Felderítő statisztika
|
|
- Erik Zsigmond Katona
- 6 évvel ezelőtt
- Látták:
Átírás
1 Felerítő tatztka Aatok-. Aatok.. Az aat fogalma Az aat valamely vzgált obektum mért vagy megfgyelt tulaonágát megaó, többnyre numerku érték. Az obektum (obect, obervaton, cae, nvual, Merkmalträger) é a tulaonág (varable, ecrptor, Merkmal) fogalmakat elvontan értelmezzük, gyakorlatban azok ugyan legkülönbözőbb alakban elenhetnek meg. Pélákat a az. táblázat:. táblázat. Obektumok é tulaonágok obektum tulaonág anyagmnták özetétel olatok komponen koncentrácók pektrumok cúcmagaágok pácenek lelet eremények emberek tetméretek, hazín tb. folyók vízhozamok orzágok népeeé aatok.2. Az aatok fatá Az aatok az obektumok tulaonága ellegének megfelelően kategorku (nem metrku, kvaltatív, oztályozó) é metrku (kvanttatív) aatok lehetnek. A kategorku aatok obektumok coportanak (kategórának) megnevezée, eetleg kóa, vagy a coportokhoz önkényeen renelt rangzámok, a metrku aatok peg méréek vagy lezámláláok ereménye. A kategorku aatok következőképpen coportoíthatók: a) neveítő vagy nomnál aatok, amelyek az obektumoknak egy olyan mnőég tulaonágát írák le, amelyek az obektum valamely egyértelmű oztályozáát tezk lehetővé (nem, név, foglalkozá, zín, íz tb). Két obektum a nomnál tulaonágban vagy megegyezk, vagy nem, az lyen aatokra tehát az A B, avagy A B művelet értelmezett. Ha az obektumok olyan coportokba ozthatók, amelyek egymá komplementuma (A é nem A), a nomnál aat gen avagy nem (y/n, /0) értékű lehet. Ezek a chotomku vagy C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
2 Felerítő tatztka Aatok-2 bnár aatok. A nomnál aatok eetén a gyakorág-, é a móuz zámoláának lehet értelme. b) renező vagy ornál aatok, amelyek az obektumoknak olyan mnőég tulaonágát írák le, amelyek nagyág zernt orbaállíthatók, renezhetők. (pélául kola éremegy, renfokozat, betegég foka, vaut kocoztály tb). A renező aatokra már már az A B C... relácó érvénye. Renező aatok az obektumok mnőítő oztályozáára haználhatók, é belőlük már egye leíró tatztka ellemzők zámíthatók (gyakorág, móuz, meán, kvantlek, tereelem tb). A mérhető vagy metrku aatok két coportba ozthatók: különbég (ntervallum) kálán é arányo kálán értelmezett aatok. A különbég (ntervallum) kálán értelmezett aatoknak önkénye 0-ponta van, így cak különbégüknek van értelme, arányuknak azonban nem. lyen mennyég pélául az energa, a Celu fokban mért hőméréklet. Az értelmezett műveletek:,, <, >, é a + é. Az arányo kálán értelmezett aatoknak, lévén való 0-pontuk, arányuk értelme. lyen a legtöbb fzka, kéma ellemző: hoz, térfogat, anyagmennyég, abzolut hőméréklet. Eetükben az,, <, >,, + é műveletek mellett a multplkatv műveletek alkalmazhatók. Az aatok lyen coportroítáa az.2 táblázatban látható.. 2 táblázat. Aatok coportoítáa Coport Fata Értelmezhető Érték művelet Kategorku neveítő, (nomnál) A B, A B verbál név, kó chotomku (bnár) gen / nem, y / n, / 0 renező (ornál) A B C,2,3,...,.,... +, ++,+++,... Mérhető vagy metrku különbég (ntervallum) kálán,, <, >, + é. zkét vagy folytono való értelmezett arányo kálán értelmezett,, <, >, +,,* é / zámok zkét vagy folytono való zámok í Technka okokból fgyelembe zoká venn, hogy a numerku aatok zkrétek-e vagy folytonoak. C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
3 Felerítő tatztka Aatok-3.3. Az aatok elrenezée Aatokat táblázatokba, orokba é ozlopokba zoká elrenezn. A kapott táblázatot a mátrxzámítá zabálya zernt kezelhető mátrxnak, aatmátrxnak tekntük: D ( ) ,,..., ; 2,,..., (..) A zoká, a konvencó zernt az aatmátrx egy ora egy obektum (megállapított orrenben elrenezett) tulaonágat tartalmazza, következéképpen a mátrx egy ozlopa egy tulaonág (különböző obektumoknál megvalóult) értékeből áll. Egy-egy aatot ezért két nex, a orra ellemző, (zokáoan) -vel elölt obektumnex, é a tulaonágra ellemző, (zokáoan) -vel elölt tulaonágnex azonoít, az aat ele tehát. Legyen az obektum nex utoló értékének ele, a tulaonágnexé. Egy arab obektumra é zámú tulaonágra ktereő vzgálat aatat egy x méretű D aatmátrx foga tartalmazn, amelynek -ek ora [ ] 2... (.2) az -ek obektumvektor, az -ek obektum arab leíró aatát tartalmazza. A -ek ozlop peg.. 2 (.3) a -ek tulaonágvektor, a -ek tulaonágnak az öze obektum eetén megfgyelt értékeből áll. A gyakorlatban zokáoan >, azaz több obektumot vzgálunk, mnt tulaonágot. Az aatmátrx tehát általában álló téglalap alakú. Egy-egy aatmátrx-ozlop (tulaonágvektor) elemeből az egyváltozó tatztka mózerevel a tulaonág zámo ellemzőének becült értéke ( az átlag, a tapaztalat zórá, a tereelem) kzámítható [,2]. Egy-egy aatmátrx or az obektumot ellemz. C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
