Számítógép architektúrák. A mai program. A Neumann architektúra. A processzor
|
|
- Miklós Bálint Kerekes
- 9 évvel ezelőtt
- Látták:
Átírás
1 Számítógép architektúrák A processzor A mai program A CPU és részei ALU, regiszterek, vezérlő, sín, MMU. Utasításkészlet, CPU futási módok. Teljesítménymérés. Vadász, 7 Ea A Neumann architektúra A fő komponensek CPU A CPU: központi egység A (központi) tár (memória) Memória A perifériák, eszközök, I/O modulok A sín (busz) A működés általánosan: A CPU veszi a soron következő gépi instrukciót és azt elemzi, végrehajtja. Ha kell, adatokat is vesz. Egyes instrukciók a perifériákat kezelik. sín I/O modulok Vadász, 7 Ea
2 Egy elképzelt CPU ALU Belső sín Regiszterek Dekódoló és vezérlő Sínvezérlő Címgeneráló Vadász, 7 Ea A CPU fő részei Nagyon általánosan a fő részek: az ALU (a számolómű) más néven végrehajtó egység (VE), a regiszterkészlet (tároló hierarchia csúcs), a dekódoló-vezérlő egység, a sínkezelő, címgeneráló, védelmi egység, a sínvezérlő egység. Ennél bonyolultabb is lehet! Pl. lehet több ALU stb. Vadász, 7 Ea CPU blokk-diagram central_processing_unit Vadász, 7 Ea 6
3 86 Prefetch Unit MMU Paging Unit Bus Interface Unit Execution Unit Segment Unit Instruction Decode Unit BUS ALU Registers Protection Test Unit Control Unit Vadász, 7 Ea 7 MIPS R CP Master Pipeline / Bus Control CPU Exeption/Control Registers MMU Registers TLB Local Control Logic General Regs ALU Shifter Multipier/Divider Address Adder PC Incrementer Address Bus Data Bus Vadász, 7 Ea 8 A Pentim II elsődleges regiszterei Vadász, 7 Ea 9
4 Az R-es regiszterei Általános célú regiszterek Szorzás/osztás regiszterei Utasítás számláló r r HI LO PC r Ezekből: r: hardveresen bedrótozott -t tartalmaz r: link regiszter a jump-and-link instrukcióhoz Vadász, 7 Ea SYSTEM COPROCESSOR REGISZTEREI EntryHi EntryLo Status 6 Index Context TLB Random Cause EPC PRld 8 7 NotAccessedbyRandom BadVAddr Ezeket a virtuális memória rendszer használja Ezeket a kivételkezelés használja Vadász, 7 Ea Az ALU Aritmetikai és logikai egység Néhány (alapvető) műveletet (operációt) képes végrehajtani Összeadás, kivonás, fixpontos szorzás, osztás, léptetések, összehasonlítások (logikai műveletek). Később az instrukciókat nézzük A lebegőpontos aritmetika? Néha külön processzor erre. Vadász, 7 Ea
5 A regiszterek A CPU belső tárolói. Leggyorsabb elérés. Munkamemóriát biztosítanak a CPU számára, segítik a címképzést, segítik a vezérlést (pl. státus jellemzőket tárolva). Többnek van neve (a programozó használhatja) Különböző hosszúságúak (bitszélességűek), átlapolások lehetnek köztük. Vadász, 7 Ea A regiszterek osztályai (Programozási) felhasználási lehetőség szerint Programozó számára látható (user visible): alkalmazások és a rendszerprogramok is használhatják. Ezen belül felhasználási mód szerint általános (bármely instrukcióban használható), speciális (csak bizonyos instrukciókban használhatók). Korlátozott használatú: a processzor, esetleg operációs rendszer magja használhatja Vadász, 7 Ea A regiszterek osztályai Felhasználási cél szerint Adatregiszterek, címregiszterek, Veremmutató regiszter (SP) (a verem tetejét mutatja) Indexregiszter (bázis cím + index adja a címet), Szegmensregiszter (szegmens cím és eltolás ad címet) Címleképző táblá(ka)t mutató regiszter(ek) Vezérlő (speciális célú) regiszterek Programszámláló regiszter (PC: Program Counter; IP: Instruction Pointer) Instrukció-tároló regiszter (IR) Állapot regiszter (PSW: Program Status Word) Vadász, 7 Ea
6 Az állapot regiszter Az állapot regiszter a CPU belső állapotát tükröző állapotbiteket foglalja össze: feltétel bitek vagy flag-ek (átvitel, zero, előjel, túlcsordulás stb.), melyek az instrukciók végrehajtása végén bebillennek v. sem. Üzemmód bitek (user/kernel mode) és az IT maszk (IT enable/disable). A PSW és PC együtt alkot(hat)ja a PSLW-t (Program Status Longword). A processzor és az instrukció folyam állapotáról minden fontos információ megvan benne. Vadász, 7 Ea 6 A vezérlő és dekódoló egység A felhozott gépi instrukciót elemzi, dekódolja (pl. megállapítja, milyen mikrokódokat kell majd használni), vezérli a CPU többi egységét (pl. az utasításokat kibocsátja). A CPU sínje A CPU-n belüli adatforgalmat biztosító áramkörök. Vadász, 7 Ea 7 A címképző és a sínvezérlő egység A címképző és védelmi egység feladata a logikai (virtuális) címből a valós (fizikai) címek leképzésének segítése Ebben részegység lehet a TLB (Translation Lookaside Buffer) Részegység lehet a szegmenskezelést, a lapozást segítő MMU elem Lehet benne speciális védelmi alegység A sínvezérlő feladata az instrukciók felhozatala (fetch) a memóriából, az adatok tényleges mozgatása memóriából (load), memóriába (store), I/O modulokból (in) és modulokba (out). Vadász, 7 Ea 8 6
