5.1. A fémek feldolgozásának fizikai alapjai. Fémtan, tüzeléstan

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5.1. A fémek feldolgozásának fizikai alapjai. Fémtan, tüzeléstan"

Átírás

1 5. Fémek előállításának fizikai, kémiai alapjai A fémtan (régebbi nevén metallográfia) a fémek és ötvözetek tulajdonságait fémfizikai alapokon tárgyaló és vizsgáló tudomány. Ezen belül foglalkozik a fémek és ötvözetek szerkezetével, a szerkezetvizsgálat módszereivel, a fémek mechanikai tulajdonságaival, a mágneses tulajdonságokkal, a korrózióval stb. A kohászati tüzeléstan a kohászati folyamatokban használatos kemencékkel, kazánokkal és más melegítő berendezésekkel, a fűtő és hőcserélő berendezésekkel, a tűzállóanyagokkal, energiahordozókkal és égéstermékekkel, tüzelési módszerekkel stb. foglalkozó tudomány. A fejezet tartalomjegyzéke 5.1. A fémek feldolgozásának fizikai alapjai, fémtan, tüzeléstan 5.2. A fémek feldolgozásának energiaigénye és környezeti hatásuk A fémek feldolgozásának kémiai alapjai 5.1. A fémek feldolgozásának fizikai alapjai. Fémtan, tüzeléstan Fémtan Fizikai tulajdonságok: áramvezetés: elektromos áram hatására a delokalizált kötő elektronok (elektronsereg) egy irányba mozdulnak el. Szilárd fémeknél nagyobb az áramvezetés, mint az olvadékoknál; hővezetés: a rácspontokban lévő atomok rezgőmozgása és a delokalizált elektronok segítségével történik; fémes fény és szín: a delokalizált elektronok a minden irányból jövő fény egy részét elnyelik, másik részét visszaverik, ezért szürkék; olvadás- és forráspont: függnek a fém atom tömegétől, atomátmérőtől, a közöttük lévő kötési energia és a koordinációs nagyságától, fémenként nagy az eltérés, mert a d alhéj elektronjai is részt vesznek a kovalens kötésben; sűrűség: az atom tömegétől függ; szívósság, rugalmasság: maradandó alakváltozás részleteit lásd a fizikában; ötvözetek: ha a fémeket más fémekkel összeolvasztjuk ötvözetet kapunk. A fém olvadékában más fémek feloldódnak és együtt kristályosodnak, tulajdonságuk nagyon megváltozik; Kémiai tulajdonságok: A fémek a kémiai reakciók során mindig oxidálódnak, mert kicsi az ionizációs energiájuk és az elektronegativitásuk. Ebből következik, hogy vegyületeikből a fémek csak költséges redukciós folyamattal vagy eljárással állíthatók elő: kémiai korrózió: a korróziót oxidációs folyamat okozza, aminek az az oka, hogy külső elektronjukat könnyen leadják, ilyenkor gázokkal és nem elektrolit olvadékokkal reakcióba lépnek. Néhány fém felületén összefüggő oxidréteg alakul ki, pl. az alumínium felületén az alumíniumoxid, más fémeknél az oxidréteg porózus, és alatta az oxidáció tovább folytatódik, ilyen, pl. a vas felületén a vasoxid, a rozsda. Ez kivédhető a fém passzivitásával, pl. a vasat rövid időre tömény salétromsavba mártjuk, majd sósavoldatba. Az arany és a platina nem korrodálódik. 1

2 elektrokémiai korrózió: a kémiai energia elektromos energiává alakul át a folyamatban, ezt gyorsítja a nedvesség, különösen, ha van a levegőben széndioxid (CO2) vagy kéndioxid (SO2), a párában ezek feloldódnak, és savas elektrolitok keletkeznek. Tovább gyorsul a folyamat, ha a vashoz rezet kötnek, de lassul, ha cinket kötünk (a mai autógyártásban az autók karosszériáját cinkfürdőbe mártják, és így érik el a 20 éves át-rozsdásodás elleni védelmet). 1. Szín: általában ezüstös fényű, csillogó. Két kivétel van, a réz (Cu) vörös, az arany (Au) sárga. A fémek por alakban általában feketék. 2. Szag: A fémek szagtalanok. Kivétel az ozmium (Os), aminek szúrós szaga van. 4. Keménység: A legpuhább fémek késsel vághatóak (nátrium, kálium), a legkeményebbek közé az ozmium (Os), iridium (Ir), wolfrám (W), a titán (Ti) vagy a króm(cr) tartozik. A folyékony higany nem puha fém 5. Sűrűség: Gyakorlati szempontból megkülönböztetünk könnyűfémeket (5 g/cm 3 sűrűség alatt) és nehézfémeket (5 g/cm 3 sűrűség fölött). A legkisebb sűrűségű fém a lítium (0,5 g/cm 3 ) a legnagyobb sűrűségű az irídium 22,65 g/cm Áramvezetés: A fémek vezetőképessége a hőmérséklet emelésével csökken (a nemfémeké ezzel párhuzamosan nő). A fémek elsőfajú vezetők, azaz bennük elektronok vezetnek (nem ionok). A legjobban vezető fémek között van az ezüst és az arany, valamint a réz. Néhány fém sűrűsége: (g/cm 3 ) fajlagos vezetőképessége: (Am/Vmm 2 ) nátrium (Na) 0,968 Ezüst 63 alumínium (Al) 2,7 Réz 56 vas (Fe) 7,87 Arany 45 réz (Cu) 8,96 Alumínium 37 ezüst (Ag) 10,5 Vas 10 ólom (Pb) 11,34 higany (Hg) 13,5 arany (Au) 19,32 platina (Pt) 21,45 Kémiai elemek listája 1. Táblázat Kémiai elemek fizikai adatai R V Név Atomtömeg (g/cm 3 ) Kelvin Kelvin kj/kg K Sűrűség Olvadásp. Forrásp. Fajhő E.n. 47 Ag Ezüst 107,87 10, , ,235 1,93 13 Al Alumínium 26,98 2,70 933, ,897 1,61 79 Au Arany 196,97 19, , ,129 2,54 20 Ca Kalcium 40,08 1, , ,647 1,00 48 Cd Kadmium 112,41 8,69 594, ,232 1,69 27 Co Kobalt 58,93 8, , ,421 1,88 24 Cr Króm 51,99 7, , ,449 1,66 29 Cu Réz 63,54 8, , ,385 1,90 26 Fe Vas 55,84 7, , ,449 1,83 80 Hg Higany 200,59 13,53 234, ,140 2,00 49 In Indium 114,81 7,31 429, ,233 1,78 19 K Kálium 39,09 0,86 336, ,757 0,82 12 Mg Magnézium 24,30 1,74 923, ,023 1,31 25 Mn Mangán 54,94 7, , ,479 1,55 42 Mo Molibdén 95,96 10, , ,251 2,16 2