4 Felerítő tatztka Aatok-4.4. Léptékváltá (kálázá) A tulaonágvektorok elemet elő lépében olyan zámértékkel aák meg, amely ahhoz a mértékegyéghez tartozk, amellyel a tulaonágot mérték. Ennek megfelelően a tulaonágok (többnyre menzóval é mértékegyéggel bíró) zámértéke egézen eltérő nagyágrenűek lehetnek. Eetenként akár elv (valózínűégzámtá), akár gyakorlat (zámítátechnka, kéma) okokból a tulaonágok ereet léptéke hátrányo lehet, é léptékváltára, kálázára van zükég. Az aatmátrx eleme kálázhatók a) ozloponként (egy-egy tulaonág káláát móoítva, pl. áttérve menzómente egyégekre), b) oronként (egy-egy obektum különböző tulaonágat ú egyégekre cerálve, pl. áttérve anyagmennyégekről móltörtekre), c) egyzerre, mnkettő zernt, (kettő kálázá) ) elemenként (globálan, tekntet nélkül mátrxbel helyzetükre). A kálázá a mátrxelemek káláának eltoláát, zugorítáát vagy egyeüleg mnkettőt elenthet. Eltolá kontannak az aatokhoz való hozzáaáát (kvonáát) elent, zugorítá (nyutá) kontaal való zorzát (oztát). A leggyakorbb kálázáokat az.3 táblázat tartalmazza. A kálázáokhoz megegyezhető, hogy mert matematka é valózínűégzámítá tételekből következk, hogy a) az eltolá, így a centrálá az aatok zóráát nem változtata meg, b) a zugorított, gy a tanarzált változó menzómenteé válk, c) az eltolá é a zugortá poztv zámmal az aatok orrenét nem változtata. ) a tanarzált változó zóráa, e) azok a kálázott változók, amelyek özege mnen eetben kontan, pl. 0 vagy, zárt változóvá válnak, amelyek közül egy (vagy több) már nem független a többtől, azokból kzámítható. lyenek pl. a centrált, az ozlopözeggel zugorított é a tanarzált változók, e lyen tulaonága van az egyégny hozra normáltaknak. f) a kovaranca efnícóában centrált aatok zerepelnek. Következéképpen egy tetzőlege x méretű ( ) centrált aatokat tartalmazó D c aatmátrxból a T C D D c c, (.4) C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
5 Felerítő tatztka Aatok-5 a arab tulaonág kovarancát tartalmazó kovarancamátrx zámítható, mközben a tanarzált, nulla közepű é egyégzóráú változókat tartalmazó D t -ből a korrelácó mátrx: T R D D ST ST (.5) kapható. C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
6 Felerítő tatztka Aatok-6.3 táblázat. Skálamóoítáok nem fata az ú érték móoító állanó az ú kála ellege centrálá orátlaggal + é értékek, (centerng) (row centerng) / 0 orözeg zugorítá / (nyutá) (expanon/ contracton) centrálá zugorítá é ozlopátlaggal (column centerng) tele átlaggal (global centerng) mnkét átlaggal (ouble centerng) logartmzálá után orzóráal (row calng) ozlopzóráal (column calng) tele zóráal (global calng) maxmumra (maxmum calng) egyégny hozra ozlopözegge l tanarzálá (autocalng) tereelemre (range calng) / /(, ) + é értékek, 0 ozlopözeg + é értékek, 0 elemözeg, nem 0 or é ozlopözeg. + + é értékek, 0 or-é ozlopözeg ln ln C (log kálán) C ln / zéru közép, + é - értékek az ú értékek 2 ( ) átlaga /, zóráa. az ú értékek 2 ( ) átlaga /, zóráa. az ú értékek 2 ( ) átlaga /, zóráa.. / max max a -ek ozlop az ú értékek legnagyobb eleme nem nagyobbak, mnt. / l az ú értékek 2 T l négyzetözeg e. / um az ú értékek T um özege. mn max mn ( ) mn a -ek ozlop legkebb eleme 2 ú értékek várhatóan a tartományban, átlaguk 0. ú értékek a 0... tartományban C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
7 Felerítő tatztka Aatok-7.5 A léptékváltá hatáa A kála eltoláa vagy léptékváltáa termézeteen bonyoalmakkal árhat. nformácó vezthető, aatok orozatának egye eleme függővé, a több függvényévé válhatnak. Sokaágok zámo tatztka ellemzőe (középérték, zórá, tereelem) nylvánvalóan függ a változok zámértékétől. Várható tehát, hogy mközben bzonyo többváltozó tatztka mózerek nvarának a kálázára, máok má ereményt anak má nagyágrenű, vagy függő elemeket tartalmazó aatvektorok felolgozáa orán. Az aatvektorok lyen termézetű hatáára az aott tatztka mózer mertetéénél felhívuk a fgyelmet. ellemző péla lehet a kovaranca. A kovaranca mátrx mereteen meghatározza a tulaonágértékek kovaranca ellpzoát. Az aatmátrx egy vagy több, alkalmant mnen vektorozlopának zugorítáal áró léptékváltoztatáa tehát közvetve megváltoztata a kovaranca ellpzo helyzetét é méretet. A léptékváltá végül mután megváltoztata a tulaonág zámértékeket termézeteen móoíta az obektumok között lévő távolágokat (l. 2 feezet). Ez a tény különöen fonto lez az alakfelmeré é a faktoranalíz orán. roalom [] Sach, L.: Stattche Methoen. Planung un Auwertung. 7. Auflage. Sprnger, Berln, 993. [2] Sach, L.: Angewante Stattk. Anwenung tattchetcher Methoen. 7. Auflage. Sprnger, Berln, 99. [3] Maart, D. L., Vanegnte, B. G. M., Buyen, L. M. C., De Yong, S. P., Lev,. an Smeyer-Verbeke,.:Hanbook of Chemometrc an Qualmetrc. Elever, Amteram, 998. [4] Frank,.E., Toechn, R.: The ata analy hanbook. Elever, Amteram, 994. [5] Poan,.: Bevezeté a többváltozó bológa aatfeltárá retelmebe. Scenta Kaó, Buapet, 997 C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
8 Felerítő tatztka Aatok-8 C:\MULTVAR\FUNDAMENTALS\LECTURES\NEW\_ADATOK
A m becslése. A s becslése. A (tapasztalati) szórás. n m. A minta és a populáció kapcsolata. x i átlag
016.09.09. A m beclée A beclée = Az adatok átlago eltérée a m-től. (tapaztalat zórá) = az elemek átlago eltérée az átlagtól. átlag: az elemekhez képet középen kell elhelyezkedne. x x 0 x n x Q x x x 0
RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK
RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK Sorrendbe állítjuk a vzgált értékeket (a mntaelemeket) é az aktuál érték helyett a rangzámokat haználjuk a próbatatztkák értékenek kzámítáára. Egye próbáknál
Regresszióanalízis. Lineáris regresszió
Regrezóanalíz Lneár regrezó REGRESSZIÓ 1 Modell: Valamely (pl. fzka) törvényzerûég értelméen az x független változó zonyo értékénél a függõ változó értéke Y ϕ (x). Y helyett y értéket mérünk, E(y x) Y,
Gyengesavak disszociációs állandójának meghatározása potenciometriás titrálással
Gyengeavak izociáció állanójának meghatározáa potenciometriá titráláal 1. Bevezeté a) A titrálái görbe egyenlete Egy egybáziú A gyengeavat titrálva NaO mérőolattal a titrálá bármely pontjában teljeül az
Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!