7 A gyorsító-tárak Korszerű architektúrákban cache memória Instrukció gyorsítótár (I-Cache) Adat gyorsítótár (D-Cache) A be-kitöltések a gyorsító-tárból történnek, de ezt a tárgyalás során néha figyelmen kívül hagyjuk A gyorsító-tárakról később lesz szó Vadász, 7 Ea 9 Az IA- architektúra: Vadász, 7 Ea Egy elképzelt mikroprocesszor Van A, B, C, Test és IP regisztere A jobboldali listán felsoroljuk az instrukciókészletét 7 címeken PROM 8 - címeken RAM Az alábbi programot a=; f=; while (a <= ) { f = f * a; a = a + ; } LOAD reg,mem //reg (mem) CON reg,const //reg const SAVE reg,mem //mem (reg) ADD r,r,r //r (r) + (r) MUL r,r,r //r (r) * (r) COMP r,r //T (r) > (r) JUMP mem IP mem JG mem ha T, akkor IP mem STOP Stop execution stb. Vadász, 7 Ea 7
8 // Assume a is at address 8 // Assume f is at address 9 CON A, // a=; SAVE A,8 CON B, // f=; SAVE B,9 LOAD A,8 // if a > CON B, 6 COMP A,B 7 JG 7 8 LOAD B,9 // f=f*a; A programunk 9 LOAD A,8 MUL C,A,B SAVE C,9 LOAD A,8 // a=a+; CON B, ADD C,A,B SAVE C,8 6 JUMP // loop back to if 7 STOP a=; f=; while (a <= ) { f = f * a; a = a + ; } Vadász, 7 Ea Az utasításkészlet A CPU architektúra specifikálja a készletet Egy instrukció: Kód Címrész Címrész Több címzési mód lehetséges direkt és indirekt memória címzés, direkt regiszter címzés, indirekt regiszter címzés, Normális, továbbá pre/post auto de/inkremens címzések, relatív címzés, közvetlen címzés. A kétoperandusú instrukció típusok az operandusok szerint Register-to-register ( olcsóbb ) Register-to-memory ( drágább ) Register-to-I/O A memória címek logikai címek. Az MMU segíti a fizikai címre való leképzést. Vadász, 7 Ea Címzési módok Direkt memória címzés CIMRÉSZ memória rekesz operandus Indirekt memória címzés CIMRÉSZ memória rekesz operandus címe operandus Direkt regiszter címzés CIMRÉSZ regiszter operandus Indirekt regiszter címzés CIMRÉSZ regiszter operandus címe operandus [++ --]SP regiszter[++ --] operandus címe operandus Relatív címzés CIMRÉSZ regiszter,eltolás operandus címe + eltolás operandus Közvetlen címzés CÍMRÉSZ operandus Vadász, 7 Ea 8
9 Instrukció csoportok Aritmetikai és logikai instrukciók ADD SUB MUL DIV AND OR XOR NOT NEG COMPL TEST COMPARE Bitléptetések forgatások, inkrementáció, dekrementáció SHIFT SLL SLR SLA SRA RCL RCR ROL ROR INC DEC Vadász, 7 Ea További instrukció csoportok Adatmozgató instrukciók LOAD STORE LB LW SB SW... MOVE IN OUT Veremkezelő instrukciók PUSH POP PUSHALL POPALL Vadász, 7 Ea 6 További csoportok Ugrások, elágazások Feltétel nélküli: JUMP BRANCH Feltételes: J(felt): JZ JS JC... BZ BS BC... Vadász, 7 Ea 7 9
10 És még további csoportok Ciklusszervező instrukciók LOOP REP Hívások, visszatérések, processz-kapcsolás CALL RET IT IRET BREAK WAIT NOP PMTSW Társprocesszor instrukciók FINIT FLD FST FADD FSUB FMUL... FWAIT Vadász, 7 Ea 8 A verem, veremkezelő instrukciók A verem (stack) absztrakt adatszerkezet, de a mai processzorok támogatják egy megvalósításukat. Ma a központi memória szegmensein. A MOVE instrukciók is kezelhetik: sérülnek az absztrakt peremfeltételek. Nézzük az ábrát! Ebben a PUSH/POP hatását, az SP változását! Vadász, 7 Ea 9 Veremtár PUSH X POP X full SP full SP full SP empty empty empty Vadász, 7 Ea
11 Az MMU Memoria Management Unit feladatai Segíteni a logikai-fizikai címleképzést, címaritmetika a hardverben, szorosan együttműködve az OS-sel. néha TLB-t használva. segíteni a memóriavédelmet. Együttműködni a buszvezérlővel. Igazán csak az OS memóriamenedzseléssel együtt érthető, ezért halasztjuk... Ismét említjük: a memória elérés a gyorsítótárakon keresztül történik Vadász, 7 Ea A processzorok működési módjai Legalább két módot elvárunk (sokszor több is) normál (user) mód, védett (kernel) mód. Privilegizáltabb. Az egyre privilegizáltabb módokban: szélesebb az instrukciókészlet, szélesebb a címtartomány. A módváltás: a trap. OS vezérelt feladat. Mindig nyilvántartott az aktuális mód. Vadász, 7 Ea Híres processzorok Pentium II, III, Celeron, Xeon, IV Itanium AMD Opteron, Turion, Athlon MIPS R,,,, DEC Alpha 6, 6, 6A, 6 IBM RS6 II, Power, Power-II, Power HP PA-RISC 8, 89 SUN Sparc, SuperSPARC, UltraSPARC IV Vadász, 7 Ea