3 11 Na Nátrium 22,99 0,97 371, ,228 0,93 41 Nb Nióbium 92,90 8, , ,265 1,60 28 Ni Nikkel 58,69 8, , ,444 1,91 78 Pt Platina 195,08 21, , ,133 2,28 51 Sb Antimon 121,76 6,68 904, ,207 2,05 14 Si Szilícium 28,08 2, , ,705 1,90 50 Sn Ón 118,71 7,28 505, ,228 1,96 38 Sr Stroncium 87,62 2, , ,301 0,95 22 Ti Titán 47,87 4, , ,523 1,54 92 U Urán 238,03 18, , ,116 1,38 23 V Vanádium 50,94 6, , ,489 1,63 74 W Volfrám 183,84 19, , ,132 2,36 39 Y Ittrium 88,91 4, , ,298 1,22 30 Zn Cink 65,38 7,13 692, ,388 1,65 40 Zr Cirkónium 91,22 6, , ,278 1,33 R rendszám V vegyjel Olvadásp. olvadáspont Forrásp. forráspont E.n. elektronegativitás Szilárd oldatok Az oldás és az oldódás fizikai folyamat, az alkotók fizikai eljárással szétválaszthatók. A mindennapokban amikor oldásról beszélünk, általában egy folyadék old valamilyen szilárd anyagot. A szilárd oldat típusú ötvözetekben ez a folyamat szilárd állapotban megy végbe. A fém és az oldódó anyag atomjai közös kristályrácsba rendeződnek, az oldó anyag rácsszerkezetének megfelelően. Az oldódó anyag atomjai helyettesíthetik a rácsot alkotó fématomokat, vagy elfoglalhatják a rácsban az atomok közötti üres helyeket. A helyettesítéses más néven szubsztitúciós szilárd oldatok kialakulásának feltételei: Az oldott anyag atomjai csak akkor helyettesíthetik a rácsban a fématomot, ha mérete csak kis mértékben (<15%) tér el a fématom átmérőjétől. Az oldó fémnek és az oldott anyagnak azonos vegyértékűnek kell lennie. Az oldó fém és az ötvözőelem atomszerkezetének hasonlónak kell lennie, vagyis a periódusos rendszerben közel kell lenniük egymáshoz. Az oldó fémnek és az oldott anyag rácsszerkezetének azonos típusúnak kell lennie. Szubsztitúciós szilárd oldat csak az összes feltétel teljesülésével jön létre. Mivel a kristályrács bármely fématomját lehet helyettesíteni, ezért a szubsztitúciós szilárd oldatokra a korlátlan oldhatóság jellemző. A gyakorlatban használt fémek között ritka az ilyen oldás, de pl. a réz a nikkelt így oldja. Ha az oldott anyag atomja elég kicsi ahhoz, hogy elfoglalja a kristályrácsban a fématomok között lévő helyeket, akkor beékelődéses, úgynevezett intersztíciós oldás jön létre. Ezen helyek száma és mérete meghatározott a rácsban, így az oldás mértéke is korlátozott. Az üres helyek mérete a hőmérséklet csökkenésével csökken, így az oldóképesség is csökken. Intersztíciósan oldódik pl. a vasban a szén. A fématomok kevés számú vegyértékelektronja viszonylag kis energiával kötődik az atommaghoz. A fématomokat tehát kis ionizációs energia jellemzi, ami a nemfémekhez viszonyított kisebb elektron vonzóképesség következménye. A fémkristályokban fémes kötés alakul ki. A fémes kötéssel összekapcsolt fématomok alkotják a szilárd fémrácsot. 3

4 Fémrács típusok a következők lapon középpontos kockarács; melyben a koordinációs szám: 12 térben középpontos kockarács; melyben a koordinációs szám: 8 hatszöges v. hexagonális kockarács; melyben a koordinációs szám: 12. A fémeket sűrűségük szerint is megkülönböztetjük: könnyűfémek: az 5g/köbcentinél kisebb sűrűségű fémek; nehézfémek: az 5g/köbcentinél nagyobb sűrűségű fémek. A legnagyobb sűrűségű fém az ozmium: 22,6 g/köbcenti, a legkisebb a lítium:0,53 g/köbcenti. A fémek sűrűségét atomjaik tömege, mérete, és a rácstípus határozza meg. A fémek többsége az elektromosságot és a hőt jól vezeti. Tapasztalat szerint a fémek elektromos- és hővezető képessége párhuzamosan változik, a jó elektromos vezető fém egyben jó hővezető is. A fémek elektromos vezető képessége hőmérséklet-emelkedés hatására csökken. A fématomok, illetve a delokalizált elektronok ugyanis a magasabb hőmérsékletre jellemző erőteljesebb, gyorsabb mozgásuk következtében gyakrabban ütköznek a rácspontokban az atomokba, és ez akadályozza rendezett mozgásukat, így az áramvezetést. A fémek nagy része olvadt állapotban egymásban oldódik; az olvadék lehűlve, a fémes jelleget megtartva kristályosodik ki és szilárdul meg, így jönnek létre az ötvözetek. Az ötvözetek sok esetben jobbak, mint a tiszta fémek. Pl. a krómmal ötvözött vas ellenáll a rozsdásodásnak, ha nikkelt is tartalmaz, akkor saválló. Az ötvözetek a nagyobb mennyiségű alapfémből és a kisebb mennyiségű ötvözőanyagból állnak. A legismertebb ötvözetek az acél, a sárgaréz (Cu+Zn) és a bronz (Cu+Sn). A kovácsolás az eredeti durva szövetszerkezetet finomabbá teszi, a helyesen megválasztott technológiával a szálelrendeződés a majdani igénybevételnek megfelelően alakítható úgy, hogy javuljanak a darab mechanikai tulajdonságai (kontrakció, nyúlás, fajlagos ütőmunka). A kovácsdarabok minősége az alakítás után hőkezeléssel tovább javítható Tüzeléstan Tüzeléstechnikai kutató és Fejlesztő Zrt. bemutatói alapján A kohászati tüzeléstan a kohászati folyamatokban használatos kemencékkel, kazánokkal és más melegítő berendezésekkel, a fűtő és hőcserélő berendezésekkel, a tűzállóanyagokkal, energiahordozókkal és égéstermékekkel, tüzelési módszerekkel stb. foglalkozó tudomány. Tégelyes indukciós kemencék A tégelyes indukciós kemencékben száraz vibromasszákat alkalmaznak vas, acél és réz olvasztásához, indukciós kemencékben több, mint 40 éve. A bázikus termékcsalád ötvözött acélok magas mangán tartalmú acélok olvasztását teszi lehetővé, főleg folyamatos üzem esetén. A réz és rézötvözetek olvasztásához külön termékcsaládot alkalmaznak. 4