0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4
A robusztos PID szabályozó tervezése
A robuzto ID zabályozó tervezée. A gyakorlat célja Robuzto ID zabályozó tervezée harmafokú folyamatra. A zabályozá vzgálata zmulácókkal.. Elmélet bevezet özmert, hogy a zabályozá renzerek tabltáát a zárt
ξ i = i-ik mérés valószínségi változója
EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív
GÉPÉSZETI ALAPISMERETEK
Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók
Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Kísérlettervezés témakör
Gyakorló feladatok a Kíérletek tervezée é értékelée c. tárgyól Kíérlettervezé témakör. példa Nitrálái kíérleteken a kitermelét az alái faktorok függvényéen vizgálták:. a alétromav-adagolá idee [h]. a reagáltatá
fizikai-kémiai mérések kiértékelése (jegyzkönyv elkészítése) mérési eredmények pontossága hibaszámítás ( közvetlen elvi segítség)
BEVEZEÉS Eladá célja: fzka-kéa éréek kértékelée jegyzkönyv elkézítée éré eredények pontoága hbazáítá közvetlen elv egítég éré technkák egerée alapvet fzka ennyégek pektrozkópa éréek elektrokéa éréek Ma
Laplace transzformáció
Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra
ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í
ú ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í ü ú ú ú ú ú í ú ü Ó ü ü ü ü Í Í í ü ü ü ü ü ü É í ü ü ú Í í ü í í í ü ü í í ú ü í ü í í í ú ú í ü ü ü ü í í í ű ü í í É É í í í í Ü í í ú
Í ü í í í ü ű ű í ü í ü ü ű ü í ü í ű ü ü ű Ö ü ű ü í í ü í í ű ü ű í í ű ü í ü í í ü ü í ü Ú í ü í í í ű ű í ű í í í ü í í í í í ü í í ü í í í í ü í í í ü í í ü í ü ü ü ü Ó ü í ü í ü ü ü í ű í í ü ű
ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű
ö ü ö Ö ü ü í ö ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű ü ö ü ö ö í ü ö ö ü í ö í ü ü ü ú ö ü ü ü ű í í ü ü ö Ö ü í ö ü ö Ö ü ö ö ű ö ö Ö ü ö ö Ö ü í í í Ü ö í
ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú
ö É Ő ü ü ű ö ű ű ö ű ö Í Ó Ö É É Ó É ú ü ü ú ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú ö ö ű ö ű ö ű ú ü ü ö ű ü ö ü ű ű ú ü ö ö ö ű ü ö ö ö ö ö ú ú ö
ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű
ü ú É Á Á ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű ü ű í ü í í ü ű í ü ű ü í ü í í í ü í ű ü í ú í ü ü ú í ü ü ű ü í í í ü ü ü í ü Ü ü ü ü ü ü í í í ü í í ü í í ü ű ü ú í ü í ü í ű í
ü É ü Ö ü ü ü Ü ü ü Í
ü É ü Ö ü ü ü Ü ü ü Í Ü É Ö ü Í Ü Ü ü É Ő Ö ü Ö É É Ő Ü ü ü ü Ö ű Ö ű Ö ú Ó É Ö ü ü ü ü É Ö ű ü ü ü É ü ű Ó Ü ü ü Ü ű ü Ó ű ü É É Ö ű ű Ö ű É Ö ű ű ü Ö ü ü ü ú Ü Ő ü Ö ü Í Ő ű É É É Ö ü ü ü ü Ü É ű Ú Ő
É ó Í É
É Ó É É É Í ő É É ó Í É ó ú ú ó ö ű ő í ó ó í ü ű í Í ő ú í í ő ő ó ő ö ó ó ő ó ő ő ö ó ő ó ö ö ö ő ö ó ö ő ő í ó í í ő ó ú ó í ő ű ö ő Í ő ő ó ö ü ö ő ó ő ó ő ő ő ó ó ű ö í ő ö ö ö ő í ö ó ö ö ő í ü ú
ö ü í ú í ö ö í ú ü í ü ö í ú ö ü í ö ü ö ö ö Í ö ö
ö ö ü ü ö ö ü ü ü ö Í ö ö í ü í ü ü Í í ö ü í ú í ö ö í ú ü í ü ö í ú ö ü í ö ü ö ö ö Í ö ö ö í ü ü ü ü ö ü ü ö ö ö ü Ó ö ö ü í ö ö Ó ö ö ö ö ü ö ö ü ü í ö ü ü ö ö É ü ü ü í ü ö Í ö ü í ö ü í ö ö ö í ü
É É Í É É ö Í í í í ű ü ö í í Í
Í É Í É ö ü í í ö ö Í ö í í í í ű ü ö í Í É É Í É É ö Í í í í ű ü ö í í Í Ő Í Í ö ü í í ö Í ö Í í í í í í í í í í ű ü ö í í í ö Í ü í í ö ö Í ü ö ü É ú í ű ü ö í í Í É ö ú ü í Í í ö ö Í ö ö ö ü ü ú ű ü
ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í ö ö
ú ö ü ű í ü ö í ü í É É É Ő í ü ö ü ü í ü É ö í í í ü ö ö ű ö ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í
ö ö É ő ó ó ő ü ó ó Ü É É ö ö ó ű ü ó ó ö ű Í ö ó ö Í ő ü ü ö ö ő ö ó ö ó ó É ó ő ö ö ó Ö ü ő Í ű ó ő ü ő Ó Ö ű Í ó Ó ő ő ö ő ő ő ö