12 mikroprocesszor történelem Name Pentium Pentium II Pentium III Pentium Date Transistors 6, 9,, 7,,,,, 7,, 9,, Microns Clock speed MHz MHz 6 MHz 6 MHz MHz 6 MHz MHz MHz Data width 8 bits 6 bits 8-bit bus 6 bits bits bits bits 6-bit bus bits 6-bit bus bits 6-bit bus MIPS.6. ~ ~,,.8. GHz bits 6-bit bus ~,7 Vadász, 7 Ea A CPU teljesítmény mérése A CPU ciklusok. Miért? A ciklusidő. Egy gépi instrukció végrehajtására,, néhányszáz ciklus kellhet. IA példák. A működési frekvencia növelése csökkenti a ciklusidőt. Hol a határ? Technológiafüggés. idő-per-feladat = C * T * I ahol: C az utasításokra eső ciklusok száma, T a ciklus ideje, I a feladatra eső utasítások száma. Vadász, 7 Ea A MIPS teljesítménymérés Millió instrukció per szekundum: MIPS MIPS i = /(T * C i ) ahol i az i-edik instrukció. De melyik? Nagy eltérések a szükséges ciklusok számában! Egyszerű ugyan, de sohasem írunk csakis i-edik instrukciókból álló programot. Lehet súlyozott átlagot adni, de mi legyen a súlyozás? Vadász, 7 Ea 6
13 A szabványos terhelésosztályok Adott típusú (integrális aritmetikai, lebegőpontos aritmetikai, grafikus, tranzakciós stb.) feladathoz terhelőprogramok (benchmark), és azt futtatva mérnek, azt statisztikázva súlyoznak. Különböző terhelésosztályok és metrikák Whetstone, Livermore Loops, Dhrystone, Linpack benchmarkok. TPC Benchmark A SPEC Vadász, 7 Ea 7 SPEC: Standard Performance Evaluation Corporation 989-ben alapították. Nonprofit szervezet. SPEC_ratio, VAX-78 a viszonyító gép 99-től: SPECint9: 8 normalizált integer teszt geom. átl. SPECfp9: normalizált lebegőpontos teszt g. átl. 99-től (viszonyító: SPARCstation /) CINT9 CFP9 -től CINT ( teszt, metrika) CFP ( tesz, metrika) Vadász, 7 Ea 8 SPEC CPU 6 Viszonyító gép: Sun UltraSparc II., 96 MHz CINT6 ( teszt, metrika) szövet SPECint6 SPECint_base6 SPECint_rate6 SPECint_rate_base6 CFP6 ( teszt, metrika) szövet SPECfp6 SPECfp_base6 SPECfp_rate6 SPECfp_rate_base6 Vadász, 7 Ea 9
14 A metrikák A sebesség metrikák (nincs rate ): egy processzoros gépek összevetésére. (A teszt mennyi idő alatt fut le.) (név nélkül, peak): agresszív optimalizáló fordítókkal base: konzervatív fordítás Átbocsátó képesség (throughput) metrikák (rate): sokprocesszoros gépek összehasonlítására. (A tesztet sok példányban futtatják, és mérik, hogy időegység alatt hány példány fut le.) (név nélkül, peak): agresszív optimalizáló fordítókkal base: konzervatív fordítás Vadász, 7 Ea SPECint, SPECfp AI, go játék Moto88K chip szimul. CC verzió kompesszáló-dekompr. LISP interpreter jpeg graf kompressdekompr AB kezelő végeselem hálógeneráló hullámzó víz modell (* griden) Monte Carlo szimuláció hidrodinamikai egyenletek D feszülts. mező számítás parciális diff. egy. megoldás szimulált turbulencia számítás meteorológiai modell quantum kémiai probléma plazmafizikai probléma Vadász, 7 Ea IDEAS Top Performers IDEAS Top Performers - SPECint Benchmark menüpont, SPEC almenüpont... Vadász, 7 Ea
15 . április Vadász, 7 Ea. március Vadász, 7 Ea IDEAS Top Performers - SPECint. március R A N K System # C P U Processor Re Su lt Ba se line Test Date IBM Corporation IBM eserver pseries 69 Turbo POWER 8 79 Nov- Precision WorkStation (. GHz P) Pentium 8 79 Jan- Precision WorkStation (. GHz Xeon) Xeon Jan- Precision WorkStation (. GHz P) Pentium Jan- Precision WorkStation (. GHz Xeon) Xeon 8 78 Jan- 6 Corporation D8MD motherboard (. GHz, Pentium processor) Pentium processor (. GHz, MHz bus) Nov- 7 Precision WorkStation (.A GHz P) Pentium Jan- 8 Precision WorkStation (. GHz Xeon) Xeon Jan- 9 Precision WorkStation (.A GHz P) Pentium 7 7 Jan- Precision WorkStation (. GHz Xeon) Xeon 7 7 Jan- Corporation D8MD motherboard (.A GHz, Pentium processor) Pentium processor (.A GHz, MHz bus) 7 7 Nov- Advanced Micro Devices Epox 8KHA+ Motherboard, AMD Athlon (TM) XP + AMD Athlon (TM) XP Jan- Advanced Micro Devices Epox 8KHA+ Motherboard, AMD Athlon (TM) XP 9+ AMD Athlon (TM) XP Oct- Compaq Computer Corporation AlphaServer ES Model 68/ Alpha 6C Jun- Advanced Micro Devices Epox 8KHA+ Motherboard, AMD Athlon (TM) XP 8+ AMD Athlon (TM) XP Oct- Vadász, 7 Ea
16 R IDEAS Top Performers - SPECint () System # Processzor Result Basee Date Corporatio n Corporatio n Fujitsu Siemens C Corporatio n Precision WorkStation (.6 Pentium ( MHz system bus) GHz P) D8EMVR motherboard Pentium Processor with HT (.6 GHz, Pentium Technology (.6 GHz, MHz processor with HT bus) Technology) Precision WorkStation (.6 Pentium ( MHz system bus) GHz P) Precision WorkStation (.8 Pentium ( MHz system bus) GHz P) D8EMVR motherboard Pentium processor (.8 GHz, (.8 GHz, Pentium MHz bus) processor) Precision WorkStation (.66 Pentium ( MHz system bus) GHz P) Xeon processor (.8 GHz, MHz CELSIUS R6 bus) # IDEAS Top Performers - SPECint ( március) Rank System C Processor P U Pea k Res ult Basel ine Test Date Corporation D87PBZ motherboard (AA-6)(. GHz, Pentium Processor with HT Technology Extreme Edition) Pentium Processor with HT Technology Extreme Edition (. GHz, 8 MHz bus) Jan- Corporation D87PBZ (AA-6) motherboard (. GHz, Pentium processor with HT Technology Extreme Edition) Pentium Processor with HT Technology Extreme Edition (. GHz, 8 MHz bus) 6 8 Sep- Precision Workstation 6 (. GHz Pentium Extreme Edition) Pentium (8 MHz system bus) 6 7 Feb IBM Corporation ION Computer Systems Advanced Micro Devices Sep- Precision WorkStation (.8 Pentium ( MHz system bus) GHz P) D8EMVR motherboard Jul- Pentium processor (.67 GHz, (.67 GHz, Pentium Vadász, 7 MHz bus) processor) Ea 6 Nov- Aug- Nov- Nov- Jul- Nov- Feb- Precision Workstation 6 Xeon ( MHz Jan- (. GHz Xeon, MB L 6 system bus) Cache) IBM x(.ghz, MHZ Feb- Xeon processor 7 8 FSB) Precision Workstation 6 Pentium (8 Nov- (. GHz Pentium Extreme 6 MHz system bus) Edition) SRWV (.GHz Xeon Xeon processor, Feb- processor w. MB L cache) MHz system bus ASUS SK8N Motherboard, Nov- AMD Opteron (TM) 8 77 AMD Opteron (TM) 8 Vadász, 7 Ea 7 Precision Workstation 6 Pentium (8 Jan- 69 ( GHz Pentium ) MHz system bus) IDEAS Top Performers - SPECint ( március) R a n k Compan y System # CPU Processor Peak Base Dat e Corporati on (R) D9XECV motherboard(.7 GHz, (R) Pentium(R) processor Extreme Edition supporting Hyper- Threading Technology) core, chip, core/chip (Hyper- Threading Technology enabled) (R) Pentium(R) processor Extreme Edition supporting Hyper-Threading Technology(.7 GHz, 66 MHz bus) Dec - Advanced Micro Devices MSI K8N Neo Platinum Motherboard, AMD Athlon (TM) 6 FX- core, chip, core/chip AMD Athlon (TM) 6 FX- (ADAFXDEIAS) 8 7 Sep - Corporati on (R) D9XECV motherboard(.6 GHz, (R) Pentium(R) processor 66 supporting Hyper-Threading Technology) (R) Pentium(R) processor 66 supporting Hyper- Threading Technology (.6 GHz, 8 MHz bus) core, chip, core/chip (Hyper- Threading Technology enabled) 78 7 Nov - Vadász, 7 Ea 8 6
17 IDEAS Top Performers - SPECint (6. február) System #CPU Processor Result Baseline Test Date Advanced Micro Devices ASUS A8N-SLI Deluxe, AMD Athlon (TM) 6 FX-7 core, chip, core/chip AMD Athlon (TM) 6 FX Jun- Advanced Micro Devices TYAN Tomcat K8E (S86), AMD Opteron (TM) core, chip, core/chip AMD Opteron (TM) (99- pin) Aug- Hewlett- Packard ProLiant DL8 (AMD Opteron (TM) ) core, chip, core/chip AMD Opteron (TM) 9 87 Aug- Fujitsu Siemens Computers CELSIUS H, Pentium M 78 core, chip, core/chip Pentium M 78 (.6 GHz) 89 8 Jul- Vadász, 7 Ea 9. március Vadász, 7 Ea Rank Fujitsu Limited Fujitsu Siemens Computers Hewlett Packard Corporation Fujitsu Limited Fujitsu Siemens Computers Hewlett Packard Compaq Computer Corporation Hewlett Packard Corporation IDEAS Top Performers - SPECint_rate. március # Resu Base Test System Processor CPU lt line Date Origin 8 6X MHz Rk 6 R 89 Nov- Origin 8 8X MHz Rk 8 R 6 8 Nov- SPARC6 PRIMEPOWER (67MHz) 8 7 Sep- GP SPARC6 PRIMEPOWER (67MHz) 8 7 Sep- GP Origin 8 8X MHz Rk 8 R 79 Aug- 8 8X MHz Rk 8 R 77 9 May- HP Superdome 6-way (7MHz PA-87) 6 PA Aug- SPARC6 PRIMEPOWER (67MHz) Sep- GP SPARC6 PRIMEPOWER (67MHz) Sep- GP Origin 8 6X MHz Rk 6 R 7 96 May- 6X MHz Rk 6 R Aug- HP9 Superdome 6-way (MHz PA- 6 PA Mar- 86) Origin 8 6X MHz Rk 6 R 9 Jul- Alpha AlphaServer GS Model 68/ 8 Jun- 6C HP Superdome -way (7MHz PA-87) PA Sep- Vadász, 7 Ea 7
18 IDEAS Top Performers - SPECint_rate ( március) Ran k System # CPU Processor Result Baseline Test Date Origin 8 6X 6MHz RA 6 R A Aug- Origin 8 6X MHz Rk 6 R 89 Nov- Origin 8 8X 6MHz Rk 8 R 7 69 Feb- Origin 8 8X MHz Rk 8 R 6 8 Nov- Fujitsu Limited PRIMEPOWER (67MHz) 8 SPARC6 GP 7 Sep- 6 Fujitsu Siemens Computers PRIMEPOWER (67MHz) 8 SPARC6 GP 7 Sep- 7 Origin 8 8X MHz Rk 8 R 79 Aug X MHz Rk 8 R 77 9 May- 9 Hewlett-Packard HP Superdome 6-way (87MHz PA-87+) 6 PA Jun- Hewlett-Packard HP Superdome 6-way (7MHz Vadász, PA-87) 7 6 PA Ea Aug- IDEAS Top Performers - SPECint_rate ( március) Ra nk System # CPU Processor Result Baseli ne Test Date Origin 8 6X 6MHz RA 6 RA Aug- Origin 8 6X MHz Rk 6 R 89 Nov- Aug- Hewlett- Packard HP Integrity Superdome 6-way ( MHz Itanium ) 6 Itanium 9 9 Altix (MHz, Itanium ) 6 Itanium 8 Sep- Altix (MHz, Itanium ) 6 Itanium 7 Dec- 6 Origin 8 8X 6MHz Rk 8 R 7 69 Feb- 7 Altix (MHz, Itanium ) 6 Itanium 6 6 Jun- 8 Origin 8 8X MHz Rk 8 R 6 8 Nov- Vadász, 7 Ea Compan y System # CPU Processor R B Dat e Altix 7 Bx (6MHz 6M L, Itanium ) 8 cores, 8 chips, core/chip Itanium 96 Nov - Altix (MHz, Itanium ) 8 cores, 8 chips, core/chip Itanium 7 Apr - Altix 7 Bx (MHz, Itanium ) 8 cores, 8 chips, core/chip Itanium 7 Dec - Origin 8 6X 6MHz RA 6 RA Aug - Origin 8 6X MHz Rk 6 R 89 Nov - 6 Hewlett- Packard HP Integrity Superdome (.6GHz/9MB Itanium, 6 cells) 6 cores, 6 chips, core/chip Itanium (.6GHz/9MB, MHz FSB) 8 8 Jan - 7 IBM IBM eserver p 9 (9 MHz, 6 CPU) 6 cores, chips, cores/chip (SMT on) POWER 7 6 Oct - 8 Altix 7 Bx (6MHz 9M L, Itanium ) 6 cores, 6 chips, core/chip Itanium Oct - Vadász, 7 Ea IDEAS Top Performers - SPECint_rate ( március) 8