5 Csatornás olvasztó, hőntartó és öntőkemence. Az induktorokhoz semleges és bázikus tűzálló bélésanyagok állnak rendelkezésre. 1. ábra. Tégelyes indukciós kemence 2. ábra. Csatornás olvasztó, hőntartó és öntőkemence 3. ábra. Forgódobos alumínium olvasztó kemence 5

6 4. ábra. Alumínium olvasztókemence 10 tonna/óra Nagyolvasztó A nagyolvasztó a nyersvasgyártás legelterjedtebb kemencetípusa. A vasércekből redukálással állítják elő benne a nyersvasat. A redukciót szén (karbon) segítségével végzik, amit többnyire koksz formájában használnak fel. A nagyolvasztó maga a nyersvas előállítására szolgáló aknás kemence. Működtetése azonban több, egyéb feladatot ellátó egységet is igényel. Ilyenek például a léghevítők, a fúvógépház, a torokgáztisztító stb. Ezeket a nagyolvasztóval együtt nagyolvasztóműnek nevezik. 5. ábra. nagyolvasztómű elemei: nagyolvasztó, torokgáz hevítők, tisztítók A nagyolvasztó méreteit hasznos magasságával, medencéjének átmérőjével és hasznos térfogatával szokás jellemezni. A nagyolvasztók fejlődése során egyre nagyobb kemencéket építettek, de a méretnövekedést sokkal inkább az átmérővel érték el, mint a magasság növelésével. A legnagyobb magassági méretek a méter körüli tartományban vannak, a hasznos térfogat pedig az 5000 köbmétert is meghaladja. 6

7 6. ábra. A nagyolvasztóban a hőmérséklet eloszlása 7. ábra. A nagyolvasztóban lejátszódó folyamatok 7

8 8. ábra. DUNAFERR nagyolvasztó 9. ábra Öntödei formaizzító kemence ábra. Kamrás kovácsüzemi izzító kemence regeneratív tüzelőberendezéssel 8

9 11. ábra. Kerámia égető kemence A fémek feldolgozásának energiaigénye és környezeti hatásuk A feldolgozó technológiák energiaigénye A timföldből elektrolízissel 99,7 %-os 99,5 %-os és 99,0 %-os tisztaságú kohóalumíniumot lehet előállítani. Ez jó korrózióállóságú, kis villamos ellenállású, de kis szilárdságú fém. Előnyös tulajdonságai a szennyezők csökkentésével javulnak. Az alumínium finomítását többszöri elektrolízissel végzik. Ezzel a módszerrel 99,99%-os tisztaságú alumínium állítható elő. Ez a művelet igen energiaigényes: 1 kg kohóalumínium előállításához 20 kwh, 1 kg nagytisztaságú alumíniumhoz pedig kwh villamos energia szükséges. A tiszta alumínium képlékeny alakíthatósága kitűnő, de nehezen forgácsolható (kenődik). Az alumíniumelektrolízis elve és alaptörvénye. Az alumínium normál elektródpotenciálja Al/Al3+ = -1,66V, ezért vizes oldatból elektrolízissel nem lehet kiválasztani, ugyanis H 2 leválás kezdődik. A tűzzel folyó olvadék alkalmas az Al 2 O 3 elektrolízises bontására és az alumínium leválasztására. Az Al 2 O 3 -nak nagy olvadáspontja (2045 C) miatt nem a timföld-olvadékot, hanem a kriolitban (Na2AlF6) oldott Al2O3-at ~ 950 C hőmérsékleten elektrolizálják. 12. ábra. Alumínium elektrolizáló kádak 9