ö ó ó Ü É Ö Ö ó ó ü ü Ó ó ó ü ő ő ü ő ő ó ő ó ó ő ó ó ő ó ó Ó ü ő ó ó ó ő ó ű ő ö ü ö ü ü ő ó ű ű ő ö ö ó ó ó Ö É Ó ö ö É ő ó ó ő ü ó ó Ü É É ö ö ó ű ü ó ó ö ű Í ö ó ö Í ő ü ü ö ö ő ö ó ö ó ó É ó ő ö ö
í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö Í ó ó Í í ó ó ö ö ö ö ö í ö ó ű í ó ó ö ú ó ó ö ö ó í ö ö ó ó ö ö í ö ó í ű ö
É ó É ó ö ö í ö ó ó ó ö ö ó ó ö ö ó ó ö ö ö í ó ö í ó ó ó ó ó ö ö í ö í ö í ű ű ö ú ö ö ú ö ö ö ö í ó ó ó ö ö í Í ó ö ö ö ö Í Ü í í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö
ő ü ó í í í ő ó Ó í
ő ü É Ö É Ü É í í í ó Ö ü ő ó ó ó ő Ö ő ü ő ü ó Ö ő ű Ó ő ó ű ő ü ő ő í í í ő í í í í í í ő ü ő ó ü í í ő ó Ö ó ú ő ő ő É í ü ó ő ő ő ü ó í í í ő ó Ó í Ö ő ü ő ó í í ó í ő ő ő ó ő ő ü ó í í ó Í í ő ó ő
Portfólióelméleti modell szerinti optimális nyugdíjrendszer
MŰHELY Közgazdaág Szemle, LVIII. évf., 011. zeptember (79 805. o.) Szüle Borbála Portfólóelmélet modell zernt optmál nyugdíjrendzer Az optmál nyugdíjrendzer elmélete ránt az utóbb években folyamato érdeklődé
PID szabályozó tervezése frekvenciatartományban
ID zabályozó tervezée frekvencatartományban... A zabályozó erítéének hatáa a tabltára A zabályozó erítée az a paraméter, amelyet a zabályozá mköée alatt zámo eetben móoítanak, hangolnak pélául a mnél kebb
Gazdaságstatisztika példatár
Buapet Műzak é Gazaágtuomány Egyetem Gazaág- é Táraalomtuomány Kar Üzlet Tuományok Intézet Menezment é Vállalatgazaágtan Tanzék Gazaágtatztka pélatár Megoláokkal E pélatár a Gazaágtatztka című tárgyhoz
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Repülőgépek és hajók Tanszék
Budapet Műzak é Gazdaágtudomány Egyetem Közlekedémérnök Kar Repülőgépek é hajók Tanzék Hő- é áramlátan II. 2008/2009 I. félév 1 Méré Hőugárzá é a vízznte cő hőátadáának vzgálata Jegyzőkönyvet kézítette:
TestLine - Fizika 7. osztály mozgás 1 Minta feladatsor
TetLine - Fizika 7. oztály mozgá 1 7. oztály nap körül (1 helye válaz) 1. 1:35 Normál áll a föld kering a föld forog a föld Mi az elmozdulá fogalma: (1 helye válaz) 2. 1:48 Normál z a vonal, amelyen a
ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü
ü ü ü ü Ó í Ó Éü í ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü ű ű ű í ü ő ű ü ü ő ú ú ő ü ő ő ő ü ú ű ú ú ú ő ő ú ő ő í ú í Ó ú ü ő ú ú ú ű ú ú Ű ű ő ű ű ő Á ü í ü ú ü í ú ő ú ő ű ő í ő ő
ü ő ő ü ü ő ő ű í í ű ő ő ő ü ő ő í í ő ő ő ő ő ő ü ü í ő Ö ő ü í ő ü í í ő ü ő í ő ő í í ő ü ü í ő ü í ő í ő í ő ü í ő í ü í í ő
ő Á Á Á Ű Ö É Á Ö ő ő ő ű Ö ű ú ő ü ű ü ü ő ü ő ő ú í ü í í ü ő í ő ő í ő ő í ő ő í ü ő í ű ő ü ű ő ü í ü ü ő ü ü í ü í ü ü Ú í Ő Í ü ő ü ü í Ö í í ü ő ő ü ü ő ő ű í í ű ő ő ő ü ő ő í í ő ő ő ő ő ő ü ü
ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő
ő ő ű ú ő ü ü ü ü ü ő ő ü ü ü ü ü ü ü ü ü ő Ö ő ő ő ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő ő ű ő ú ü ú ő ő ő ő ő ő ő ő ő ő ő É ü ű ő ü Á ő ú ű ű ő ő ő É ü ű ő ő ő ű ú ü ú ő ő ő
Ü ű ö Á Ü ü ö ö
Í Í Ü Ú ö ú Ö Ü ű ö Á Ü ü ö ö ú ü ü ö ü ö ö ö ö Ü Ü ö ö ö ö ö ü ü ö ü Ü ö ú ü ö ü ö ű ö ű Ü ü ö É ö ü ü ö ö ö ö ö ö ö ö Ó ö Ü ü Ü ü ü ö ö ö ö ö ö ö ú ü ö ű ü ö ú ű Ü ö ö ö ü Ü Ü Ü ú ö ö ü ű ö ű ö Á Á Í
Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö
ö ú ö ö ú ö ú Ü ő ú ő ö ő ő ő ö ö Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö Ú ő ö ő ő ő ö ú ú ú ő ö ő ö ő ő ő ö ö ö ö ő ő ö ő ú ő ö ú ö
ű Á ü ő ö í ö ö ő ő ő ő ö
Á É í ü í í í ü í í ö í ű í í í í í í í í í ü ő ö ö ö ű ő ö ű Á ü ő ö í ö ö ő ő ő ő ö ö ő ő ő ö ö Ű ú Á ö ú ú ö ü í ő ő ú É í í ő ö í ö ú í ő ü í í í í í ö í ű í í í í í í í í í ü ő ö ö ö ű ű ő ű ü í Ö
