MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ"

Átírás

1 Matematika emelt szint 091 ÉRETTSÉGI VIZSGA 010. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

2 Fontos tudnivalók Formai előírások: 1. A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maimális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerül.. Kifogástalan megoldás esetén elég a maimális pontszám beírása a megfelelő téglalapokba.. Hiányos/hibás megoldás esetén kérjük, hogy az egyes részpontszámokat is írja rá a dolgozatra. Tartalmi kérések: 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.. A pontozási útmutató pontjai tovább bonthatók. Az adható pontszámok azonban csak egész pontok lehetnek.. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maimális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél kevésbé részletezett.. Ha a megoldásban számolási hiba, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni. 5. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maimális pontot, ha a megoldandó probléma lényegében nem változik meg. 6. Ha a megoldási útmutatóban zárójelben szerepel egy megjegyzés vagy mértékegység, akkor ennek hiánya esetén is teljes értékű a megoldás. 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. 8. A megoldásokért jutalompont (az adott feladatra vagy feladatrészre előírt maimális pontszámot meghaladó pont) nem adható. 9. Az olyan részszámításokért, részlépésekért nem jár pontlevonás, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel. 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni. írásbeli vizsga 091 / május.

3 1. a) Az értelmezési tartományon minden esetén sin cos f = tg + ctg sin = + sin cos sin ( ) ( ) = I. sin + cos = sin cos = sin cos =. Összesen: pont 1. b) első megoldás A g függvény páros függvény, mivel g( ) = g( ) minden D g esetén. Az ( 7 ) 0 esetén vizsgáljuk a g zérushelyeit. Ekkor g ( ) = 6 = ( 6). Ezen a tartományon a zérushelyek: 0 és 6. A g függvénynek három zérushelye van: 6; 0; 6. Összesen: pont 1. b) második megoldás ( 6) ( + 6) 6 = g ( ) =, ha + 6 = ( 7 ) 0 ( 7 ) 0 ezért a g függvénynek három zérushelye van: 6; 0; 6., pont Összesen: pont Az esetszétválasztás, megfelelő tartományok megjelölése. (Ha csak az egyik esetet írja tartománnyal együtt, ot kap.) Elvi hiba miatt nem kap pontot, ha g() helyett a h()= -6-et vizsgálja. írásbeli vizsga 091 / május.

4 1. c) A ( ) g kifejezést átalakíthatjuk: Teljes értékű megoldás a 6 = ( ) ( ) 9 0 ( 7) grafikus módszer is, de g =, ha, pont + 6 = ( + ) 9 ( 7 ) 0 indoklás nélküli rajz esetén jár. innen következik, hogy a legkisebb függvényérték g () = g( ) = 9, a legnagyobb függvényérték g ( 7 ) = g( 7) = 7. A g (folytonos) függvény értékkészlete: Jó tartalom hibás R g = [ 9;7]. pont jelöléssel ot ér. Összesen: 6 pont Megjegyzések: 1. Maimum pontot kaphat, ha a) nem veszi figyelembe az értelmezési tartományt, vagy b) grafikus megoldást ad, és a grafikonja nem függvénygrafikon (pl. mindkét képlettel megadott másodfokú függvényt a teljes értelmezési tartományra felvázolja).. Ha a b) kérdésnél említett h()-szel dolgozik, a c) részre legfeljebb pontot kaphat.. a) Az 1, a, a és a 8 külön csoportba kell, hogy kerüljön. Az 1-es mellett nem lehet más szám. Egy lehetséges beosztás: (1), (, ), (, 5, 6, 7), (8, 9) egy másik: (1), (,, 5), (, 6, 7), (8, 9) Összesen: pont Ha ez a gondolat mind a csoportosításban helyesen jelenik meg, az jár. Ha ez a gondolat mind a csoportosításban helyesen jelenik meg, az jár. Ha csak egy beosztás jó, pontot kap. írásbeli vizsga 091 / május.