19 Számítógép architektúrák A processzor VÉGE 9
A mai program. Számítógép architektúrák. Egy elképzelt CPU. A Neumann architektúra. CPU blokk-diagram. A CPU fő részei
A mai program Számítógép architektúrák A CPU és részei ALU, regiszterek, vezérlő, sín, MMU. Utasításkészlet, CPU futási módok. Teljesítménymérés. A processzor A processzor Vadász,. Ea A Neumann architektúra
Egy elképzelt CPU. A CPU fő részei. Intel 386. Dekódoló és Sínvezérlő. Regiszterek
Számítógép architektúrák A processzor A mai program A CPU és részei ALU, regiszterek, vezérlő, sín, MMU. Utasításkészlet, CPU futási módok. Teljesítménymérés. Vadász, Ea A Neumann architektúra A fő komponensek
Számítógép architektúrák. A processzor
Számítógép architektúrák A processzor A CPU és részei A mai program ALU, regiszterek, vezérlő, sín, MMU. Utasításkészlet, CPU futási módok. Teljesítménymérés. A processzor Vadász, 2008. Ea4 2 A Neumann
SZÁMÍTÓGÉPEK, SZÁMÍTÓGÉPRENDSZEREK. A mai program. A Neumann architektúra. Hardver architektúrák, a CPU 6. előadás
SZÁMÍTÓGÉPEK, SZÁMÍTÓGÉPRENDSZEREK Hardver architektúrák, a CPU. előadás Ea A mai program és részei ALU, regiszterek, vezérlő, sín, MMU. Utasításkészlet, CPU futási módok. Teljesítménymérés és fokozás.
Számítógép architektúrák. A processzor
Számítógép architektúrák A processzor A CPU és részei A mai program ALU, regiszterek, vezérlő, sín, MMU. Utasításkészlet, CPU futási módok. Teljesítménymérés. A processzor Vadász, 2008. Ea4 2 A Neumann
Számítógépek, számítógép rendszerek
Számítógépek, számítógép rendszerek 5. Hardver architektúrák, a CPU Dr. Vadász Dénes Miskolc, 2005. február TARTALOM TARTALOM... a 5. Hardver architektúrák, a központi egység működése... 1 5.1. Az ALU
Digitális rendszerek. Utasításarchitektúra szintje
Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik
1. Az utasítás beolvasása a processzorba
A MIKROPROCESSZOR A mikroprocesszor olyan nagy bonyolultságú félvezető eszköz, amely a digitális számítógép központi egységének a feladatait végzi el. Dekódolja az uatasításokat, vezérli a műveletek elvégzéséhez
Számítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
Bevezetés az informatikába
Bevezetés az informatikába 3. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Központi vezérlőegység
Központi vezérlőegység A számítógép agya a központi vezérlőegység (CPU: Central Processing Unit). Két fő része a vezérlőegység (CU: Controll Unit), ami a memóriában tárolt program dekódolását és végrehajtását
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
8. Fejezet Processzor (CPU) és memória: tervezés, implementáció, modern megoldások
8. Fejezet Processzor (CPU) és memória: The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
találhatók. A memória-szervezési modell mondja meg azt, hogy miként
Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési
Számítógép Architektúrák
Számítógép Architektúrák Utasításkészlet architektúrák 2015. április 11. Budapest Horváth Gábor docens BME Hálózati Rendszerek és Szolgáltatások Tsz. ghorvath@hit.bme.hu Számítógép Architektúrák Horváth
Assembly. Iványi Péter
Assembly Iványi Péter További Op. rsz. funkcionalitások PSP címének lekérdezése mov ah, 62h int 21h Eredmény: BX = PSP szegmens címe További Op. rsz. funkcionalitások Paraméterek kimásolása mov di, parameter
A Számítógépek felépítése, mőködési módjai
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek felépítése, mőködési módjai Mikroprocesszoros Rendszerek Felépítése Buszrendszer CPU OPERATÍV TÁR µ processzor
Assembly utasítások listája
Assembly utasítások listája Bevezetés: Ebben a segédanyagban a fontosabb assembly utasításokat szedtem össze. Az utasítások csoportosítva vannak. A fontos kategóriába azok az utasítások tartoznak, amiknek
Számítógép architektúrák. A mai témák. A teljesítmény fokozás. A processzor teljesítmény növelése
Számítógép architektúrák A processzor teljesítmény növelése A mai témák CISC és RISC Párhuzamosságok Utasítás szintű párhuzamosságok Futószalag feldolgozás Többszörözés (szuperskalaritás) A függőségek
A mai témák. Számítógép architektúrák. CISC és RISC. A teljesítmény fokozás. További előnyök. A RISC gondolat
A mai témák Számítógép architektúrák A processzor teljesítmény növelése CISC és RISC Párhuzamosságok Utasítás szintű párhuzamosságok Futószalag feldolgozás Többszörözés (szuperskalaritás) A függőségek
5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
Máté: Számítógép architektúrák 2010.12.01.