10 Az elektrolízishez használt katódként illetve anódként a szénelektródok váltak be. Az anódon levált oxigén folyamatosan oxidálja a szénanódot, ezért azt állandóan pótolni kell. A szénanód használata hőtechnikai szempontból előnyös, mert a reakció közben keletkező reakcióhő csökkenti az Al2O3 elbontásának villamosenergia-igényét, vagyis az anód égése jó hatásfokkal hasznosul. A fémek elektrolízisét a Faraday törvénye írja le. Az elektrokémiai egyenérték tömegű mennyiség leválasztásához (96500 Coulomb) 26,8 Ah elektromos töltésmennyiség szükséges. A 3 vegyértékű alumíniumból tehát 1000 Ah árammennyiség 0,3354 kg alumíniumot választ le. Az 1 ka áramerősségű cellában (kádban) elméletileg naponta 8 kg, évente 2938 kg alumínium nyerhető. Az ipari termeléshez nagy, ka-es áramerősségre van szükség. A II. világháború után már ka áramerősséggel épültek kohók. A legmodernebb kohók ka árammal üzemelnek. Az alumíniumkohók energiaellátása Az alumínium előállításához felhasznált összenergia mintegy 75 %-a villamos energia. Korszerű alumínium kohókban kwh elektromos energia szükséges 1 tonna alumínium előállításához. Ennek megfelelően, ha egy év alatt (azaz 8800 óra alatt) akarunk 1 tonna alumíniumot előállítani, ehhez folyamatosan 1,7-1,8 kw villamos teljesítményt szükséges biztosítani szükséges. Tehát egy 100 kt éves kapacitású kohó mintegy 175 MW villamos teljesítményt igényel. Egy kohókádsor, amely db sorba kapcsolt kádat jelent, egyenáramú feszültsége általában V. A számolt elektromos teljesítményhez szükséges a kádsoron ka-es áramerősség. A transzformátorok primer oldala általában kv. Ezek a rendszerek külön transzformátorral kapcsolódnak a kv-os hálózathoz. Az elektrolízis reakciói és folyamata Az elektrolízis hőmérséklete C, az olvadt kriolit és az oldott timföld disszociált állapotban van. A gyakorlati és az elméleti leválasztás viszonya általában 0,85-0,95 közötti érték (a katódon megjelenő alumínium tömege kisebb lesz, mint a Faraday törvénye szerint várható elméleti érték. Ennek okai: az alumínium egy része visszaoxidálódik, az áram szennyezőket is leválaszt (Fe, Si, Cu, ) és kisebb rövidzárlatok is létrejönnek. A kohók a termelés gazdaságosságát szem előtt tartva minél nagyobb áramhatásfok elérésére törekszenek A feldolgozó technológiák környezeti hatása 2. táblázat. A különböző gyártási folyamatok során keletkező CO 2 évi mennyisége Az évi CO 2 kibocsátás kg) Az emberiség által CO 2 kibocsátott teljes mennyiség %-ában Vas (nagyolvasztó) 1,11 5,4 Alumínium (elektrolízis) 0,52 2,5 Cink (elektrolízis + Imperial- 0,07 0,3 Szintézisgáz (földgáz-átalakítás) 0,30 1,4 Összesen 2,00 8,6 A vasgyártás káros hatásai Az alkalmazott hagyományos vasgyártási módszer rendkívül környezetszennyező. A hagyományos olvasztás során a vasércet koksszal keverik, ami reakcióba lépve a vassal széndioxidot és szénmonoxidot termel. Egy tonna nyersvas előállításánál egy tonna szén-dioxid képződik. Nem tüzeléses módszer, az elektrolízis: A vasércet szilícium dioxid oldatban 1600 Celsius fokon feloldják, majd elektromos áramot vezetnek át rajta. A negatív töltésű oxigén ionok a pozitív töltésű anódhoz vándorolnak, ebben az esetben kizárólag oxigén távozik. A 10

11 pozitív töltésű ionok ennek megfelelően a negatív katódnál gyűlnek meg, ahol folyékony elemi vasra redukálódnak, amit miután leülepszik, egyszerűen kiszippantanak. Azonban ez a módszer is számos problémát rejt magában. Nagyon nagy az elektromos teljesítmény igénye, tonnánként megközelítőleg 2000 kwh, így az eljárás ipari alkalmazása még fejlesztésre szorul. 3. Táblázat. A Bayer-eljárás 1 t timföldre eső anyag és energiaigénye a magyar timföldgyárakban Száraz bauxit 2,33 t Friss marónátron 150 kg Nagynyomású gőz 1,4 t Kisnyomású gőz 1,3 t Fűtőolaj (kalcináláshoz) 95 kg Villamos energia 320 kwh Elsődleges hőenergia 15,4 GJ 5.3. A fémek feldolgozásának kémiai alapjai A fémek redukáló sora K, Ca, Na, Mg, Cr, Al, Zn, Fe, Cu, Hg, Ag, Pt, Au Az alumínium előállítás kémiája: 13. ábra. Alumínium előállítás kémiai folyamatai 11

12 14. ábra. Alumínium előállítás kémiai folyamatai Az oxidáció ellen való védelem elektronleadó készséget befolyásolja korrózió: a fém felületéről meginduló átalakulás, amelynek hatására végül a fémtárgy teljesen átalakul, tönkremegy o a legreakcióképesebb fémeket petróleum alatt, másokat zárt edényben tárolják o egyes fémeken védő oxidréteg alakul ki (pl. alumínium, króm, nikkel, cink) o vasat zománccal, festékkel, vagy más fémekkel vonják be a rozsdásodás ellen A képlékeny alakítás. A képlékenyalakítás feltételezi az adott fém képlékenységét. A képlékenység a fémeknek az a tulajdonsága, hogy alakjuk megfelelő nagyságú külső terhelés hatására maradandóan megváltoztatható anélkül, hogy az anyag atomjai közötti kötés megszakadna. 15. ábra. Képlékeny alakítás fizikai leírása 12