5 . b) Berci minden számot összekötött minden számmal, kivéve a szomszédos számokat: 1-, -, -,, 8-9. (Egy 9-csúcsú teljes gráf éleiből hagyunk el nyolcat.) 9 8 = = 8 vonalat húzott be Berci. Összesen: pont Binomiális együttható nélkül is elfogadható. Ha ábra segítségével helyesen adja meg a gráf éleinek számát, a megoldás teljes értékű. Megjegyzés: Ha a kilencszög átlóit számolja össze (7), és nem veszi figyelembe, hogy az 1-9 oldalél is szükséges, pontot kap.. c) első megoldás A számok egy permutációja hármas bontásban egy duót ad. Ha számítana a két háromjegyű szám sorrendje a duón belül, akkor annyi duó lenne, ahány permutációja van a 6 számnak (6!). pont Ha ezek a gondolatok megjelennek a megoldás során, járnak a pontok. Így az eseteket duplán számoltuk, 6! Hibás válasz esetén ez a tehát = 60 darab duó van. pont nem jár. Összesen: 5 pont. c) második megoldás 6 Az egyik hármast kiválaszthatjuk -féle módon, a másik hármas ezzel meghatározott. Mindkét hármasból! féle számot képezhetünk. 6 Összesen!!( = 70) duót képeztünk. Így minden esetet kétszer számoltunk, tehát 60- féle duó van. Összesen: 5 pont Hibás válasz esetén ez a pont nem jár. írásbeli vizsga / május.

6 . Legyen a sorozat első tagja a, hányadosa q. a + aq + aq = aq + aq + aq = 91 ( a + aq + aq ) = 91 5 q 5 91 q = ( = ) 91 Ebből q =. Visszahelyettesítve az első egyenletbe: 7a = 91, ahonnan a = 1. (Ezek szerint a mértani sorozat: a = 1, q =, n 1 = 1.) a n 1 n 1 A kérdés: hány n-re igaz, hogy10 1 < * pont Ezzel ekvivalens (az lg függvény szigorúan 1* pont monoton növekvő), 1 lg1 + ( n 1) lg < 1. 1* pont A kitevők eltévesztése esetén ez a pont nem jár. Helyes irányú, de nem pontosan felírt relációs jelek esetén jár. 7,16 < n < 0,8 1* pont Ennek egész megoldása a 8, a 9 és a 0. 1* pont A sorozatnak tagja tizenhárom jegyű. Összesen: 1 pont Megjegyzések: 1. A *-gal jelölt pontok számológépes megoldás esetén akkor járnak, ha megállapítja, hogy a sorozat szigorúan monoton növekvő pont; n=7 még nem megfelelő ; n=1 már nem megfelelő ; a 8., 9. és 0. tag valóban megfelel pont.. Megfelelő magyarázat nélküli próbálkozások esetén a *-gal jelölt 6 pontból legfeljebb pont adható. írásbeli vizsga / május.

7 . a) A kördiagramok alapján: 1. üzlet. üzlet. üzlet Összesített forgalom Arany János Márai Sándor József Attila Összesen helyes oszloponként 1-. pont A legtöbb példányt József Attila műveiből adták el. Összesen: 5 pont A negyedik pont az első három oszlop adatainak helyes összegezéséért jár.. b) eladott könyvek AJ MS JA Jó adatokat tüntet fel. Arányos a diagram. Célszerűen választ egységet. Rendezett az ábrája, világosan látni, mi-mit jelöl. Összesen: pont Ezen kívül csak olyan diagram fogadható el, amelyiken a két tengely fel van cserélve. írásbeli vizsga / május.

8 . c) A vizsgált időszakban a sorsoláson résztvevő sorsjegyek száma: = Ezek közül a nyerő sorsjegyet összesen féleképpen lehet kisorsolni. A. üzletben 16 Márai-könyvhöz adtak sorsjegyet, 16 ezek közül féleképpen lehet nyerőt kiválasztani. 16 A keresett valószínűség: ennek értéke: p = 0, Összesen: 5 pont Az 1056 megjelenéséért (akár a táblázatban is). Az összes esetek száma, a kedvező eseteké. Ha a kedvező és az összes esetek számát is a sorrend figyelembevételével helyesen számolja össze, akkor is jár az 1-., Ha a k/n képletet előzmény nélkül használja, nem jár pont. írásbeli vizsga / május.