Máté: Számítógép architektúrák... A feltételes ugró utasítások eldugaszolják a csővezetéket Feltételes végrehajtás (5.5 5. ábra): Feltételes végrehajtás Predikáció ió C pr. rész Általános assembly Feltételes
7. Fejezet A processzor és a memória
7. Fejezet A processzor és a memória The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK
VI. SZOFTVERES PROGRAMOZÁSÚ VLSI ÁRAMKÖRÖK 1 Az adatok feldolgozását végezhetjük olyan általános rendeltetésű digitális eszközökkel, amelyeket megfelelő szoftverrel (programmal) vezérelünk. A mai digitális
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van
SzA19. Az elágazások vizsgálata
SzA19. Az elágazások vizsgálata (Az elágazások csoportosítása, a feltételes utasítások használata, a műveletek eredményének vizsgálata az állapottér módszerrel és közvetlen adatvizsgálattal, az elágazási
A számítógép alapfelépítése
Informatika alapjai-6 számítógép felépítése 1/8 számítógép alapfelépítése Nevezzük számítógépnek a következő kétféle elrendezést: : Harvard struktúra : Neumann struktúra kétféle elrendezés alapvetően egyformán
Mikroprocesszor CPU. C Central Központi. P Processing Számító. U Unit Egység
Mikroprocesszor CPU C Central Központi P Processing Számító U Unit Egység A mikroprocesszor általános belső felépítése 1-1 BUSZ Utasítás dekóder 1-1 BUSZ Az utasítás regiszterben levő utasítás értelmezését
Egyszerű RISC CPU tervezése
IC és MEMS tervezés laboratórium BMEVIEEM314 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyszerű RISC CPU tervezése Nagy Gergely Elektronikus Eszközök Tanszéke (BME) 2013. február 14. Nagy Gergely
Számítógépek, számítógép rendszerek
Számítógépek, számítógép rendszerek 6. Processzor teljesítmény növelés Dr. Vadász Dénes Miskolc, 2005. február TARTALOM TARTALOM... a 6. Processzor teljesítmény növelés... 1 6.1. A processzorok ciklusideje
Máté: Assembly programozás
Dr. Máté Eörs docens Képfeldolgozás és Számítógépes Grafika Tanszék Árpád tér 2. II. em. 213 6196, 54-6196 (6396, 54-6396) http://www.inf.u-szeged.hu/~mate Tantárgy leírás: http://www.inf.u-szeged.hu/oktatas/kurzusleirasok/
Az integrált áramkörök kimenetének kialakítása
1 Az integrált áramörö imeneténe ialaítása totem-pole three-state open-olletor Az áramörö általános leegyszerűsített imeneti foozata: + tápfeszültség R1 V1 K1 imenet V2 K2 U i, I i R2 ahol R1>>R2, és K1,
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás
Járműfedélzeti rendszerek I. 3. előadás Dr. Bécsi Tamás ATmega128 CPU Single-level pipelining Egyciklusú ALU működés Reg. reg., reg. konst. közötti műveletek 32 x 8 bit általános célú regiszter Egyciklusú
Architektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes
Architektúra, cache irıl lesz szó? Alapfogalmak Adat cache tervezési terének alapkomponensei Koschek Vilmos Fejlıdés vkoschek@vonalkodhu Teljesítmény Teljesítmény növelése Technológia Architektúra (mem)
A MiniRISC processzor
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A MiniRISC processzor Fehér Béla, Raikovich Tamás, Fejér Attila BME MIT
Processzor (CPU - Central Processing Unit)
Készíts saját kódolású WEBOLDALT az alábbi ismeretanyag felhasználásával! A lap alján lábjegyzetben hivatkozz a fenti oldalra! Processzor (CPU - Central Processing Unit) A központi feldolgozó egység a
A 32 bites x86-os architektúra regiszterei
Memória címzési módok Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
Teljesítmény: időegység alatt végrehajtott utasítások száma. Egységek: MIPS, GIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS. Mai nagyteljesítményű GPGPU k: 1-2
2009. 10. 21. 1 2 Teljesítmény: időegység alatt végrehajtott utasítások száma. Egységek: MIPS, GIPS, MFLOPS, GFLOPS, TFLOPS, PFLOPS. Mai nagyteljesítményű GPGPU k: 1-2 PFLOPS. (Los Alamosban 1 PFLOPS os
Bevezetés a számítástechnikába
Bevezetés a számítástechnikába, Címzési módok, Assembly Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 2/9. ú utasítás
Balaton Marcell Balázs. Assembly jegyzet. Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született.
Balaton Marcell Balázs Assembly jegyzet Az Assembly egy alacsony szintű nyelv, mely a gépi kódú programozás egyszerűsítésére született. 1. Regiszterek Regiszterek fajtái a. Szegmensregiszterek cs (code):
Dr. Illés Zoltán zoltan.illes@elte.hu
Dr. Illés Zoltán zoltan.illes@elte.hu Operációs rendszerek kialakulása Op. Rendszer fogalmak, struktúrák Fájlok, könyvtárak, fájlrendszerek Folyamatok Folyamatok kommunikációja Kritikus szekciók, szemaforok.
Mikrorendszerek tervezése
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Mikrorendszerek tervezése MicroBlaze processzor Fehér Béla Raikovich Tamás
A mikroprocesszor felépítése és működése
A mikroprocesszor felépítése és működése + az egyes részegységek feladata! Információtartalom vázlata A mikroprocesszor feladatai A mikroprocesszor részegységei A mikroprocesszor működése A mikroprocesszor
VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek)
SzA35. VLIW processzorok (Működési elvük, jellemzőik, előnyeik, hátrányaik, kereskedelmi rendszerek) Működési elvük: Jellemzőik: -függőségek kezelése statikusan, compiler által -hátránya: a compiler erősen
A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg.