Í ö ö ű ú ö ö Í ö ü ö ü
Í Í ö ú ö ö ö ö ű ö ö ö ö Í ű ű ö ü ú ö ú ú ű Í ö ö ű ú ö ö Í ö ü ö ü ö ú ü ü ö ú ö ű ö Í ű ú ú ö ú ú ű Á É Á ö ű ú Í ö ö ü Í ú ö ú ö ö Í ű ö Í ú ö ö ö Í ö ö ö ö ö Í ö ö ö Í ö ö ö ö Í ű ö Í ú ö Í ö ö ű
í í ü í í í í í Ó ő ő í í í Ú ü Ú í í Ú ő ü Ú ü ő
É Á Á ő ü í ü ü í ü ő ü ő ü ü ü í í í í í ü í í ő í í ü í í í í í Ó ő ő í í í Ú ü Ú í í Ú ő ü Ú ü ő ő í ő í ű ű í í ü í í ő í í í í í ű í ő í í í í ü í ő í ő í ü í ű ő ű ü í ü ü í ő ő ü ő í í Ö ü í ü ü
í ö Á ö ö ö Á í ö ű ü í í ű ö ú ü íí ö ű ö ü ú ü ö í ü ű í ö ö ü ü í ö ü ö ű ö í ű ü í ö í í ü í Á Á í í ü ö ö ü ű í í ö ö ü í ű ü ö í ö ű ü í í ű ö í í í ö ö í ö ö ö ö ö ö í í ű Á Á Á Á Á í í ú í ö ö
É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű
ő ő ű ú Á ő ű ő ő ő ő Ö Ö Í Á É Á ő Ö Ö Í ő ő ő ő É ő ő ú ú ú ő Á Ö É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű ő ű ő ú Á ő ű ő ő ő ő ő ő Ö ő ú ú Ö ő ő ű ú Á ő ú Ó ű Ó ú ú ú ő ő ú ú ő ő ú ő Ú ú
ü ö ö ő ü ó ó ú ó
ö ö ő ü ü ü ő ö ü ö ö ő ü ó ó ú ó Ő Ö ü ö Ö ó ü ü ü ö ö Ö ó ó ü ö ó ő ü ó ü ő ó ő ó ü ö ö ö í í ó ő ú ü ö ö ó ü ö ő í ő ő í ő ü ó ő ü ű ö ú ó ú í ü ó ü ö ó ó ü ö Ö ó ő í ó ő ü ö ü ő ö ö ö ö Ö Ó ő ü ü ó
É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő
ő Ü É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő ő ő ú ő ő ő ú ő ü ú ű ő ű É Í ő É Ü Í ő ü ő ő ő ő ő ő ú ü ű ő ú ő ű ő ő ő ű ő ű ő É Í Ú Ö Á Á É Á Á Á Ő Á É Á Ö Á Ö É É É ü ő Á ő ú ü ő
ű í ú ü ü ü ü ü Ó í ü í í í É Á
ü ű ü ú ű í ú í ű í ú ú ú ú ű í ú ü ü ü ü ü Ó í ü í í í É Á ű í í í Á ü É í í Ö Ö Á í Á É Á ú ú ú í ű í ú ű í í í É í í É í ű í ü í ú ű í ű í É í Ú í í í ű í ú ű í í í ü í í ú í ú í Ö ű í í í ü ü Ő í í
ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő
ő ő ő ü ő ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő ő ü ő ő ű ü ő ű ő ő ő ő ü ő ő ő ü ő ű ő ő ő ü ő ü ő ő ü ű ő ő ü ü Á ő Á ű ű ü Á ő ű ű ő ű ű ü ű ő ő ő ü ő ű Ó ü Í Á ő ű ő ő ő ő ü
ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö
Ü É ű ü ü ö Í ü ö ö ü ű Í Í ü ű ö Ö ö ö ö Í ü ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö ü ü ü Í ü ö ö ö ö ö ö ö ü Í Í ű ö ö ö ü ü ö ü ö ö ö ü ö ö ö ö ü ü ű ü ö ö ö ü ö ü ű ö ü ö ö ű Í ü ü ű Í ö ü ö
Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü
É Á í É Á Á ü Ú ű í Í Í Ü ü ú ü Í ü ü ü ü Í ü Í í ü ü ü ü ü ü ü ü ü í Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü Í Ó Í Ó ü ü ü Í ü ü É ü ü ü ü ü É ü ü Í ü ü ü Í Ó Í Ó í Á í É ü í Í ü í Í í í ü ü É ü ü
ű ú ü ü ü Í ü ö ü ö ü ö ü Ó ü ö ü ö ö ü ű ű ú ü ö ö ü Ó ö ű ü ö ú ö ö ü ü ű ü ü ö ö ü ü ú ö ö ü ü ú ü
ű ö ű ö ü ú ú ú ö ö Í ú ü ú ú ö Í ü ö ü ü ö ü ö ü ü ű ö ü ü ö ü ú ú ú ú ú ű ú ü ü ü Í ü ö ü ö ü ö ü Ó ü ö ü ö ö ü ű ű ú ü ö ö ü Ó ö ű ü ö ú ö ö ü ü ű ü ü ö ö ü ü ú ö ö ü ü ú ü ű Á Í ű ű ö ü ö ü ü ú ű ö
ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö
Í Á Ö Ú Á Á Ó Á ö ú ú ö ú ú ö ü ü ű ü ű ö ö ü ű ö ü ö ú ö ü ú ö ö ü ü ö ü ű ö ö ü ű ö ö ú ö ö ú ú ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö ü ö ü ö ö ü ö ö ú ö ü ű ö ü
í Ó ó ó í ó ó ó ő í ó ó ó ó
í Ú Á Í í Ó ó ó í ó ó ó ő í ó ó ó ó í Ó Ó í ő ó Í í í í Ó í ó í í Ő É Ú Ű Í É Á ó Á É É ó ó í É Ü Í ő í ó í ó í Ő Ő Á Ó Ó Á É É Á Á É É Ő Á Ú É í ó Á í Á í í ő í í Ő Ő É Ú Ű Í É Á ó Á É Ö Í Í É ó ó í Ú
ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó
ö Ö ó ü Ú ú ű ó ú ü ö Ö ü ó ü ü ó ó ö ö ó ó ö Ú ö í ó ö ö ö í í ú ü ó ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó ó ó Ó Ú ö ú ó í í ú ó ö ü ü Ö ó ü ü í Ö Ö ú
ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü
ü ü ü ú ú ü ű ü ű ü ü ű ü ü ü Í ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü ú ü ü Á ű ü ü ü ü ü ü ü ú ü ü Í ú ü É Ö Ö ú Ö Ö Ö ú ú ü ú Á Ö Á ú É ü ú ú É ú ú ú Ü ü ű ú ű É ú ű ü ü Á ú É ü ű ü ú Á É É ú ü Ö Ö Ö ú ú Á Ö
ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü
ű ü ü ú ü ú ú ű ü ú ú ü ü Ó Ö Í ü ú ú ű Ö ú ú ú ü ü ú ÍÍ ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü ü Ü ü ü ú ü ű ü ü ü Ü ú ú ü ü ü ü Í ü ü ú ű ü ü ü ü ü ü Í Í ü
í ó ő í é ö ő é í ó é é ó é í é é í é í íí é é é í é ö é ő é ó ő ő é ö é Ö ü é ó ö ü ö ö é é é ő í ő í ő ö é ő ú é ö é é é í é é í é é ü é é ö é ó í é
ű ű ö é ő ó í ö ő ü é ő é ü ő ö ő ö é é í ö ő ö ó ő é ó í ö ő ü é é é é é ő é é é é í ő ö é é ő ű ő ö í ö é é é Ö ű ú ő é é ű ő í ü ö é é ő ó ö ö ő é é é é é é é é é é ő ü í í é ú í í í Ú í é ú é ő ó ó
ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó
ü ö ö Ö ü ü ö ö Ö ö ó ö ú ó ü ö ö ö Ö í ó ü í í ü ö í í ó ó ü ö ü ö ö ü í ó ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó ö ö Ö ü í ö Ö ö ö ó ü í ö ó ó ü ö ó í ü ü ü ö ö ü í ü
ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó
ü ű ú ü ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó ü í í í í ó ü ó Ö ó ü Ö í ó ű ó ó ó Ö Ö ó ó í í Ö Ö ó ó í Ö ó ű í í ü
í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó ó ó í ó í ü ó í Á
Ö ü ó Ö ü ó ó ó ó ó ó ó ó ó ó í ü í í ü ü ü ü ó ü ü ú ó ü ü ü í ó í ü ü í ó í ó í ó ó ó ó í ó ó ó í í ó ü ú É Ö í í í ú ó í ü í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó
é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü
é í ü é ö é é ő ü é é é ú é ó Í é é ő Í é ó ö í é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü é ö ő
Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú
ű É Í Á Á Á Ó É Á Á Ó Í Ö Á Á Á Ö ü Í Ó Í ű ű ü ú Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú ü Í ú Ü Ű Ó Ó Í ú Í ú Ö Ó ü Ü ü ű Ó ú Í ü É Í Í Á Á Ó Í Á ú Ö Í Ó ú ú ú Í ú ú ű ú Ü ü ü Í Á ü ú Í ú
ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk
Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc
Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö
Ö É Ö Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö Ü Ü Á É Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ú Í É Ó Á Ü Á É Á Ü Í Í Í Í Ü Í Í Í Í Í É Ö Á Í Á Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Í Í É Í Í É É Í Í Í É Í Ü Í Ü Á Ü Ü
É Ú í í í í í ü í í ű ű í í í í í í í í í í É í É í í É í í É í É í ű í í É í í É í í í É í í í í í ü í Ó É Ű
í É í í í í í ú í ü í ü í Í í í í í úű Í É É É É É ú ü í É Ú í í í í í ü í í ű ű í í í í í í í í í í É í É í í É í í É í É í ű í í É í í É í í í É í í í í í ü í Ó É Ű É í í í ü ű ü ü ű ü ű í ű ü í í ű
ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü
ő É ő ő ő ő É Ü Ö Ö Ö Í Ö Ö Ö ő Ó Ó Ö Ö Á É É É ő Á É Á Á Ú Á Ú Ö Ö Á Ú Ö Á ű Á ú ő ő ü ü Ó ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü ő ő ő ő Á ü ú ú
ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö
Í Í Ő Ó Ü Ö Ő ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö ő ö ő Í ó ö ó ú Í Ö Í ÍÍ É Ó Ü Ü Ó Ó Ö É Ö ő ö ő ű ó ö ú Í Ö Í Ö Í Ö Ó Ó Ó Ó Ü Ö Ü Ü É Ú Ö Ó Ó Í Í ő ö ő ű ó ö ó ú É Ö Í Í ÍÍ Í Í Í É Í
ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó ó ö ü ü ö ü ó ó ő ó ü ó ü ü ö ö É ú ó ó ö ú ö ü ü ó ó ó ü Á ö ö ü ó ö ó ö ö ö ö ó ó ö ó ó
Ü Ű Ö É Á Á ö É É Ö Ú Ü ö ü ő ő ö ő Á ő ó ő ü ü ö ö ú É ű ó ü ű ö ú ü ö ó ö ö ü ű ö ó ó ö ö ö ö ü ű ö ő ö ö ó ö ö ő ó ő ü ő ó ő ö ö ő ü ü ö ő ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó
é ú é é é é é é é é é é é é ú é ö é é é ö Ő é é é ú é é é é é é é é ö é é é ö é Ö é é ö é ö é é é ű é ö ö é ö é é ö ö é é ö ö é ö é Ö é ú é é é é é é
é ű ö Ö é é ö ú é é é é ö ö é ö é é é ö ö é é é ö ö é ű é é ö é é é é é é é é é é ö é ö é é é ű ö ű ö é é é Ö Ú Í é ö é é Ő ö ö ú é é é é é é é é é é ű é é é ú é é é ű ú é é é é é ö é ö é ö é é ö é é é
ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü ö ö í Ö ö ö í ö í Ő í ű ű í Ö Ó í ö ö ö ö Ö Ö ö í ü ö ö Ö í ü Ö ö í ö ö ö ö ö Ö ö í
Á ö Á Á É Ö í ö Ö Á Ó Ű ú ű Ü ö ö ú ö ú í ö í ö ö ö í Ö ö í ö Ő ü ö ö í Á Ö Ú ű Ö í Ö ö ö Ö ü ű ö ű ö Ö ü ö Ö Ö Ö ö í ö ö Ö ö í Ö ö Ú ö ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü
ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü
Á Ó ö ü ü ü ú ú ü ü ö ü Ő ö ö ö ü ú ü Á ö ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü ö ö ü ü ö ü ö Ó ö ö ü ü ö ü ö ú ö ú ü ö ü É É Á ü ű Ö ű ú ö ö ú ö ú ö ú ö ű ü Ö ö ű ü ú ö ü ú ű ö ű ú
ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü
ú Ö Ú ú ú ó Ő Ö ü Ú ú ö Ö Í ó í ü ü ó ó ó Í ö ö ö ö í ü ó ö ü ü ú í ű ö ó ó ö ö ö ű ö ó ó ö ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü ü ö ö ó ó Í ü ö ó ú ü ü ö ó ö ö Í í ó ó
ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó
ö ú Á ő ű ü ő ó ö ö ú ö ú ü ó ó ű ö ú ó ó ó ő ö ö ő ú ó ö ö ő ő ő ő ö ű ü ü ü ő ü ü ő ő ü ó ő ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó ó ü ű
í é ü í Í é í é ö ö í é é é ö é é é í ö é ö é é é ö ü í Ó é í í ö ö ü é í é ü í ö é é é í é ö é é é í é é é Ő Ó Ő í Ó é í í ö ö ü é í é ö ö í ú é ü ö
ö é Ö é ü ű é í í ó ö é Ö é ü ö Ó ó ó ö ö ó í é ű ö é é é í ó ó ö ö ó í é ö é é é ö é ű í í í ö é Ö ö ü é ú í é ú í ö ü é í í ö é Ö é ü ö í ü é ü é é ú í í ö ü é í í é ö é Ö é ü ö í ü é ű é í í í í ö ü
ú ú ö ö ü ü ü ü ű ü ü
Ü ú ű ű ú ű ú ú ö ö ü ü ü ü ű ü ü ö ö ö ö ö ö ű ö ö ö ö ö ö ö ö ö ü ü ü Ú ú ü ű ü ú ű ö ű ú ö ö ö ö Á ú ú ű Á ú Á Á Á ü ö ö Á ö ö ü Á ú Á ú Á Á Ö Á Á ö ű ö ö ü ú ü ú ö ú ű ú ú ü ü ü ü ű ű Ő ú ö ű ú ú ű
í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö ö ú ő ő ú í ő í ő ö ö í ő ü ü í ő ö ü ü ú í í ü ő í ü Í í í í ö ő ö ü ő í ő ő ü ű ő ő í ő í í ő ő
ö Ö ő ü ü ő Á ü ö ö ő ő ű ő ü ő Ö ö ő í ő ö í ö ö ő ő ö í ú Á Á Á í Á í ü Á ő í í ő Á í ő ő ú ő ö ö ő Í í ő ő í í ö í ő Ó ő ő í ö ő ő ü ö ö ő ö í ö ő í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö
í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó
Á Á Ó Ö Á í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó ó í í ó ó ű ű ö ű ú í ö ó ó í ó ó ö ö Ü ú ó Ü ö ö í ö í ó ó ó ű í ó ö ö í í ö ö í ö Í ó ö í ö ö ó ó ö ö í ó ö ö í í ö í ú Í
ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö ü ú ö ú ö ű ú ú ü ö ó ö ö
ö ö Ő Ö ü ö Ö ü ü ü ó ö ö ö ü ö ú ü ü ö ö ú ú ö ú ó ú ó ü ú ú ú ú ó ú ö ú Á ö ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö
Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő
ű É ű ű É Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő É Ó Ó É ű Ö ű Ö ű ű ű Ú Ú Ö ű ű ű Ö ű ű ű ű ű ű ű ű Ú É É É É Ö Ö Ú Ö É ű ű ű ű ű ű ű Ó ű Ö Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű ű ű ű ű Ö ű ű ű Ü ű ű ű ű Ö ű
ó ö í í ü Ű Ö ó ó ű ö ü Í í í ö Ö Ó ö Ű Ö ú ó ó í í ű ö ö ö ö í ó ö ö í ö ű ö ű ö ö ö ö ö í ó Ö Ö ü ú ö ó ü ö Ö ű ö Ö ü ó ö ö ó ö ö Ó í ű ö ű ö ö ű í
ö Ö ü ö Ü Ö Ö ü ú í Ó ü ü ö ó ö ö Á ó ó ó ü í ö í ö ö ó ö ö í í Ő í ó Ő ü ú ó ö ö ó ö í ü ó ó ö í ó í ó ö í í ü Ű Ö ó ó ű ö ü Í í í ö Ö Ó ö Ű Ö ú ó ó í í ű ö ö ö ö í ó ö ö í ö ű ö ű ö ö ö ö ö í ó Ö Ö ü
