHK Kft. 2016 1 Bevezetés 1.1 A Radioaktív Hulladékokat Kezelő Közhasznú Nonprofit

Részletesebben

rendszerszemlélet Prof. Dr. Krómer István BMF, Budapest BMF, Budapest,

rendszerszemlélet Prof. Dr. Krómer István BMF, Budapest BMF, Budapest, A háztarth ztartási energia ellátás hatékonys konyságának nak rendszerszemlélet letű vizsgálata Prof. Dr. Krómer István BMF, Budapest BMF, Budapest, 2009 1 Tartalom A háztartási energia ellátás infrastruktúrája

Részletesebben

Smarter cities okos városok. Dr. Lados Mihály intézetigazgató Horváthné Dr. Barsi Boglárka tudományos munkatárs MTA RKK NYUTI

Smarter cities okos városok. Dr. Lados Mihály intézetigazgató Horváthné Dr. Barsi Boglárka tudományos munkatárs MTA RKK NYUTI MTA Regionális Kutatások Központja Nyugat-magyarországi Tudományos Intézet, Győr Smarter cities okos városok Dr. Lados Mihály intézetigazgató Horváthné Dr. Barsi Boglárka tudományos munkatárs MTA RKK NYUTI

Részletesebben

Hulladékból energiát technológiák vizsgálata életciklus-elemzéssel kapcsolt energiatermelés esetén Bodnár István

Hulladékból energiát technológiák vizsgálata életciklus-elemzéssel kapcsolt energiatermelés esetén Bodnár István Hulladékból energiát technológiák vizsgálata életciklus-elemzéssel kapcsolt energiatermelés esetén Bodnár István II. éves PhD hallgató,, Sályi István Gépészeti Tudományok Doktori Iskola VIII. Életciklus-elemzési

Részletesebben

Divényi Dániel, BME-VET Konzulens: Dr. Dán András 57. MEE Vándorgyűlés, szeptember

Divényi Dániel, BME-VET Konzulens: Dr. Dán András 57. MEE Vándorgyűlés, szeptember Divényi Dániel, BME-VET Konzulens: Dr. Dán András 57. MEE Vándorgyűlés, 2010. szeptember Tartalom Probléma ismertetése A létrehozott modell Ágenstechnológia általában Az alkalmazott modell részletes ismertetése

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 7. előadás: Atomreaktorok, atomerőművek Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 26. https://kahoot.it/ az előző órai

Részletesebben