9 II. 5. a) első megoldás 1... ár 1,5 tömeg 1,5 0,8 y = = 1,y 1,5 1,5 = = 1,875 1,5 1,875 egységár = = = 1, y 1,5 y ár = tömeg = 1,5 = 1,5 y y Tehát a harmadik kiszerelés egységára a legalacsonyabb. pont 1,5y y pont 5. a) második megoldás 1... ár 1,5 tömeg egységár = ár = tömeg y 0,8 y y y = 0,8 y = 1,5 y 1,5 y Tehát a harmadik kiszerelés egységára a legalacsonyabb. Az 1. ára a.-hoz képest pont. A. ára a.-hoz képest pont. Az 1. tömege a.-hoz képest pont. A. tömege a.-hoz képest pont. pont Cellánként 1-. Összesen: 1 pont y pont pont Az. ára a 1.-höz képest pont. A. ára az 1.-höz képest pont. Az 1. tömege a.-hoz képest pont. A. tömege a.-hoz képest pont. pont Cellánként 1-. Összesen: 1 pont írásbeli vizsga / május.

10 5. a) harmadik megoldás 1. kiszerelés. kiszerelés. kiszerelés tömeg egységár ár = egységár és a tömeg szorzata 1, m 1,5 m m 1,5 e 1,5 e e 1,5 em 1,875 em em -- pont oszloponként vagy soronként Tehát a harmadik kiszerelés egységára a legalacsonyabb. Összesen: 1 pont Az 1. tömege a.-hoz képest pont. A. tömege a.-hoz képest pont. Az 1. ára a.-hoz képest pont. A. ára a.-hoz képest pont. 5. b) Ha a legolcsóbb kiszerelés egységára 600 Ft, a másik kettőé ennek 15%-a, azaz Ft. A három kiszerelés átlagos egységára: ( = 700). A negyedik kiszerelésen 700 Ft egységár szerepelt. Összesen: pont írásbeli vizsga / május.

11 6. a) (Az f integrálható függvény.) a 0 a + a + a d = a a + a + a a a 0 = pont Tagonként 1- jár. a a a = + + a = a a a = a + a. Összesen: 6 pont 6. b) Megoldandó (az a R + feltétel mellett) a a + a 0 egyenlőtlenség. ( a + 1) a ( 1 a) 0 Mivel a > 0, így az első két tényező pozitív, ezért 1 a 0. Az a lehetséges értékeinek figyelembe vételével: 0 < a 1. Összesen: pont Ha az egyenlőtlenséget a harmadfokú függvény grafikonjának vázlata alapján helyesen oldja meg, megoldása teljes értékű. 6. c) (A nyílt intervallumon értelmezett ( R + ) g függvény differenciálható.) g = +. ( ) 1 A lehetséges szélsőértékhely keresése: + 1 = 0 A lehetséges szélsőértékhely: 1 = (ez van benne az értelmezési tartományban); g ( ) = g = < 0 1 Tehát az = lokális maimumhely. Összesen: 6 pont Ha a lokális szélsőértékhelyek létezéséről az első derivált előjelváltásával ad elégséges feltételt, teljes pontszámot kap. írásbeli vizsga / május.

12 7. a) az egyenes tengelyen lévő pontja y tengelyen lévő pontja DA : y 0 = 0 0 ;0 ( 0; 5) 0 AB : + 5y 0 = 0 ;0 ( 0 ;) BC : y + 1 = 0 ( ;0) ( 0 ;) : 5 + y + 15 = 0 ;0 0; 5 CD ( ) ( ) Az DA és az AB egyenesek metszéspontja az - 0 tengely A = ; 0 pontja. Az AB és az BC egyenesek metszéspontja az y- tengely B = ( 0 ; ) pontja. Az BC és az CD egyenesek metszéspontja az - tengely C = ( ; 0) pontja. Az CD és az DA egyenesek metszéspontja az y- D = 0; 5 pontja. tengely ( ) Indoklás nélkül felírt csúcspontok megadásáért nem jár pont. A csúcspontok alapján beláttuk, hogy az ABCD négyszög AC átlója az -, BD átlója az y-tengelyre illeszkedik. Felírjuk az oldalegyenesek egy-egy normálvektorát (irányvektorát vagy iránytangensét). az egyenes egy normálvektor (egy irányvektor) (iránytangens) DA : y 0 = 0 ( ; ) ( ;) AB : + 5y 0 = 0 ( ; 5) ( 5 ; ) 5 BC : y + 1 = 0 ( ; ) ( ; ) CD : 5 + y + 15 = 0 ( 5 ; ) ( ; 5) 5 pont A normálvektorok között és ezért az egyenesek közt sincs két egymásra merőleges, (skalárszorzat nem 0), ezért az ABCD négyszögnek nincs derékszöge. Összesen: 8 pont Egy hiba esetén, kettő, vagy több hiba esetén 0 pont adható. írásbeli vizsga / május.