ű ö ú ö ö ö ö í ű ö ö ö ű ö ö ö í ü ú í ű í ö í ú ű í ü ö ö ú ö í ö ű ú ü ö ö í ö ü ö ú ű ö ö ö í Á í ü í ö ü ö í ü ö Ő ü ö í ű ü ö í í í í í
ü ö É ű ö ú ö ö ö ö í ű ö ö ö ű ö ö ö í ü ú í ű í ö í ú ű í ü ö ö ú ö í ö ű ú ü ö ö í ö ü ö ú ű ö ö ö í Á í ü í ö ü ö í ü ö Ő ü ö í ű ü ö í í í í í í í ö Á í ű í ü ö í ű ö í ú ű í ű ü ö í ű ö ű ö ö ű ö
ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á
ü ű ú í í ü í ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á ó ű ó í Á í ó ü í ó ó í ü ü ű ó í ü í í ü í í í ó í ó í ü ó Ó í ó ó ó í í í ü Í ó ó í í í í ó í í
É ú É ö ö ű ö ö ö ú ú ú ű ű ú ö ű ö ű ű ü ö ö ü ű ö ü ö ö ö ö ú ü ö ö ö ú ö ö ú ö ö ú ü ú ú ú ű ü ö ö ű ú ű ű ü ö ű ö ö ö ű ú ö ö ü ú ü ö ö ö ü ú ö ű
É É É Ó Á É ú É ö ö ű ö ö ö ú ú ú ű ű ú ö ű ö ű ű ü ö ö ü ű ö ü ö ö ö ö ú ü ö ö ö ú ö ö ú ö ö ú ü ú ú ú ű ü ö ö ű ú ű ű ü ö ű ö ö ö ű ú ö ö ü ú ü ö ö ö ü ú ö ű ü ű ö ö ú ö ú ö ö ö ö ö ü ú ü ö ö ö ö ö ü
Ü
Ó Á ú Á É Ü Ö Ö Ö É É É Ö É Ü Ö É É É É É Ó Ö Ó Í Ö Ö Ö Ö Í Ö Ö É É É Í Ö Ö É Ö Í Á Ó Í Á É É Ó É Ú Á Í É É É Ö Ö Ó Ö Ö Ö Ö Ó Ó Ó Í Ü Ö É É Ö Ó Ö Ó ö Ö Ö Ö Ö Ö Ó Ü Ö Ó É ű É É É É É É É É Í Ö Ó Ö É Ö Ö
ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í ó ű Ü ó í ú í ö í ö í Í ó ó í í ö ü ö ö í ö í ö ö ö ü ó í ö ö ó í ú ü ó ö
Á Ö É Á É Ő Ü Ü ü ö Ö ü ú ö í ü ü ó ó Á ö ó ö ö ö Ö í ü ü ü í í ü ü ö ü ü ü ü ö í ó ó Ő ó ó ö ó ö í ü í Í ó í ó ö í ó ó ö ó ó ö ó ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í
í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó í ö í ú ó ú í ö ú ö ö ö í ó ó ó ú ó ü ó ö í ó ó í í í Á í ó ó ó
Í ö í ú ú ó ú Ö ü Ú ú Ö ü ó ü ó ö ö ó ó ö í ó í ó í Í ó í ö ö ö ó í ü ó ö ü ü ú ó ó ó ó ó ó í ó ó ó í ú ó ó ó ó ó í ü í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó
É Ö Á Í Á Ó Ö ü
Ö ű Ö ő ü ő ő ő ű Ö Ö ü Á Á É Ö Á Í Á Ó Ö ü Ö ű ű Ö ű ű ú ű ű ú ú ő ő ü ű ű É Ö ú ű ő ű ű ú ő ü Ö ú ú ő ő ú ű ü ő ü ű ú ú ű Ü ő ő Ó ü É Ó Ö Ö ú ü ü ü ü Ű ú Ö Á ü É Ó ű Á Ö Á ű ü ú Ö ű ű ű ü ő ő ő Á ő ő
Ó ű í ű ü í í ú í ü í í ú ú í ú ű ú ü ü í ű ü É Í Í Ó í í É Ö ú ú í í í ü ü ü í É ű í Ó í í ü ú ü í
Ú Ü Ű Ü Ó ü í ü ü ú Ó í í í í Ö ü í ü ú ú í ű í í Í Ó í ü ü ü ü ú í ü ú í ú í Ő ú ü ú ü ü í Ó ű í ű ü í í ú í ü í í ú ú í ú ű ú ü ü í ű ü É Í Í Ó í í É Ö ú ú í í í ü ü ü í É ű í Ó í í ü ú ü í í É ü ú ü
Mindennapjaink. A költő is munkára
A munka zót okzor haználjuk, okféle jelentée van. Mi i lehet ezeknek az egymától nagyon különböző dolgoknak a közö lényege? É mi köze ezeknek a fizikához? A költő i munkára nevel 1.1. A munka az emberi
ő ő ú ő ó ó ú ő ő ó ő ó ó ú ú ú ü ó Ó ó ó ó ő ő ő ú ű ó ó ő ü ő ó óó ó ó
ú É É ő ő ő ú ő ó ó ú ő ő ó ő ó ó ú ú ú ü ó Ó ó ó ó ő ő ő ú ű ó ó ő ü ő ó óó ó ó ü ó ú ő ó ő ú ő ő ú ó ó ó ű ü ő ó ó ő ő ó ő ő ü ó ó ó ó ő ó ő ő ő ü ő ó ó ű ó ő ü ü ő ó ó ő ő ő ő ú ó ü ő ó ő ó ú ő ó ü
É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í
Í É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í É Á É Í Í É É Í Í Í Á Í Á Á ö ó ö ö ő ő ő ö ö ó ő ű ö ö ö ö ü ö ö ö ü ü ó ö Á ó ó ö ö ő ő ő ő ö ó ü ó ó ó ó ó ó ö ü ü ó ö Ó Í Í É É
Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü
Ö ő ü Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü ü ő ő ő ú ű ő ő ú Ö ő ü ő ő Ö ő ü ő ő ő ő ő ő ü ü ő ő Ö ő Í Ö Ö Ö ü Ü Ö ő ő Ö ü Ö Ö ü Ö Ö ü Ö Ü Ö ü ü ü ő ű Ö ő Ö ü ü ü ő Ű
Csak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar. 2011. május 31.
Név, felvételi azonoító, Neptun-kód: VI pont(90) : Cak felvételi vizga: cak záróvizga: közö vizga: Közö alapképzée záróvizga meterképzé felvételi vizga Villamomérnöki zak BME Villamomérnöki é Informatikai