13 A fémek képlékenyalakítása általában rugalmas deformációval kezdődik. A képlékeny alakváltozás akkor következik be, amikor a ható feszültség meghaladja a rugalmassági határt vagy folyáshatárt (σ f ). Ez a folyamat látható a 15. ábrán, ami egy szakítódiagram általános jellegét mutatja be. A görbe végpontja a szakadás (törés), eddig a képlékenyalakító folyamatok természetesen nem mennek el. A képlékeny alakváltozás úgy tud végbemenni, hogy a fém atomsíkjai egymáson elcsúsznak, ezt a jelenséget hívjuk csúszásnak. A képlékeny alakváltozás másik lehetséges módja az ikerképződés. Az elcsúszás meglehetősen nagy külső erőt igényel. Kisebb erőre (feszültségre) van szükség akkor, ha az atomok nem egyszerre, hanem egyenként mozdulnak el, például egy rácshiba ( vakancia ) segítségével. A képlékeny alakváltozás mindig diszlokációk közvetítésével megy végbe. A fémek képlékenyalakítása történhet melegen, hidegen vagy félmelegen. A felmelegített darabok kisebb erőhatással alakíthatók, mert ilyenkor kisebb az alakítási szilárdság (k f ) értéke. Egy régebbi felfogás szerint melegalakításnak azt a műveletet nevezték, amikor alakítás előtt felmelegítik a darabot. Ettől helyesebb az a meghatározás, amely szerint a meleg- és a hidegalakítás között az adott fémre jellemző újrakristályosodási hőmérséklet a választóvonal, nem pedig a darab tényleges hőmérséklete. Ebben az értelemben például az ólom szobahőmérsékleten végzett alakítása melegalakításnak minősül, míg a volfrámot 1000 C-on még hidegen alakítjuk. Az újrakristályosodási hőmérséklet fölött az egymást követő alakítási műveletek között a fém újrakristályosodik, azaz nem lép fel keményedés. Ezzel szemben a hidegalakítás során a darab keményedik, ami egy idő után akár lehetetlenné is teheti a további alakítást. Ilyenkor ha további képlékenyalakításra van szükség a fémet lágyítással ismét alakítható állapotba kell hozni. A forrasztás alapjai ( A forrasztás egy termikus eljárás fémek összekötésére, kötőanyag felhasználásával. Szakszerű lágy- és keményforrasztással több évtizedre létre lehet hozni biztonságos kötést. A forrasztás hőátadás mellett véglegesen összeköt kettő vagy több munkadarabot, forraszanyag és a folyasztószer felhasználásával. A folyasztószer a fémoxidok oldószere. Eltávolítja az oxidokat a forrasztandó felületről, így a felület a forrasztás alatt oxidmentes marad. A folyasztószert lágy, vagy keményforrasztásnál a munkadarabok anyaga és a forraszanyag forrasztási hőmérséklete alapján választjuk ki. A forraszanyag csak tiszta fémes felületen tud hálót képezni, szétfutni és megkötni. Helyes munkamódszer esetén a felhevített forraszanyag hálót képez a forrasztandó felületen, szétfut, és összeköti a két munkadarabot. Fontos tény az is, hogy egy szakszerűen elkészített forrasztási pont extrém magas igénybevételnek, mint pl. vibráció során fellépő dinamikai terhelésnek is ellenáll. Lágyforrasztásnál a forraszanyag olvadáspontja 450 C alatt van nál felette. Pontosabban: az épületgépészetben lágyforrasztásnál a forraszanyag hőmérséklete nagyjából 250 C, keményforrasztásnál 670 C és 730 C között van. A lágyforraszok közé tartozik az ón (Sn, olvadáspontja 231,9 C) a bizmut (Bs, 271,3 C), a kadmium (Cd, 320,9 C), az ólom (Pb, 327,4 C, július 1-jétől tilos az alkalmazása) és a cink (Zn, 419,4 C), valamint ezek ötvözetei. A keményforraszok az ezüst (Ag, 960 C), az arany (Au, 1063 C) és a réz (Cu, 1083 C), valamint ötvözeteik. Az alumínium (Al) és a magnézium (Mg) gyorsan oxidálódnak, ezért forraszanyagként való alkalmazásuk csak kivételes esetben jöhet szóba. Rézcsövek forrasztásánál az egyes csődarabokat fittingekkel kötik össze. Ezt a technikát hívjuk kapillárisforrasztásnak. A fitting és a cső közötti keskeny résbe folyékony forraszanyag kerül. A forrasztási résnek egyenletesnek kell lennie a teljes átfedési hosszon. 13

14 A forrasztáshoz hőforrás is kell. Az épületgépészetben általában nyílt lángú gázégőt vagy egy elektromos ellenállású forrasztógépet használnak. A gázégő gázpalackkal vagy gázpatronnal működik. Például: propánégő (levegőből veszi az oxigént), propán-oxigénégő, acetilénoxigénégő. Az égőt és a gázt úgy kell kiválasztani, hogy a forrasztandó felület teljes hosszában, a lehető legrövidebb idő alatt felmelegedjen munkahőmérsékletre. A kíméletes melegítés lágy, redukáló lángot eredményez. Az elektromos ellenállású forrasztógép a hőt a munkadarabbal közvetlenül érintkező elektródával adja át. Ezt elsősorban lágyforrasztásnál használják. Kérdések Mivel foglalkozik a fémtan? 5.2. Mivel foglalkozik a kohászati tüzeléstan? 5.3. Sorolja fel a fémtan szempontjából a fémek legfontosabb fizikai mennyiségeit! 5.4. Ismertesse a kémiai és az elektrokémiai korrózió jelenségét! 5.5. Foglalja össze hogy milyen a fémek színe, szaga, keménysége! 5.6. Adja meg a legismertebb fémek sűrűségét! 5.7 Adjon rövid ismertetés a jó vezető fémek áramvezetéséről! 5.8. Adja meg a hétköznapi életben leggyakrabban előforduló fémek sűrűségét! 5.9. Adja meg a hétköznapi életben leggyakrabban előforduló fémek olvadáspontját! Jellemezze a szilárd oldat típusú ötvözetekben kialakult szerkezetet! Ismertesse helyettesítéses szilárd oldatok kialakulásának feltételeit! Mikor jön létre beékelődéses oldás? Sorolja fel a fémrács típusokat! Milyen csoportokra osztjuk a fémeket sűrűségük alapján? Hogy készülhetnek ötvözetek, nevezzen meg néhány népszerű ötvözetet! Mit eredményez a fémek kovácsolása? Milyen anyagokkal bélelik a tégelyes indukciós kemencéket? Hol és hogyan állítják elő a vasércből a nyersvasat? Mi végzi a redukciót? Milyen főbb egységeket tartalmaz a nagyolvasztómű? Milyenek a legnagyobb nagyolvasztók legfontosabb jellemző adatai? Milyen benne a hőmérséklet eloszlás? Hogyan történik kohóalumínium finomítása? Mennyi elektromos energia szüksége a kohóalumínium és a nagytisztaságú alumínium előállításához? Az alumínium leválasztásához milyen állapotú olvadék kell? Mekkora ennek a hőmérséklete? Milyen elem alkotja az alumínium elektrolizálásakor az elektródákat. Miért? Milyen áramerősségen üzemelnek a legújabb alumínium elektrolizáló kádak? Mennyi elektromos energia és milyen elektromos teljesítmény szint szükséges 1 tonna alumínium előállításához? Ismertesse a vasgyártás káros hatásait! Soroljon fel a fémek oxidáció ellen való védelmére! Milyen tulajdonsága a fémeknek a képlékenység? Mit értünk forrasztás alatt? Mi a szerepe a forraszanyagnak? Mia a szerepe a folyasztószernek? ismertesse a Lágyforrasztásnál és a keményforrasztás hőmérséklet és forraszanyag feltételét! Forrasztáshoz milyen hőforrásokat használunk, és miért? 14

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

Fémek. Fémfeldolgozás - Alumínium

Fémek. Fémfeldolgozás - Alumínium Fémek Fémfeldolgozás - Alumínium Felosztás - Vas - Nemvasfémek Nemvasfémek: - könnyűfémek (Al, Mg, Be, Ti) ρ < 5000kg / m3 - színesfémek (Cu, Pb, Sb, Zn) - nemesfémek (Au, Ag, Pt) Előfordulás - Elemi állapotban

Részletesebben

Az ötvözet a fémek szilárd oldata, ami a következő anyagokból tevődik össze:

Az ötvözet a fémek szilárd oldata, ami a következő anyagokból tevődik össze: Az ötvözet a fémek szilárd oldata, ami a következő anyagokból tevődik össze: alapfém: pl. vas, alumínium, ötvözőanyagok: amelyek kedvezően befolyásolják az alapfém tulajdonságait pl. a vas esetében a szén,

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Kémiai energia - elektromos energia

Kémiai energia - elektromos energia Általános és szervetlen kémia 12. hét Elızı héten elsajátítottuk, hogy a redoxi reakciók lejátszódásának milyen feltételei vannak a galvánelemek hogyan mőködnek Mai témakörök az elektrolízis és alkalmazása

Részletesebben

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek

Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek Fémek törékeny/képlékeny nemesémek magas/alacsony o.p. Fogorvosi anyagtan izikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek ρ < 5 g cm 3 könnyűémek 5 g cm3 < ρ nehézémek 2 Fémek tulajdonságai

Részletesebben

Anyagismeret tételek

Anyagismeret tételek Anyagismeret tételek 1. Iparban használatos anyagok csoportosítása - Anyagok: - fémek: - vas - nem vas: könnyű fémek, nehéz fémek - nemesfémek - nem fémek: - műanyagok: - hőre lágyuló - hőre keményedő

Részletesebben

ACÉLOK MÉRNÖKI ANYAGOK

ACÉLOK MÉRNÖKI ANYAGOK ACÉLOK MÉRNÖKI ANYAGOK 80%-a (5000 kg/fő/év) kerámia, kő, homok... Ebből csak kb. 7% a iparilag előállított cserép, cement, tégla, porcelán... 14%-a (870 kg/fő/év) a polimerek csoportja, melynek kb. 90%-a

Részletesebben

Az alumínium és ötvözetei valamint hegeszthetőségük. Komócsin Mihály

Az alumínium és ötvözetei valamint hegeszthetőségük. Komócsin Mihály Az alumínium és ötvözetei valamint hegeszthetőségük Magyar Hegesztők Baráti Köre Budapest 2011. 11. 30. Komócsin Mihály 1 Alumínium termelés és felhasználás A földkéreg átlagos fémtartalma Annak ellenére,

Részletesebben

Fémes szerkezeti anyagok

Fémes szerkezeti anyagok Fémek felosztása: Fémes szerkezeti anyagok periódusos rendszerben elfoglalt helyük alapján, sűrűségük alapján: - könnyű fémek, ha ρ 4,5 kg/ dm 3. olvadáspont alapján:

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

Mérnöki anyagismeret

Mérnöki anyagismeret Mérnöki anyagismeret Termikus, villamos, mágneses tulajdonságok Alapanyagok gyártása Fémkohászat Vas- és acélgyártás Termikus tulajdonságok A szilárd anyagok az olvadás illetve amorf anyagok esetében a

Részletesebben

ALPHA spektroszkópiai (ICP és AA) standard oldatok

ALPHA spektroszkópiai (ICP és AA) standard oldatok Jelen kiadvány megjelenése után történõ termékváltozásokról, új standardokról a katalógus internetes oldalán, a www.laboreszközkatalogus.hu-n tájékozódhat. ALPHA Az alábbi standard oldatok fémek, fém-sók

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás ELEKTROKÉMIA 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben

Fémkohászat. Vas- és acél gyártás Alumínium gyártás Réz- és szinesfém kohászat

Fémkohászat. Vas- és acél gyártás Alumínium gyártás Réz- és szinesfém kohászat Fémkohászat Vas- és acél gyártás Alumínium gyártás Réz- és szinesfém kohászat A fémkohászat főbb folyamatai Érc előkészítés (törés, őrlés, szétválasztás) Nyers fém kinyerése A nyers fém finomítása Ötvözés

Részletesebben

1. feladat Összesen 10 pont. 2. feladat Összesen 10 pont

1. feladat Összesen 10 pont. 2. feladat Összesen 10 pont 1. feladat Összesen 10 pont Töltse ki a táblázatot oxigéntartalmú szerves vegyületek jellemzőivel! Tulajdonság Egy hidroxil csoportot tartalmaz, moláris tömege 46 g/mol. Vizes oldatát ételek savanyítására

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

7. osztály 2 Hevesy verseny, megyei forduló, 2002.

7. osztály 2 Hevesy verseny, megyei forduló, 2002. 7. osztály 2 Hevesy verseny, megyei forduló, 2002. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2016/17. Szilárdságnövelés. Dr. Mészáros István Az előadás során megismerjük

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2016/17. Szilárdságnövelés. Dr. Mészáros István Az előadás során megismerjük ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Anyagismeret 2016/17 Szilárdságnövelés Dr. Mészáros István meszaros@eik.bme.hu 1 Az előadás során megismerjük A szilárságnövelő eljárásokat; Az eljárások anyagszerkezeti

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35 Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK

SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK SZERVETLEN KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Zárójel jelzi a reakciót, ami más témakörnél található meg. REAKCIÓK FÉMEKKEL fém

Részletesebben

13 Elektrokémia. Elektrokémia Dia 1 /52

13 Elektrokémia. Elektrokémia Dia 1 /52 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

7. osztály 2 Hevesy verseny, megyei forduló, 2004.

7. osztály 2 Hevesy verseny, megyei forduló, 2004. 7. osztály 2 Hevesy verseny, megyei forduló, 2004. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35 Periódusosság 11-1 Az elemek csoportosítása: a periódusos táblázat 11-2 Fémek, nemfémek és ionjaik 11-3 Az atomok és ionok mérete 11-4 Ionizációs energia 11-5 Elektron affinitás 11-6 Mágneses 11-7 Az elemek

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória Tanuló neve és kategóriája Iskolája Osztálya XLVI. Irinyi János Középiskolai Kémiaverseny 201. február 6. * Iskolai forduló I.a, I.b és III. kategória Munkaidő: 120 perc Összesen 100 pont A periódusos

Részletesebben

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat Periódusosság 9-1 Az elemek csoportosítása: aperiódusos táblázat 9-2 Fémek, nemfémek és ionjaik 9-3 Az atomok és ionok mérete 9-4 Ionizációs energia 9-5 Elektron affinitás 9-6 Mágneses 9-7 Az elemek periódikus