Mikroprocesszor A mikroprocesszor egy RISC felépítésű (LOAD/STORE), Neumann architektúrájú 32 bites soft processzor, amelyet FPGA val valósítunk meg. A mikroprocesszor részei A mikroprocesszor a szokásos
Számítógép architektúrák. A processzor teljesítmény növelése
Számítógép architektúrák A processzor teljesítmény növelése A mai témák CISC és RISC Párhuzamosságok Utasítás szintű párhuzamosságok Futószalag feldolgozás Többszörözés (szuperskalaritás) A függőségek
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?
Számítógépes alapismeretek
Számítógépes alapismeretek 1. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Programtervező Informatikus BSc 2008 / Budapest
Máté: Számítógép architektúrák
Máté: Számítógép architektúrák 211117 Utasításrendszer architektúra szintje ISA) Amit a fordító program készítőjének tudnia kell: memóriamodell, regiszterek, adattípusok, ok A hardver és szoftver határán
Bevezetés a számítástechnikába
Bevezetés a számítástechnikába Megszakítások Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 9. Bevezetés Megszakítások
Assembly Utasítások, programok. Iványi Péter
Assembly Utasítások, programok Iványi Péter Assembly programozás Egyszerű logikán alapul Egy utasítás CSAK egy dolgot csinál Magas szintű nyelven: x = 5 * z + y; /* 3 darab művelet */ Assembly: Szorozzuk
TANÚSÍTVÁNY KARBANTARTÁS Jegyzıkönyv
TANÚSÍTVÁNY KARBANTARTÁS Jegyzıkönyv A HUNGUARD Számítástechnikai-, informatikai kutató-fejlesztı és általános szolgáltató Kft. a 9/2005. (VII.21.) IHM rendelet alapján, mint a Magyar Köztársaság Miniszterelnöki
Digitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Inf. Rendszerek Tanszék Digitális Technika I. (VEMIVI1112D) Bevezetés. Hol tart ma a digitális technológia? Előadó: Dr. Vassányi István vassanyi@almos.vein.hu Feltételek:
Assembly programozás levelező tagozat
Assembly programozás levelező tagozat Szegedi Tudományegyetem Képfeldolgozás és Számítógépes Grafika Tanszék 2011-2012-2 Tematika Assembly nyelvi szint. Az Intel 8086/88 regiszter készlete, társzervezése,
2017/12/16 21:33 1/7 Hardver alapok
2017/12/16 21:33 1/7 Hardver alapok < Hardver Hardver alapok Szerző: Sallai András Copyright Sallai András, 2011, 2013, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés A számítógépet
Ismétlés: Moore törvény. Tranzisztorok mérőszáma: n*százmillió, n*milliárd.
1 2 3 Ismétlés: Moore törvény. Tranzisztorok mérőszáma: n*százmillió, n*milliárd. 4 5 Moore törvényhez érdekesség: a várakozásokhoz képest folyamatosan alulteljesített, ezért többször is újra lett fogalmazva
A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem)
65-67 A processzor hajtja végre a műveleteket. összeadás, szorzás, logikai műveletek (és, vagy, nem) Két fő része: a vezérlőegység, ami a memóriában tárolt program dekódolását és végrehajtását végzi, az
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 2. előadás A STRUKTURÁLT SZÁMÍTÓGÉP-FELÉPÍTÉS 2. előadás 1. Nyelvek, szintek és virtuális
Architektúra, megszakítási rendszerek
Architektúra, megszakítási ek Mirıl lesz szó? Megszakítás fogalma Megszakítás folyamata Többszintű megszakítási ek Koschek Vilmos Példa: Intel Pentium vkoschek@vonalkodhu Koschek Vilmos Fogalom A számítógép
Máté: Számítógép architektúrák
I-51 (19) Cél: beépített rendszerekben való alkalmazás Fő szempont: olcsóság (ma már 1-15 ), sokoldalú alkalmazhatóság A memóriával, be- és kivitellel együtt egyetlen lapkára integrált számítógép Mikrovezérlő
Digitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Inf. Rendszerek Tanszék Digitális Technika I. (VEMIVI1112D) Bevezetés. Hol tart ma a digitális technológia? Előadó: Dr. Vassányi István vassanyi@almos.vein.hu Feltételek:
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő
2016/08/31 02:45 1/6 Hardver alapok
2016/08/31 02:45 1/6 Hardver alapok < Hardver Hardver alapok Szerző: Sallai András Copyright Sallai András, 2011, 2013, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés A számítógépet
Számítógép architektúrák Korszerű architektúrák Mai program Pentium P6 processzor (esettanulmány) Párhuzamosítások a CPU-n kívül
Számítógép architektúrák Korszerű architektúrák Mai program Pentium P6 processzor (esettanulmány) Párhuzamosítások a CPU-n kívül Vadász, 2005. 2 Az Intel P6 család IA instrukciókat feldolgozó (x86 és Katmai
Máté: Számítógép architektúrák
Pentium 4 Nagyon sok előd kompatibilitás!), a fontosabbak: 44: 4 bites, 88: 8 bites, 886, 888: es, 8 bites adat sín 8286: 24 bites nem lineáris) címtartomány 6 K darab 64 KB-os szegmens) 8386: IA-32 architektúra,
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS
Összeadás BCD számokkal
Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok
Hardver Ismeretek IA32 -> IA64
Hardver Ismeretek IA32 -> IA64 Problémák az IA-32-vel Bonyolult architektúra CISC ISA (RISC jobb a párhuzamos feldolgozás szempontjából) Változó utasításhossz és forma nehéz dekódolni és párhuzamosítani
Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Digitális technika VIMIAA01 9. hét
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 9. hét Fehér Béla BME MIT Eddig Tetszőleges
Adatok ábrázolása, adattípusok
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
Adatelérés és memóriakezelés
Adatelérés és memóriakezelés Jelen nayagrészben az Intel x86-os architektúrára alapuló 32 bites processzorok programozását tekintjük. Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről)
Informatika 1 2. el adás: Absztrakt számítógépek