13 7. b) első megoldás y B C 1 CDB 1 CAB A D Megvizsgáljuk, hogy pl. a CB szakaszt az A és D csúcsokból azonos szög alatt látjuk-e. Ha a szögek nem azonos nagyságúak, akkor az ABCD nem húrnégyszög. Ha a szögek azonos nagyságúak, akkor a CB szakasz látókörív alakzatán van az A és a D pont is. Mivel a CB egyenes azonos partján van az A és a D pont is, ez azt jelenti, hogy az ABCD pontok egy körív pontjai, vagyis az ABCD négyszög húrnégyszög. Mivel az ABCD négyszög átlóinak metszéspontja az origó, ezért a CDB és a CAB szögeket a COD, illetve a BOA derékszögű háromszögekben vizsgálhatjuk. Ezek a derékszögű háromszögek hasonlóak, mert befogóik aránya egyenlő: CO OB 1 =, illetve = = =. DO 5 OA A két vizsgált szög tehát egyenlő. Az ABCD négyszög tehát húrnégyszög. Összesen: 8 pont Ha az indoklás nem ennyire részletes, akkor is járnak a megfelelő pontok. írásbeli vizsga / május.

14 7. b) második megoldás y B C γ 1 1 α A D Legyen γ = BCD és α = DAB Vektorok skalár-szorzatával fogjuk kiszámítani két szemközti szög koszinuszát. CB CD cos γ =, CB CD ahol CB = ( ; ) és = ( ; 5) CD, CB CD = 11, CB = 5 és CD =. 11 cosγ =. 5 AB AD 0 cos α =, ahol AB = ; és AB AD 0 AD = ; 5 ; AB AD =, AB = és AD = cos α =. 5 A γ és az α szögek tehát kiegészítő szögek, az ABCD négyszög húrnégyszög. Összesen: 8 pont írásbeli vizsga / május.

15 Megjegyzések: 1. Ha a b) állítás vizsgálatakor közelítő értékekkel dolgozik, legfeljebb pontot kaphat a 8 pont helyett.. Addíciós képlettel is dolgozhatunk. A koordináta- rendszer tengelyei (a négyszög átlói) négy derékszögű háromszögre bontják a négyszöget. Ezekből a háromszögekből a hegyesszögek tangensét számoljuk ki.() Ha α = α 1 + α, akkor tgα 1 = () 5 7 és tgα = (), innen tg α = tg( α1 + α ) =. () Ha γ = γ 1 + γ, akkor tgγ 1 = () és tgγ = (), innen tg γ = tg( γ1 + γ ) =. () 11 Ebből az következik, hogy α + γ = 180.(). A bizonyítás történhet úgy is, hogy felírja pl. az ABC háromszög körülírt körét (összesen 6 pont), és bizonyítja, hogy a D pont illeszkedik erre a körre.( pont) A kör egyenlete: + y + = Az oldalfelező merőleges egyenesek egyenletei: AB felezőmerőlegese: 15 9y = ; () BC felezőmerőlegese: 6 + 8y = 7 (), metszéspont pont, sugár, CD felezőmerőlegese: 5y = 8, DA felezőmerőlegese: + 18y = 5. írásbeli vizsga / május.