Részletesebben

Alumínium ötvözetek. hőkezelése. Fábián Enikő Réka

Alumínium ötvözetek. hőkezelése. Fábián Enikő Réka Alumínium ötvözetek hőkezelése Fábián Enikő Réka fabianr@eik.bme.hu Általános Al-ötvözet jellemzők T a b A Alakítható ötvözetek B Önthető ötvözetek Nemesíthető, kiválásosan keményedő ötvözetek Az alumínium

Részletesebben

IV.főcsoport. Széncsoport

IV.főcsoport. Széncsoport IV.főcsoport Széncsoport Sorold fel a főcsoport elemeit! Szén C szilárd nemfém Szilícium Si szilárd félfém Germánium Ge szilárd félfém Ón Sn szilárd fém Ólom Pb szilárd fém Ásványi szén: A szén (C) Keverék,

Részletesebben

Kémiai alapismeretek 7.-8. hét

Kémiai alapismeretek 7.-8. hét Kémiai alapismeretek 7.-8. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. október 16.-október 19. 1/12 2012/2013 I. félév, Horváth Attila

Részletesebben

Hőkezelési eljárások:

Hőkezelési eljárások: Hőkezelési eljárások: Hőkezeléssel az acélok szövetszerkezete és így az anyag tulajdonságai is megváltoznak ~ befolyásoló tényezők: - hevítés hőfoka - hőntartás ideje - kritikus hűtési sebesség - alkalmazott

Részletesebben

T I T M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 8. osztály

T I T M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 8. osztály T I T M T T Hevesy György Kémiaverseny országos döntő Az írásbeli forduló feladatlapja 8. osztály A versenyző azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve Foszfátion Szulfátion

Részletesebben

Lánghegesztés és lángvágás

Lánghegesztés és lángvágás Dr. Németh György főiskolai docens Lánghegesztés és lángvágás 1 Lánghegesztés Acetilén (C 2 H 2 ) - oxigén 1:1 keveréke 3092 C 0 magas lánghőmérséklet nagy terjedési sebesség nagy hőtartalom jelentéktelen

Részletesebben

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion. 4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatok megoldásához csak

Részletesebben

7. osztály Hevesy verseny, megyei forduló, 2003.

7. osztály Hevesy verseny, megyei forduló, 2003. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos

Részletesebben

1. feladat Összesen: 10 pont. 2. feladat Összesen: 14 pont

1. feladat Összesen: 10 pont. 2. feladat Összesen: 14 pont 1. feladat Összesen: 10 pont Az AsH 3 hevítés hatására arzénre és hidrogénre bomlik. Hány dm 3 18 ºC hőmérsékletű és 1,01 10 5 Pa nyomású AsH 3 -ből nyerhetünk 10 dm 3 40 ºC hőmérsékletű és 2,02 10 5 Pa

Részletesebben

Mérnöki anyagismeret. Alapanyagok gyártása Alumínium és könnyűfém kohászat Réz és színesfém kohászat Öntészet

Mérnöki anyagismeret. Alapanyagok gyártása Alumínium és könnyűfém kohászat Réz és színesfém kohászat Öntészet Mérnöki anyagismeret Alapanyagok gyártása Alumínium és könnyűfém kohászat Réz és színesfém kohászat Öntészet A fémkohászat főbb folyamatai Bányászat Érc előkészítés Nyers fém kinyerése A nyers fém finomítása

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő) Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai

Részletesebben

Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC

Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Reális kristályok, rácshibák Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Valódi, reális kristályok Reális rács rendezetlenségeket, rácshibákat tartalmaz Az anyagok tulajdonságainak bizonyos csoportja

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz 9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu MAGYAR RÉZPIACI KÖZPONT 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu Tartalom 1. A villamos csatlakozások és érintkezôk fajtái............................5 2. Az érintkezések

Részletesebben

Elektro-analitikai számítási feladatok 1. Potenciometria

Elektro-analitikai számítási feladatok 1. Potenciometria Elektro-analitikai számítási feladatok 1. Potenciometria 1. Vas-só részlegesen oxidált oldatába Pt elektródot merítettünk. Ennek az elektródnak a potenciálját egy telített kalomel elektródhoz képest mérjük

Részletesebben

AZ EGYENÁRAM HATÁSAI

AZ EGYENÁRAM HATÁSAI AZ EGYENÁRAM HATÁSAI 1) HŐHATÁS Az elektromos áram hatására a zseblámpa világít, mert izzószála felmelegszik, izzásba jön. Oka: az áramló elektronok kölcsönhatásba kerülnek a vezető helyhez kötött részecskéivel,

Részletesebben

V É R Z K A S A Y E N P

V É R Z K A S A Y E N P Hevesy György Országos Kémiaverseny Kerületi forduló 2012. február 14. 7. évfolyam 1. feladat (1) Írd be a felsorolt anyagok sorszámát a táblázat megfelelő helyére! fémek anyagok kémiailag tiszta anyagok

Részletesebben

Ni 2+ Reakciósebesség mol. A mérés sorszáma

Ni 2+ Reakciósebesség mol. A mérés sorszáma 1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol

Részletesebben

Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető.

Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető. Áramforrások Elsődleges cella: áramot termel kémiai anyagokból, melyek a cellába vannak bezárva. Ha a reakció elérte az egyensúlyt, kimerül. Nem tölthető. Másodlagos cella: Használat előtt fel kell tölteni.

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Kriston Ákos. Vándorgyűlés előadás, 2009.09.11.

STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Kriston Ákos. Vándorgyűlés előadás, 2009.09.11. STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Vándorgyűlés előadás, 2009.09.11. Kriston Ákos Tartalom Elméleti ismertetők Kriston Ákos Mi az az üzemanyagcella?