Informatika 1 2. el adás: Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 1 2 3 A egy M = Q, Γ, b, Σ, δ, q 0, F hetes, ahol Q az 'állapotok' nem üres halmaza, Γ a 'szalag ábécé' véges, nem üres
Számítógép architektúrák. Tartalom. A memória. A memória
Számítógép architektúrák A memória Tartalom Félvezető tárolók DRAM, SRAM ROM, PROM Tokozások, memóriamodulok Lokalitás elve Gyorsítótárak (cache) A memória Vadász, 2007. Ea7 2 A memória Tár: programok
Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006
Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 4. szemeszter A PROCESSZOR A processzorok jellemzése A processzor felépítése A processzorok üzemmódjai Regiszterkészlet Utasításfelépítés,
Számítógép architektúrák. Korszerű architektúrák
Számítógép architektúrák Korszerű architektúrák Mai program Pentium P6 processzor (esettanulmány) Párhuzamosítások a CPU-n kívül 2 Az Intel P6 család IA instrukciókat feldolgozó (x86, MMX, Katmai Iset),
Számítógép architektúrák
Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált
SZÁMÍTÓGÉPES ARCHITEKTÚRÁK A STRUKTURÁLT SZÁMÍTÓGÉP-FELÉPÍTÉS. Misák Sándor. 2. előadás DE TTK
Misák Sándor SZÁMÍTÓGÉPES ARCHITEKTÚRÁK Nanoelektronikai és Nanotechnológiai Részleg 2. előadás A STRUKTURÁLT SZÁMÍTÓGÉP-FELÉPÍTÉS DE TTK v.0.1 (2007.02.13.) 2. előadás 1. Nyelvek, szintek és virtuális
Számítógépek architektúrák. Bemutatkozom. A tárgy célja. Architektúrák
Számítógépek architektúrák Architektúrák Bemutatkozom Dr. Vadász Dénes, egyetemi docens vadasz@iit.uni-miskolc.hu http://www.iit.uni-miskolc.hu/~vadasz Informatikai Intézet épülete, I. emelet, 111. szoba
Számítógép Architektúrák
Multiprocesszoros rendszerek Horváth Gábor 2015. május 19. Budapest docens BME Híradástechnikai Tanszék ghorvath@hit.bme.hu Párhuzamosság formái A párhuzamosság milyen formáit ismerjük? Bit szintű párhuzamosság
Számítógép architektúrák. Bemutatkozom. A tárgy címe, célja. Számítógépek, számítási modellek
Számítógép architektúrák Számítógépek, számítási modellek Bemutatkozom Dr. Vadász Dénes, tanszékvezető egyetemi docens vadasz@iit.uni-miskolc.hu http://www.iit.uni-miskolc.hu/~vadasz Informatikai Intézet
Számítógép Architektúrák (MIKNB113A)
PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 4. előadás: Utasítás végrehajtás folyamata: címzési módok, RISC-CISC processzorok Előadó:
Multimédia hardver szabványok
Multimédia hardver szabványok HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler
Máté: Számítógép architektúrák
NEXT ADDRESS JMPC JAMN JAMZ SLL8 SRA1 F0 F1 ENA EN INVA INC H OPC TOS LV SP PC MDR MAR WRITE READ FETCH 4 sín Mikroutasítások 24 bit: az adatút vezérléséhez bit: a következő utasítás címének megadásához,
Számítógépek architektúrák. Architektúrák
Számítógépek architektúrák Architektúrák Bemutatkozom Dr. Vadász Dénes, egyetemi docens vadasz@iit.uni-miskolc.hu http://www.iit.uni-miskolc.hu/vadasz Informatikai Intézet épülete, I. emelet, 111. szoba
ARM (Advanced RISC Machine)
POWERED ARM ARM (Advanced RISC Machine) 1983 kisérleti projekt Acorn Computers Ltd., 1985 ARM1 fejlesztői minták, 1985 ARM2 32 bites adatbusz 64MB memória címezhető, 1989 ARM3 4K cache, 1990 ARM név változtatás
2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés
. Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve
Számítógép architektúrák
Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált (magas
Számítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
A mikroszámítógép felépítése.
1. Processzoros rendszerek fő elemei mikroszámítógépek alapja a mikroprocesszor. Elemei a mikroprocesszor, memória, és input/output eszközök. komponenseket valamilyen buszrendszer köti össze, amelyen az
Digitális Technika I. (VEMIVI1112D)
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI1112D) Bevezetés. Hol tart ma a digitális technológia? Előadó: Dr. Vörösházi Zsolt voroshazi@vision.vein.hu Feltételek:
SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1
INFORMATIKAI RENDSZEREK ALAPJAI (INFORMATIKA I.) 1 NEUMANN ARCHITEKTÚRÁJÚ GÉPEK MŰKÖDÉSE SZÁMÍTÓGÉPEK BELSŐ FELÉPÍTÉSE - 1 Ebben a feladatban a következőket fogjuk áttekinteni: Neumann rendszerű számítógép
Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter
Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot
Assembly. Iványi Péter
Assembly Iványi Péter Miért? Ma már ritkán készül program csak assembly-ben Általában bizonyos kritikus rutinoknál használják Miért nem használjuk? Magas szintű nyelven könnyebb programozni Nehéz más gépre
DSP architektúrák dspic30f család
DSP architektúrák dspic30f család A Microchip 2004 nyarán piacra dobta a dspic30f családot, egy 16 bites fixpontos DSC. Mivel a mikróvezérlők tantárgy keretén belül a PIC családdal már megismerkedtetek,
Operációs rendszerek Memóriakezelés 1.1
Operációs rendszerek Memóriakezelés 1.1 Pere László (pipas@linux.pte.hu) PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR INFORMATIKA ÉS ÁLTALÁNOS TECHNIKA TANSZÉK Operációs rendszerek p. A memóriakezelő A
A Számítógépek hardver elemei
Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítógépek hardver elemei Korszerű perifériák és rendszercsatolásuk A µ processzoros rendszer regiszter modellje A µp gépi
Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu
Számítógép architektúrák I. Várady Géza varadygeza@pmmik.pte.hu 1 Bevezetés - fogalmak Informatika sokrétű Információk Szerzése Feldolgozása Tárolása Továbbítása Információtechnika Informatika a technikai
Utasításszintű architektúra Adattér
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Utasításszintű architektúra Adattér Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu ISA Instruction Set