16 8. a) első megoldás Jelöljük a négy fényképre írt neveket A, B, C, D-vel, a neveknek megfelelő borítékon lévő címzéseket a, b, c, d-vel. a1) Andris kapott csak megfelelő fényképet. Ez csakis úgy lehetséges, ha az abcd sorrendben elhelyezett borítékokba az A, B, C és D jelű fotók közül Peti az elsőbe helyezte A-t, a másodikban nem tehette B-t, csak C-t vagy D-t. Ha az első két borítékba már elhelyezte a fotókat, a cd borítékokba maradó fotó között pontosan az egyik borítékhoz tartozó megfelelő fénykép van még a kezében. Ezért a befejező lépése már csak egyféle lehet. Tehát a kívánt elhelyezés kétféleképpen valósítható meg. a) A fényképeket Peti -féleképpen helyezhette volna el a borítékokba, ezen elhelyezések mindegyikének azonos a valószínűsége. (Jelölje S azt az eseményt, hogy senki sem kapott nevével ellátott fényképet.) Az S esemény pontosan akkor következik be, ha az első borítékba, B, C vagy D jelű fotó kerül. Bármelyiket is helyezte ezek közül az első borítékba, a maradék hármat úgy, hogy senki se kapja a sajátját háromféleképpen lehet elhelyezni, (például: BADC, BCDA, BDAC). Hasonlóan - megfelelő elhelyezés lehetséges, ha az első helyre C-t vagy D-t teszi. Az S esemény tehát 9-féle elhelyezés esetén valósítható meg: 9 p ( S ) =. (Jelölje E azt az eseményt, hogy pontosan egyikük kapott nevével ellátott fényképet.) Az E esemény pontosan akkor következik be, ha az A, a B, a C vagy a D fénykép kerül csak a megfelelő betűjelű borítékba. pont Ezek közül bármelyik kétféleképpen lehetséges (lásd a1 megoldását). Így az E eseményt 8-féle elhelyezés valósítja meg: 8 p ( E) =. 9 8 = p ( S ) > p( E) =. Összesen: 1 Az összes (elemi) események számáért. A kedvező esetek számáért összesen pont jár. A kedvező esetek számáért összesen pont jár. írásbeli vizsga / május.

17 8. a) második megoldás Jelöljük a fényképekre írt neveket A, B, C, D-vel, a neveknek megfelelő borítékon lévő címzéseket a, b, c, d-vel. a1) Andris kapott csak megfelelő fényképet. Ez csakis úgy lehetséges, ha az abcd sorrendben elhelyezett borítékokba az ACDB vagy ADBC sorrendben kerültek a fényképek. Tehát a kívánt elhelyezés kétféleképpen valósítható meg. a) (Jelölje S azt az eseményt, hogy senki sem kapott nevével ellátott fényképet.) Az S esemény pontosan akkor következik be, ha az abcd sorrendben elhelyezett borítékokba BADC, BCDA, BDAC, CADB, CDAB, CDBA, DABC, DCAB, DCBA sorrendben kerülhettek a fényképek. Ez 9 kedvező eset. (Jelölje E azt az eseményt, hogy pontosan egyikük kapott nevével ellátott fényképet.) Az E esemény pontosan akkor következik be, ha az abcd sorrendben elhelyezett borítékokba ACDB, ADBC, BCAD, BDCA, CABD, CBDA, DACB, DBAC sorrendben kerülhettek a fényképek. Ez 8 kedvező eset. A fényképeket Peti -féleképpen helyezhette volna el a borítékokba, ezen elhelyezések mindegyikének azonos a valószínűsége. 9 = p > ( S ) p( E) pont pont pont 8 =. Összesen: 1 A felsorolásban elkövethető hibák: kimarad eset, hibás esetet is hozzávesz, egy esetet többször szerepeltet. Hibánként 1-ot vonjunk le. Ez az a1)-beli esetek számának négyszerese. Ha csak ezt írja, ezért is jár a pont. Lásd: előző megjegyzés. Az összes események egyezőségéért. Az alábbi táblázatokban felsoroljuk az S és az E eseményeket megvalósító elhelyezéseket. S esemény A boríték címe A B C D 1. lehetőség b a d c. lehetőség b c d a. lehetőség b d a c. lehetőség c a d b 5. lehetőség c d a b 6. lehetőség c d b a 7. lehetőség d a b c 8. lehetőség d c a b 9. lehetőség d c b a E esemény A boríték címe A B C D 1. lehetőség a c d b. lehetőség a d b c. lehetőség c b d a. lehetőség d b a c 5. lehetőség b d c a 6. lehetőség d a c b 7. lehetőség b c a d 8. lehetőség c a b d írásbeli vizsga / május.

18 8. b) első megoldás Mivel minden dobás kétféle lehet, ezért a négy dobás összes lehetséges egyenlően valószínű sorrendje = 16 lehet. A négy dobáshoz tartozó összegek lehetnek: =, ( A ) =, ( A ) 6+6++=0, ( A 0 ) A A 6+++=18, ( ) =16. ( ) 16 Az ( A ) és az (A 16 ) esemény is egyféleképpen valósulhat meg, ezért 1 p ( A ) = p( A16 ) =. 16 A és az (A 18 ) esemény is -féleképpen valósulhat meg, ezért p ( A ) = p( A18 ) =. 16 A esemény = 6 -féleképpen valósulhat 6 meg, ezért p ( A 0 ) =. 16 Összesen: 5 pont Az ( ) Az ( ) 0 írásbeli vizsga / május.

19 8. b) második megoldás A négy dobáshoz tartozó összegek lehetnek: =, ( B 0 ) B B 6+++=18, ( B ) B =, ( ) =0, ( ) +++=16. ( ) 1 Bármelyik dobásnál a 6-os és -es is valószínűséggel következik be. 1 Az B k események valószínűségét a p = ; n = paraméterű binomiális eloszlás írja le. Ezért: 1 1 p ( B0 ) = = 16 1 p ( B1 ) = = pont p ( B ) = = 16 1 p ( B ) = = p ( B ) = = Összesen: 5 pont Egy vagy két rossz (vagy hiányzó) érték esetén adható. írásbeli vizsga / május.

20 9. a) (A teljes beültetéshez = 500 db virágra van szükség. A különböző színű virágok darabszáma a megfelelő területek arányából számolható. Kiszámítjuk a megfelelő területeket. Jelölje az MCD háromszög területét t, az MBA háromszög területét T, az MBC háromszögét t 1 és az MAD háromszögét t.) Az MBA és a MCD háromszögek hasonlóak, hiszen szögeik páronként egyenlő nagyságúak (M-nél csúcsszögek, A és C-nél, ill. B és D-nél váltószögek). A hasonlóság aránya alapján AM BM = =. MC MD Az MBA háromszög területe T = t, (mert a hasonló háromszögek területének aránya a hasonlóság arányának négyzete). Az ADC háromszög területét a DM szakasz MA: MC = : arányban osztja (a két háromszög D-csúcsból induló magassága azonos), ezért t1 = t. Ugyanilyen gondolatmenettel t = t. A trapéz területe 90 = t + t1 + T = t + t +,5t = 6, 5t, Ha ez a gondolat megjelenik a megoldás során, jár az. t = 1, ( m ). A fehér virágok száma 1, 50 = 70. a pirosaké 70 = 160, a sárgáké pedig 160. Összesen: 9 pont írásbeli vizsga / május.

21 9. b) (A teljes beültetéshez = 500 db virágra van szükség. A különböző színű virágok darabszáma a megfelelő területek arányából számolható. Kiszámítjuk a megfelelő területeket.) Az EFGH négyszög paralelogramma, mert két szemközti oldala pl. EF és HG párhuzamosak az AC átlóval, és egyenlők az AC felével (középvonal). Az EFGH paralelogramma területe fele az ABCD trapéz területének, T = 5m², EFGH pont mert pl. AB + DC m T ABCD = m = HF m = HF. Egy paralelogrammát két átlója négy egyenlő területű háromszögre bontja, ezért 50 a piros és sárga virágokból egyaránt = 115 tövet ültettek. A fehér virágokkal beültetett terület a trapéz területének fele, tehát fehér virágból 5 50 = 50 tövet ültettek. Összesen: 7 pont Ezért a gondolatért a teljes feladat megoldása során csak egyszer jár pont. Összesítés fehér piros sárga tavasszal ősszel írásbeli vizsga / május.

MATEMATIKA ÉRETTSÉGI május 4. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI május 4. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 00. május. EMELT SZINT I. ) Adott f és g függvény. f : D f \ k ; k x tgx ctgx sin x a) Igazolja, hogy az így definiált f függvény konstans! ( pont) g : D 7;7 x x 6 x g b) Számítsa

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0801 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0815 ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 05 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 09 ÉRETTSÉGI VIZSGA 20 május MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint ÉRETTSÉGI VIZSGA 0. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:. A dolgozatot

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1411 ÉRETTSÉGI VIZSGA 014. október 14. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1011 ÉRETTSÉGI VIZSGA 010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1414 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0814 ÉRETTSÉGI VIZSGA 010 május 4 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 101 ÉRETTSÉGI VIZSGA 010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 11 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika középszint Javítási-értékelési útmutató MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 04. május 6. Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 062 É RETTSÉGI VIZSGA 2006 október 25 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:. Kérjük,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1311 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 080 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1512 ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Próbaérettségi P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Próbaérettségi P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0. m á j u s MATEMATIKA EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Próbaérettségi 00 Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell

Részletesebben

ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA május 7. jár pont. 2 pont

ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA május 7. jár pont. 2 pont 8 b) Összesen (=76+09+40) db kenyeret rendeltek és 4 db-ot küldtek vissza, ez a megrendelt mennyiség,9%-a Összesen 69 (=4+8) péksüteményt rendeltek és 4 db-ot küldtek vissza, ez a megrendelt mennyiség

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I m á j u s EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0. m á j u s MATEMATIKA EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 003. május-június MATEMATIKA EMELT SZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 003 MATEMATIKA Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 005.október 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 0. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formai előírások: Fontos tudnivalók. A

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0813 É RETTSÉGI VIZSGA 008 október 1 MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 111 ÉRETTSÉGI VIZSGA 01. október 15. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1713 ÉRETTSÉGI VIZSGA 017. október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1.

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1313 ÉRETTSÉGI VIZSGA 013. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 171 ÉRETTSÉGI VIZSGA 018. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1911 ÉRETTSÉGI VIZSGA 019. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1811 ÉRETTSÉGI VIZSGA 018. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 7 ÉRETTSÉGI VIZSGA 07. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:. Kérjük, hogy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 111 ÉRETTSÉGI VIZSGA 01. október 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 061 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1613 ÉRETTSÉGI VIZSGA 017. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1411 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Matematika. Emelt szintű feladatsor pontozási útmutatója

Matematika. Emelt szintű feladatsor pontozási útmutatója Matematika Emelt szintű feladatsor pontozási útmutatója Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével. Formai kérések: Kérjük, hogy piros tollal

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 101 ÉRETTSÉGI VIZSGA 010. október 19. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál

Részletesebben

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így

Részletesebben

3. A megoldóképletből a gyökök: x 1 = 7 és x 2 = Egy óra 30, így a mutatók szöge: 150º. 3 pont. Az éves kamat: 6,5%-os. Összesen: 2 pont.

3. A megoldóképletből a gyökök: x 1 = 7 és x 2 = Egy óra 30, így a mutatók szöge: 150º. 3 pont. Az éves kamat: 6,5%-os. Összesen: 2 pont. . 3650 =,065 0000 Az éves kamat: 6,5%-os I.. D C b A a B AC = a + b BD = b a 3. A megoldóképletből a gyökök: x = 7 és x = 5. Ellenőrzés 4. Egy óra 30, így a mutatók szöge: 50º. írásbeli vizsga 05 3 / 007.

Részletesebben

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

1. MINTAFELADATSOR KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 1. MINTAFELADATSOR KÖZÉPSZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 181 ÉRETTSÉGI VIZSGA 018. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások: 1. Kérjük,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

A próbafelvételi eredményei: (Minden feladat 5 pontos volt...)

A próbafelvételi eredményei: (Minden feladat 5 pontos volt...) A csoport: A próbafelvételi eredményei: (Minden feladat pontos volt...) Minta feladatsor (A) matematikából 014. december 1. (Feladat számolásra) Határozd meg a ; b és c értékét! a = ( 1 3 + 1 6) : 1 6

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 161 ÉRETTSÉGI VIZSGA 016. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint ÉRETTSÉGI VIZSGA 0. október 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formai előírások: Fontos tudnivalók.

Részletesebben