Részletesebben

A tudós neve: Mit tudsz róla:

A tudós neve: Mit tudsz róla: 8. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

Diffúzió 2003 március 28

Diffúzió 2003 március 28 Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség

Részletesebben

RÉSZLETEZŐ OKIRAT (3) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (3) a NAH /2016 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (3) a NAH-1-0990/2016 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: MOTIM ZRt. Laboratórium 9200 Mosonmagyaróvár, Timföldgyári u. 9-13. 2) Akkreditálási

Részletesebben

Hevesy György Országos Kémiaverseny Kerületi forduló február 12. Munkaidő: 60 perc 8. évfolyam

Hevesy György Országos Kémiaverseny Kerületi forduló február 12. Munkaidő: 60 perc 8. évfolyam Hevesy György Országos Kémiaverseny Kerületi forduló 2014. február 12. Munkaidő: 60 perc 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszer és elektronikus adatok tárolására nem alkalmas

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Fémek és ötvözetek termikus viselkedése

Fémek és ötvözetek termikus viselkedése Anyagtudomány és Technológia Tanszék Fémek és ötvözetek termikus viselkedése Dr. Szabó Péter János szpj@eik.bme.hu Anyagszerkezettan és anyagvizsgálat BMEGEMTBGA1 2018/2019/2 Az előadás során megismerjük

Részletesebben

7 Elektrokémia. 7-1 Elektródpotenciálok mérése

7 Elektrokémia. 7-1 Elektródpotenciálok mérése 7 Elektrokémia 7-1 Elektródpotenciálok mérése 7-2 Standard elektródpotenciálok 7-3 E cell, ΔG, és K eq 7-4 E cell koncentráció függése 7-5 Elemek: áramtermelés kémiai reakciókkal 7-6 Korrózió: nem kívánt

Részletesebben

Építményeink védelme március 27. Acélfelületek korrózió elleni védelme fémbevonatokkal

Építményeink védelme március 27. Acélfelületek korrózió elleni védelme fémbevonatokkal Építményeink védelme 2018. március 27. Acélfelületek korrózió elleni védelme fémbevonatokkal Dr. Seidl Ágoston okl. vegyészmérnök, korróziós szakmérnök c.egy.docens A korrózióról általában A korrózióról

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Környezetvédelem / Laboratórium / Vizsgálati módszerek

Környezetvédelem / Laboratórium / Vizsgálati módszerek Környezetvédelem / Laboratórium / Vizsgálati módszerek Az akkreditálás műszaki területéhez tartozó vizsgálati módszerek A vizsgált termék/anyag Szennyvíz (csatorna, előtisztító, szabadkiömlő, szippantó

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Szigetelők Félvezetők Vezetők

Szigetelők Félvezetők Vezetők Dr. Báder Imre: AZ ELEKTROMOS VEZETŐK Az anyagokat elektromos erőtérben tapasztalt viselkedésük alapján két alapvető csoportba soroljuk: szigetelők (vagy dielektrikumok) és vezetők (vagy konduktorok).

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás Elekrtokémia 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben

7. osztály 2 Hevesy verseny, országos döntő, 2004.

7. osztály 2 Hevesy verseny, országos döntő, 2004. 7. osztály 2 Hevesy verseny, országos döntő, 2004. Kedves Versenyző! Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő tíz feladat megoldására 90 perc áll rendelkezésedre.

Részletesebben

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408 MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403 Dr. Dogossy Gábor Egyetemi adjunktus B 408 Az anyag Az anyagot az ember nyeri ki a természetből és

Részletesebben

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok

Részletesebben

RÉSZLETEZŐ OKIRAT (2) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (2) a NAH /2016 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (2) a NAH-1-0990/2016 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: MOTIM ZRt. Laboratórium 9200 Mosonmagyaróvár, Timföldgyári u. 9-13. 2) Akkreditálási

Részletesebben

Balazs Katalin_10_oraterv

Balazs Katalin_10_oraterv 10. Óraterv Az óra témája: Tudásfelmérés Az óra cél- és feladatrendszere: számadás az eddig megszerzett tudásról Az óra didaktikai feladatai: egyéni munka Tantárgyi kapcsolatok: informatika Dátum: 2014.

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek Kémiai kötések Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek fémek Fémek Szürke színűek, kivétel a színesfémek: arany,réz. Szilárd halmazállapotúak, kivétel a higany. Vezetik az

Részletesebben

Az elektronpályák feltöltődési sorrendje

Az elektronpályák feltöltődési sorrendje 3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában

Részletesebben

A tételek: Elméleti témakörök. Általános kémia

A tételek: Elméleti témakörök. Általános kémia A tételek: Elméleti témakörök Általános kémia 1. Az atomok szerkezete az atom alkotórészei, az elemi részecskék és jellemzésük a rendszám és a tömegszám, az izotópok, példával az elektronszerkezet kiépülésének

Részletesebben

A réz és ötvözetei jelölése

A réz és ötvözetei jelölése A réz és ötvözetei jelölése A réz (Cuprum) vegyjele: Cu, neve Ciprus szigetének nevéből származik, amely már az ókorban fontos rézlelőhely volt. A réz folyamatosan 100%-ban újrahasznosítható anélkül, hogy

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

PiAndTECH FluidKAT katalitikus izzóterek

PiAndTECH FluidKAT katalitikus izzóterek PiAndTECH FluidKAT katalitikus izzóterek Hő felszabadítás katalitikus izzótéren, (ULE) ultra alacsony káros anyag kibocsátáson és alacsony széndioxid kibocsátással. XIV. TÁVHŐSZOLGÁLTATÁSI KONFERENCIÁT

Részletesebben

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

a NAT /2013 nyilvántartási számú akkreditált státuszhoz

a NAT /2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1586/2013 nyilvántartási számú akkreditált státuszhoz A Halászati és Öntözési Kutatóintézet Környezetanalitikai Központ Vizsgáló Laboratórium (5540

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7.

Fogorvosi anyagtan fizikai alapjai 7. Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 2. Kiemelt témák: Szilárdság, rugalmasság, képlékenység és szívósság összefüggései A képlékeny alakváltozás mechanizmusa kristályokban és

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17

Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17 rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,

Részletesebben

Nem vas fémek és ötvözetek

Nem vas fémek és ötvözetek Nem vas fémek és ötvözetek Anyagtudományi és Technológiai Tanszék Nem vas fémek és ötvözetek Áruk jóval magasabb, mint a vasötvözeteké, nagyon sok ipari területen alkalmazzák. Tulajdonságaik alacsony fajsúly,

Részletesebben

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny

T I T - M T T. Hevesy György Kémiaverseny T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Hőkezelő technológia tervezése

Hőkezelő technológia tervezése Miskolci Egyetem Gépészmérnöki Kar Gépgyártástechnológiai Tanszék Hőkezelő technológia tervezése Hőkezelés és hegesztés II. című tárgyból Név: Varga András Tankör: G-3BGT Neptun: CP1E98 Feladat: Tervezze

Részletesebben

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges

Részletesebben

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz Az MVM Paksi Atomerőmű Zrt. Üzemviteli Igazgatóság Vegyészeti Főosztály Vegyészeti

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben