A kémia írásbeli vizsga témakörei Az anyagok csoportosítása és jellemzőik A kémia az anyagokat elsősorban összetételük alapján

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A kémia írásbeli vizsga témakörei Az anyagok csoportosítása és jellemzőik A kémia az anyagokat elsősorban összetételük alapján"

Átírás

1 1. Az anyagok csoportosítása és jellemzőik A kémia az anyagokat elsősorban összetételük alapján csoportosítja. Megkülönböztetünk egyszerű és összetett anyagokat. Az egyszerű anyagokat elemeknek nevezzük. Az összetett anyagok közé tartoznak a vegyületek és a keverékek. Az elemek egyszerű anyagok, kémiai reakcióval sem bonthatók más anyagokra. Az elemek azonos protonszámú atomokból állnak. Az ismert elemek száma meghaladja a százat. Ilyenek az elemek kb. 80%-át kitevő fémek (I., II., III. főcsoport és a mellékcsoportok elemei; pl. Na, Mg, Ca, Al, Fe, Cu, Zn, a periódusos rendszerben a bór-polónium vonaltól balra), a nemfémek (IV., V., VI., VII:, VIII. főcsoportok elemei; pl. H 2, O 2, Cl 2, N 2, C, S, He, Ne a periódusos rendszerben a bórpolónium vonaltól jobbra) és az átmeneti elemek (félfémek pl. Ge, Si, Te a periódusos rendszerben a bór-polónium vonal mentén helyezkednek el). Az elemek kémiailag tiszta anyagok. Szobahőmérsékleten és légköri nyomáson egyes elemek gáz halmazállapotúak (pl. H 2, O 2, Cl 2, N 2, He), mások folyékonyak (pl. Hg, Br 2 ), a legtöbb szilárd halmazállapotú (pl. C, S, Fe, Al). 88 elem a természetben is megtalálható, több mint 20 elem mesterséges. Az elemek halmazszerkezete közönséges körülmények között lehet: egyatomos (nemesgázok), önálló molekulákból álló (pl. O 2, N 2 apoláris kovalens kötésű molekulák) vagy végtelen rácsú, amelyek kötése vagy kovalens (pl. a gyémántban atomrács), vagy többféle kötés együttese (pl. a grafitban atomrács) vagy fémes kötés (a fémekben fémrács). Két elemet magyar tudós fedezett fel: a tellúrt Müller Ferenc (1782), a hafniumot Hevesy György (1923). A vegyületek összetett anyagok, csak kémiai reakcióval bonthatók egyszerű anyagokra (pl. 2H 2 O 2H 2 + O 2 ). A vegyületekben az alkotórészek az eredeti tulajdonságaikat nem tartják meg (pl. a víz sem a hidrogén sem az oxigén tulajdonságait nem mutatja), az alkotórészek aránya szigorúan állandó és a vegyületre jellemző (pl. a víz bontása során mindig két térfogat hidrogén és egy térfogat oxigén keletkezik). A vegyületek száma több millió (pl. H 2 O, NaCl, FeS, CO 2, H 2 SO 4, MgO, NaOH, fehérjék, szénhidrátok pl. cukor). A vegyületek kémiailag tiszta anyagok. Szobahőmérsékleten és légköri nyomáson találunk gáz halmazállapotú vegyületeket (pl. ammónia NH 3, hidrogén-klorid HCl, szén-dioxid CO 2, metán CH 4 ), folyékony vegyületeket (pl. H 2 O, savak: kénsav H 2 SO 4, szénsav H 2 CO 3, salétromsav HNO 3 ), szilárd vegyületeket (pl. sók: NaCl, NH 4 NO 3, CaSO 4, CaCO 3 ; oxidok: CaO, Fe 2 O 3, bázisok: NaOH, Ca(OH) 2, ). A különböző atomok kémiai reakciói során vegyületek keletkeznek. A vegyületekben előforduló elsőrendű kémiai kötések: ionkötés (pl. ionkötésű vegyületek: sók: NaCl, NH 4 NO 3, CaSO 4, CaCO 3 ; valamint CaO, NaOH, szilárd halmazállapotban ionrácsuk van) és kovalens (poláris kovalens) kötés (pl. kovalens kötésű vegyületek: dipólus molekulájúak :HCl, H 2 O, NH 3, apoláris molekulájúak: CO 2, CH 4 ). A keverékek többféle részecskéből felépülő összetett anyagok. A keveréket alkotó részek állhatnak elemekből és vegyületekből is. A keverékek összetevőinek tulajdonságai az összekeverés után nem változnak meg, fizikai változással szétválaszthatók. A keverékekben az alkotórészek aránya változhat, de nem mindig korlátlanul (pl. a vaspor-kénpor keverékében az összetevők aránya tetszőleges lehet, de a cukoroldat cukortartalma nem emelhető korlátlanul). A keverékek szétválasztási módszerei az összetevők eltérő tulajdonságain alapulnak. Szétválasztási eljárások: az ülepítés, a szűrés, a bepárlás, a kristályosítás, a desztillálás és a cseppfolyósítási eljárások. A keverékek kémiailag nem tiszta anyagok. A keverékeket felépítő anyagdarabkák gyakran szabad szemmel vagy nagyítóval láthatók (pl. agyag, homok, bauxit). Azok a finom eloszlású keverékek, amelyek részecskéi mikroszkóppal sem láthatók elegyek (pl. levegő, ételecet, oldatok, földgáz, kőolaj). Szobahőmérsékleten és légköri nyomáson találunk gázkeverékeket (pl. levegő, földgáz), folyékony halmazállapotú keverékeket (pl. ecet, kőolaj, csapvíz, tengervíz, oldatok), szilárd keverékeket (pl. homok, bauxit, ötvözetek, vaspor-kénpor keveréke, ).

2 2. Az atom felépítése Az anyagok parányi építőkövei a 19. század végéig oszthatatlannak hitt atomok. Az atomok rendkívül kicsi részecskék. Az elemek atomjait vegyjellel jelöljük. Az elemeket ill. az atomjaikat a periódusos rendszer foglalja egységes rendszerbe. Az atom két fő része: az atommag és az elektronfelhő. Az atomot felépítő elemi részecskék közül a legfontosabbak: a protonok (p +), a neutronok (n 0 ) és az elektronok (e - ). Az atommag protonokból és neutronokból, az elektronfelhő elektronokból áll. Az elemi részecskék tényleges tömege, elektromos töltése nagyon kicsi, ezért relatív (viszonylagos) értékeket használunk. A proton relatív tömege 1, relatív elektromos töltése +1. A neutron tömege 1 (azonos a proton tömegével), töltés nélküli semleges elemi részecske. Az elektron tömege a proton tömegének kb ed része, elektromos töltése -1 (ellentétes előjellel megegyezik a proton töltésével). (Az elektronok tömege a protonokéhoz képest elhanyagolhatóan kicsi, míg a protonok és a neutronok tömege a méretükhöz képest nagy.) Az atommag az atom középpontjában az atom térfogatának csak igen kis részét foglalja el (az atommag átmérője az egész atom átmérőjének kb. százezred része, ezért az atom belseje nagyrészt üres). Az atommagot protonok és neutronok alkotják, így az atomnak csaknem az egész tömege (99,9%-a) az atommagban összpontosul. Az atommag az atomnak nagyon kicsi térfogatú, de nagyon nagy tömegű, nagy sűrűségű része. A magtöltés a pozitív protonoktól pozitív. Az atommagot negatív töltésű elektronfelhő veszi körül, amelyben a piciny, rendkívül könnyű elektronok rendkívül nagy sebességgel keringenek az atommag körül. Az elektronokat elektromos vonzóerő tartja az atommag környezetében, az elektronfelhőben. Az elektronfelhő az atom nagy térfogatú, de nagyon kicsi tömegű, kis sűrűségű része. Az elektronfelhő az elektronoktól negatív töltésű. A közel azonos energiájú elektronok elektronhéjakat alkotnak. Az atomban a protonok és az elektronok száma mindig egyenlő, ezért az atom kifele elektromosan semleges kémiai részecske. Az atom kémiai minőségét az atommagban levő protonok száma határozza meg (pl. a H atom magjában 1 proton van, a He atom magjában 2, a Li atom magjában 3,...). Ha az atommagban megváltozik a protonok száma, akkor új atom keletkezik. A protonok száma egyenlő a rendszámmal. Az atommagban található protonok és neutronok számának összege a tömegszám (pl. a Na atom magjában 11p + és 12n 0 van, így tömegszáma 23). A tömegszámból kivonva a protonok számát megkapjuk a neutronok számát (pl. a C atom rendszáma 6, ebből tudjuk, hogy atommagjában 6 proton van és tömegszáma 12, így neutronszáma 12-6=6, és mivel az elektronok száma az atomban mindig egyenlő a protonok számával ezért a szénatom esetén ez is 6). A protonok száma (= rendszám) egyazon elem atomjai esetén mindig megegyezik (az elektronok száma is), de a neutronok száma és így a tömegszám is eltérő lehet (pl. a természetben megtalálható H atomok döntő többségének atommagja egyetlen protont tartalmaz és nincs bennük neutron, de előfordul kevés olyan H atom is, amelynek atommagjában az egy proton mellett 1 vagy 2 neutron is található, ezek egymás izotóp atomjai). Az azonos proton számú, de eltérő neutron számú (és tömegszámú) atomokat izotópatomoknak nevezzük. Az elemek azonos protonszámú atomokból felépülő anyagok. A kémiai reakciókban részt vevő elektronokat vegyértékelektronoknak nevezzük. Az atomnak a kémiai reakciókban változatlanul maradó része az atomtörzs (ebbe az atommag és az elektronfelhő változatlanul maradó belső elektronjai tartoznak) (atom= atomtörzs + vegyértékelektronok).

3 3. Az atomok elektronszerkezete és ennek ábrázolása Az atomok elektronfelhőjének szerkezetét a protonok és az elektronok vonzása, az elektronok közötti taszítóerő és az elektronok mozgása alakítja ki. A természetben minden a lehető legkisebb energiájú állapot elérésére törekszik. Ez az energiaminimum elve. Az elektronok is mindig a lehető legkisebb energiájú szabad helyeket foglalják el az atomban. A közel azonos energiájú elektronok elektronhéjat alkotnak. Az atommagtól távolabbi héjak elektronjaira kevésbé hat az atommag vonzó hatása, ezért az elektronhéjak energiája az atommagtól távolodva növekszik. Az elektronok közötti taszítóerő (mindegyik negatív töltésű) miatt az egyes héjakon csak meghatározott számú elektron lehet. Az atommagtól távolabbi héjakon egyre több elektron lehet. Az elektronhéjakat az atommagtól kifele haladva sorszámmal és K, L, M, N, O, P, Q nagybetűkkel jelöljük. Az 1. héjon maximálisan 2, a második héjon 8, a harmadikon 18, a negyediken 32 elektron lehet. Ha az egyes héjakon annyi elektron mozog, amennyi maximálisan lehetséges, akkor az telített, ha ennél kevesebb, akkor az telítetlen héj. Az elektronszerkezet jelölési módjai pl. a nátrium atom esetén: Na 2 vagy: 11 Na 2;8;1 vagy: 2;8;1 vagy: 3. héj 2. héj 1. héj 1 e - 8 e - 2 e - 11Na (A vegyjel előtt a bal alsó sarokba írt szám a rendszám.) Az atomok kölcsönhatásakor a kémiai reakciókban általában a legnagyobb energiájú külső elektronok állapotában következik be változás. A kémiai reakciókban részt vevő elektronok a vegyértékelektronok. Az atomnak a kémiai reakciókban változatlanul maradó része az atomtörzs (ebbe az atommag és az elektronfelhő változatlanul maradó belső elektronjai tartoznak). atom= atomtörzs + vegyértékelektronok (A Na atom: atomtörzs: az atommag és az 1., 2. héjon mozgó elektronok, 1 vegyértékelektron) Fontos szerepük miatt szokás csak a vegyértékelektronokat jelölni: pl. Na, Mg: A vegyértékelektronok lehetnek párosítatlanul és párokban is. A páros vegyértékelektronokat vonallal is ábrázolhatjuk, pl.: Ca Azok az atomok, amelyek külső héja 8 elektront tartalmaz, rendkívül stabilisak, ezért többnyire nem reagálnak más anyagokkal. A nyolc külső elektronos szerkezetet nemesgázszerkezetnek nevezzük, mert a nemesgázatomoknak 8 külső elektronjuk van (a He atomnak 2 van az egyetlen héján, ami ezzel telített). Ez a legstabilisabb, legkisebb energiájú elrendeződés, ezért minden atom a nemesgázszerkezet elérésére törekszik a kémiai reakcióik során. A külső héj 8 elektronnal telített.

4 4. A periódusos rendszer használata (elemek nevének, proton-, elektron-, és neutronszámának meghatározása) Az elemek tudományos rendszerezését Mengyelejev orosz tudós nevéhez fűződik (1869). A periódusos rendszer nemcsak az elemek, hanem az atomok rendszere is. A periódusos rendszert periódusok (vízszintes sorok) és csoportok (függőleges oszlopok) alkotják. Az A-val jelölt oszlopok a főcsoportok, a B-vel jelöltek a mellékcsoportok. A periódusos rendszernek 7 periódusa és 8 főcsoportja van. Az atom helyét a periódusos rendszerben a protonok száma és az atom elektronszerkezete határozza meg. A külső héj elektronjainak (vegyértékelektronok) száma a főcsoportszámot, az elektronhéjak száma a periódusszámot adja meg (pl. a N atom külső elektronhéján 5 elektron van, ezért az V. főcsoportban van; összesen 2 elektronhéja van, ezért a 2. periódusban van). Az atom kémiai minőségét az atommagban levő protonok száma határozza meg (pl. a H atom magjában 1 proton van, a He atom magjában 2, a Li atom magjában 3,...). Ha az atommagban megváltozik a protonok száma, akkor új atom keletkezik. A rendszám (az atom sorszáma) egyenlő az atomban lévő protonok és az elektronok számával. Egy periódusban balról jobbra haladva nő a rendszám, ezzel együtt a protonok és az elektronok száma is, ezért a kémiai tulajdonságok fokozatosan változnak a perióduson belül. Az atomok kémiai reakciókban való viselkedését nagymértékben befolyásolja a vegyértékelektronok száma. Ezért kerültek a hasonló tulajdonságú elemek egy főcsoportba (pl. Na, K). A hasonló tulajdonságok a hasonló vegyértékelektron-szerkezettel magyarázhatók. Az atommagban található protonok és neutronok számának összege a tömegszám (pl. a Na atom magjában 11p + és 12n 0 van, így tömegszáma 23). A tömegszámból kivonva a protonok számát megkapjuk a neutronok számát (pl. a C atom rendszáma 6, ebből tudjuk, hogy atommagjában 6 proton van és tömegszáma 12, így neutronszáma 12-6=6, és mivel az elektronok száma az atomban mindig egyenlő a protonok számával ezért a szénatom esetén ez is 6). Az első periódusban csak két atom van, mert az első elektronhéjon csak két elektronnak van helye. A második periódusban 8 atom van, mert a második elektronhéjon maximálisan nyolc elektron mozoghat. A periódusos rendszer VIII. főcsoportjának elemei a nemesgázok, melyek csak nagyon nehezen lépnek kémiai reakciókba. Külső héjukon (a He kivételével) 8 elektron mozog. Ez a legstabilisabb elektronszerkezet, melyet nemesgázszerkezetnek nevezünk. Minden atom a nemesgázszerkezet elérésére törekszik a kémiai reakciók során. A periódusos rendszernek 8 főcsoportja van, mert a nemesgázszerkezet eléréséhez 8 külső elektron szükséges. Példa a periódusos rendszer használatára, egy atom proton-, elektron-, és neutronszámának meghatározására: Az alumínium atom vegyjele Al. Rendszáma 13, mert 13 protonja van az atommagjában és összesen 13 elektron mozog az elektronfelhőjében. Tömegszáma (a relatív atomtömeg- a vegyjel alatt található egészre kerekített értéke) 27, mert összesen ennyi protonja és neutronja van (a legtöbb Al atomnak). A 27 tömegszámból elvesszük a 13 protonszámot, megkapjuk a neutronszámot, ami 14. A harmadik periódusban (vízszintes sorban) van, mert 3 elektronhéja van. A harmadik főcsoportban van, mert 3 vegyértékelektronja van. Ha 3 elektronhéja van, akkor a harmadik héj a külső héj és ezen a héjon 3 elektronja van, akkor az alatta lévő héjak telítettek, tehát az első héjon kettő, a másodikon nyolc elektronja van. Tehát: Al 2

5 5. Kémiai kötések fajtái és ezek felismerése Az anyagokban (a nemesgázokat kivéve) a kémiai részecskék (atomok, ionok, molekulák) különféle módokon egymáshoz kapcsolódva fordulnak elő. Az atomok a legkisebb energiájú állapot elérésére törekszenek és ezt leggyakrabban a nemesgázszerkezet kialakításával érik el. A kötések között erősség szerint megkülönböztetünk elsőrendű és másodrendű kötéseket. Az elsőrendű kötések: az ionos, a kovalens és a fémes kötés. A másodrendű kötések általában a molekulák között jönnek létre. Az ionos kötés: az ellentétes töltésű ionok közötti elektromos vonzás. Az ionok elektromos töltéssel rendelkező kémiai részecskék, amelyekben eltér a protonok és az elektronok száma. Az egyszerű ionok az atomokból elektronfelvétellel vagy elektronleadással keletkeznek. A kis elektronvonzó képességű atomokból elektronleadással pozitív töltésű ionok (kationok) keletkeznek. Pl. Na - e - Na + vagy Mg Mg e - vagy Al Al e - Azok az atomok alakulhatnak át pozitív ionokká, amelyeknek kevés (1, 2, 3,) vegyértékelektronjuk van. Az elektronleadás oxidáció. A nagy elektronvonzó képességű atomokból elektronfelvétellel negatív töltésű ionok (anionok) keletkeznek. Pl. Cl + e - Cl - (kloridion) vagy O + 2e - O 2- (oxidion) Azok az atomok alakulnak negatív ionokká, amelyeknek sok (7, 6) vegyértékelektronjuk van. Az elektronfelvétel redukció. A fémek és a nemfémek kölcsönhatása során általában a fématomok elektront adnak le (pozitív ionná alakulnak) a nemfématomok elektront vesznek fel (negatív ionná alakulnak). Az I., II. főcsoport elemei a VII., VI. főcsoport elemeivel ionkötésű vegyületeket képeznek. Pl. 2Na + Cl 2 2NaCl vagy2ca + O 2 2CaO (elektronátadással járó redoxi reakciók) Az ionvegyületeket meghatározott számarányú ellentétes töltésű ionok építik fel, kifele töltést nem mutatnak. Az ionkötés általában inrácsba rendezi az ionokat. Az ionkötés csak vegyületekben fordul elő. A kovalens kötés: az atomok közös elektronpárral kialakított kapcsolata. A molekulák két vagy több atomból kovalens kötéssel képződött semleges kémiai részecskék. A molekulák kötő elektronpárjai általában a kapcsolódó atomok külső, párosítatlan elektronjaiból jönnek létre és két atommag vonzása alatt állnak. A nemkötő elektronpárokat továbbra is egy atommag vonzza. Az elemek molekulái azonos atomok kovalens kötéssel történő összekapcsolódása útján jönnek létre. Pl. H + H H H vagy 2H H 2 vagy 2O O 2 vagy 2N N 2.Két azonos atom kapcsolódása esetén a kötés apoláris kovalens kötés. Az elemmolekula apoláris. Pl. H 2, O 2, Cl 2, N 2 A nemfémes elemek (hasonló, de mégis eltérő, aránylag nagy elektronvonzó képességű atomjai) kölcsönhatása során az egymástól különböző atomokból vegyületmolekulák keletkeznek. Pl. HCl, H 2 O, CO 2, NH 3. A vegyületmolekulák atommagjai eltérő mértékben vonzzák a kötő elektronpárokat. A vegyületek molekuláiban a poláris kovalens kötések és a molekula alakja együttesen határozza meg a molekula polaritását. Pl. A HCl molekulában a kovalens kötés és a molekula is poláris (dipólusmolekula). A H 2 O molekula V alakja és poláris kovalens kötései miatt a molekula is poláris, dipólusmolekula. A CO 2 molekulában a kötések polárisak, de szimmetrikusság miatt a molekula apoláris. (A poláris kovalens kötések kialakulásakor bekövetkező elektroneltolódás is redoxi reakció.) A dipólusos molekulák között gyenge elektromos kölcsönhatások, másodrendű kötések kialakulhatnak. Pl. A vízmolekulák között hidrogénkötés. A fémes kötés: A fématomok (főként I., II., III. főcsoportban és a mellékcsoportokban) a külső elektronhéjukon általában kevés (1,2,3), lazán kötött elektront tartalmaznak. Ezeket leadva közös elektronfelhőt hoznak létre, a fématomokból pedig fématomtörzsek keletkeznek. A pozitív tötésű fématomtörzsek és a közöttük szabadon mozgó elektronok közötti vonzóerő a fémes kötés. A fématomtörzsek szilárd halmaza a fémrács. Pl. Fe, Mg, Na, Ca, K, Cu, Au, Al

6 6. Az oldatok kémhatásának ismerete (ph érték) A kémhatás a vizes oldatok egyik fontos tulajdonsága, ph számadattal jellemezzük. A vizes oldatok savas, lúgos és semleges kémhatásúak lehetnek. A savas oldatok ph értéke 7-nél kisebb, a lúgos oldatoké 7-nél nagyobb (de legfeljebb 14), a semleges oldatoké 7.Minél savasabb az oldat, annál kisebb a ph-ja, minél lúgosabb, annál nagyobb a ph-ja. Semleges kémhatású (ph=7) oldatok pl. a desztillált víz, konyhasó-oldat, cukor-oldat. Lúgos kémhatású (7<pH 14) oldatok pl. a szappanoldat, nátronlúg, meszes víz, hypo, mosószeres oldat, a bázisok vizes oldatai (lúgok). Savas kémhatású (ph<7) oldatok pl. sósav, citromsav, gyomorsav, kénsav, ecetsav, a savak vizes oldatai. A savak olyan anyagok, amelyek vízben oldva savas kémhatást eredményeznek. A bázisok (lúgok) olyan anyagok, amelyek vízben oldva lúgos kémhatást eredményeznek. A savak és a bázisok egymással való reakciója a közömbösítés, melynek során valamilyen só és víz keletkezik. sav + bázis = só + víz A semleges oldatba tett indikátorok színe nem változik meg. A savas kémhatású oldatokban a lakmuszpapír piros, a fenolftalein-oldat színtelen, az univerzál indikátor piros árnyalatú. A lúgos kémhatású oldatokban a lakmuszpapír kék, a fenolftalein-oldat piros, az univerzál indikátor kék árnyalatú. A savas kémhatást a vizes oldatokban az oxóniumionok (H 3 O + ) megnövekedett mennyisége okozza. Az oxóniumionok úgy keletkeznek, hogy a vizes oldat készítésekor a vízmolekulák hidrogéniont (H + azaz p + ) kapnak a savtól. Savak azok az anyagok, amelyek proton leadására képesek. Pl.: H + (p + ) HCl + H 2 O Cl - + H 3 O + A lúgos kémhatást a vizes oldatokban a hidroxidionok (OH - ) megnövekedett mennyisége okozza. A hidroxidionok úgy keletkeznek, hogy a vízmolekulák hidrogéniont (H + azaz p + ) adnak le a bázisnak. Bázisok azok az anyagok, amelyek proton felvételére képesek. Pl.: H + (p + ) NH 3 + H 2 O NH OH - A semleges kémhatású oldatokban egyenlő a kémhatást okozó ionok (H 3 O + és OH - ) aránya. A vizes oldatok kémhatása bennük lévő oxóniumionok és a hidroxidionok arányától függ. A protonátmenettel járó kémiai reakciók sav-bázis reakciók. A víz savként és bázisként is viselkedhet (amfoter) a reakciópartnertől függően. (Az ammónia protonfelvevő képessége nagyobb, mint a vízé; a hidrogén-klorid protonleadó képessége nagyobb, mint a vízé.)

7 7. A levegő A levegő összetett anyag, különböző gázok keveréke. Fő alkotórészei: a nitrogén (78%) és az oxigén (21%). Kisebb mennyiségben (1%) állandó alkotórészei: a széndioxid, a vízpára, a nemesgázok (argon, neon, kripton, xenon), a por, a korom is. A levegő gázelegy (olyan keverék, amelyben levő gázok részecskéi nem láthatók). A levegő tulajdonságai az alkotó gázok sajátságaiból adódnak, melyek a levegőben megőrzik eredeti tulajdonságaikat. Tiszta állapotban a levegő színtelen, szagtalan gázkeverék. Vízben kevéssé oldódik. Összetevői közül az oxigén jobban oldódik a vízben, mint a nitrogén. Ennek nagy jelentősége van a vízben élő állatok és növények számára. Az O 2 színtelen, szagtalan gáz, nem éghető, az égést nagyon táplálja. A N 2 is színtelen szagtalan gáz, nem éghető és az égést nem táplálja, kémiailag közönséges hőmérsékleten közömbös. Az oxigén nehezebb, a nitrogén könnyebb, mint a levegő, ezért a magas hegyekben ritkább a levegő. A levegő nem éghető, az égést táplálja, mert összetevői nem éghetők, a benne levő oxigén táplálja az égést. A növények, állatok, emberek légzése, a vulkáni működések, az égési folyamatok, az alkohol erjedése természetes módon juttatja a légkörbe a széndioxidot. Ez színtelen, szagtalan a levegőnél nagyobb sűrűségű, vízben jól oldódó, nem éghető és az égést nem tápláló gáz. Ha a levegő CO 2 tartalma meghaladja a 8%-ot, fulladást okozhat. A CO 2 mélyebb helyeken halmozódik fel, alulról tölti meg a must erjedésekor a pincét. Ilyenkor csak alacsonyan tartott égő gyertyával lehet lemenni. Ha a gyertya elalszik, csak szellőztetés után vagy légzőkészülékkel szabad a helyiségben tartózkodni. Nagy mennyiségű CO 2 keletkezik a fa, a szén, a kőolaj, a földgáz és más tüzelőanyagok elégetésekor. A levegő O 2 és CO 2 aránya az utóbbi évtizedekig közel állandó volt. Ez a növények fotoszintézisének köszönhető a növények a zöld színanyaguk (klorofilljuk) segítségével a napfény energiájának felhasználásával a levegőben lévő CO 2 -ból és a talajból felvett H 2 O-ból szőlőcukrot készítenek, miközben O 2 válik szabaddá. Sötétben a növények is a többi élőlényhez hasonlóan O 2 -t használnak a levegőből és CO 2 -t lélegeznek ki. Az üvegházhatás (a levegőben levő CO 2, vízgőz képesek elnyelni és ezzel a légkörön belül tartani a Napból sugárzás formájában érkező energia nagy részét) fenntartja az élőlények számára a viszonylagos állandó hőmérsékletet. Ha azonban az egyre növekvő CO 2 kibocsátás és az erdős területek csökkenése miatt a légkör CO 2 aránya nő, a felmelegedés is erősebb lesz. A nemesgázok színtelen, szagtalan, kémiailag közömbös gázok, nem éghetők, az égést nem táplálják. Héliumot tartalmaznak egyes kőolaj- és földgázforrások gázai. A nemesgázokat a levegőből és a földgázból nyerik. A He könnyebb a levegőnél. A cseppfolyós levegő szobahőmérsékleten forrásban lévő kis sűrűségű világoskék folyadék. Hőmérséklete -190 o C A cseppfolyós levegő fontos ipari nyersanyag, mert belőle nitrogént, oxigént, nemesgázokat tisztán ki lehet nyerni, mivel a folyékony levegőt alkotó cseppfolyós gázok különböző hőmérsékleten párolognak el.

8 8. Az anyagok változásai és ezek felismerése A kölcsönhatások a szerkezetváltozások alapján csoportosíthatók: fizikai, kémiai és biológiai változásokra. Azok a kölcsönhatások, amelyek során az anyagok minősége nem változik meg, fizikai változások. Ilyenkor az anyagoknak csak egyes fizikai tulajdonságai változnak meg, de nem keletkeznek új, más anyagok. Pl. vaspor és kénpor összekeverése, kockacukor porrá törése, a víz felforralása, konyhasó-oldat készítése, halmazállapot-változások. Azok a változások, amelyek során új anyag (anyagok) keletkeznek, kémiai átalakulások, kémiai reakciók. Ekkor nemcsak egyes fizikai tulajdonságai változnak az anyagoknak, hanem kémiai tulajdonságai is, mert az anyagokat felépítő részecskék szerkezete is megváltozik. Pl.: - a vasporból és kénporból heves izzás közben vas-szulfid keletkezik: Fe+S FeS - a cukor hevítés hatására elszenesedik, közben a kémcső vizes lesz: cukor szén+víz - a vízből elektromos mező hatására hidrogénre és oxigénre bomlik: 2H 2 O 2H 2 + O 2 - a magnézium égésekor fehér por, magnézium-oxid keletkezik: 2Mg + O 2 2MgO A kémiai reakciók lényege, hogy az egymással reakcióba lépő anyagok kémiai kötései felbomlanak, és új kötések jönnek létre. A kémiai reakcióban részt vevő anyagok száma szerint a reakciók lehetnek: egyesülés, vagy bomlás. Egyesülés pl. a hidrogén égése: 2H 2 +O 2 2H 2 O. Egyesülés során több anyagból egy új anyag keletkezik. Az égés az egyik legfontosabb kémiai reakció, az égéstermékek az oxidok. Az oxigénnel való egyesülés az oxidáció. Az egyesülés ellentétes folyamata a bomlás. Bomláskor egy anyagból több új anyag keletkezik. Pl.: CaCO 3 CaO + CO 2 Az oxidációval ellentétes folyamat az oxigén elvonása. Ez a redukció. Az oxidáció és a redukció együttjáró folyamatok: redoxi reakciók. Részecskeátmenet szerint megkülönböztetünk elektronátmenettel járó reakciókat (redoxi reakciók) és protonátmenettel járó reakciókat (sav-bázis reakciók). A redoxi reakciók tágabb értelmezése szerint oxidáció minden elektronleadással járó reakció és redukció minden elektronfelvétellel járó reakció. Pl. 2Na + Cl 2 2NaCl, mert teljes e - átadással ionok keletkeznek (ionvegyület keletkezik). Részfolyamatai: Na e - Na + (e - leadás vagyis oxidáció) Cl + e - Cl - (e - felvétel vagyis redukció) Az elektroneltolódással (részleges elektronátadással) járó reakciók is redoxi reakciók. Pl.: H 2 + Cl 2 2HCl, mert a keletkezett vegyületmolekulákban a kovalens kötést alkotó közös elektronpár eltolódik a klóratom felé a nagyobb e - vonzó képessége miatt. Részleges e - eltolódás során kovalens kötésű vegyületek keletkeznek. A redoxi reakciók során az e - -t (részlegesen vagy teljesen) veszítő anyag redukálószer, az e - -t (részlegesen vagy teljesen) nyerő anyag az oxidálószer. A sav-bázis reakciókban protonátadás történik. A p + -t (azaz H + -t) leadó anyagok a savak, a p + -t (azaz H + -t) felvevő anyagok a bázisok. Pl. H 2 SO 4 + 2H 2 O SO H 3 O + ; itt a H 2 SO 4 adja a p + - t (sav), a H 2 O kapja a p + -t (bázis). A biológiai változások során bonyolult, összehangolt fizikai változások és kémiai átalakulások következnek be. Ezek a változásegyüttesek az életjelenségek. 9. Energiaváltozások felismerése A változásokat kísérő energiaváltozás szerint ismerünk: exoterm és endoterm változásokat. - endoterm változás: az anyag belső energiája nő (a környezet belső energiája csökken), pl. cukor bontása, víz bontása, olvadás, párolgás, forrás, szublimáció - exoterm változás: az anyag belső energiája csökken (a környezet belső energiája nő), pl. égés, lecsapódás, fagyás, kénsav hígítása vízzel, lúgkő oldása vízben

9 10. Savak tulajdonságai A sav elnevezést kétféle értelemben használjuk. A savak olyan anyagok, amelyek vizes oldata savas kémhatású. A savakra jellemző, hogy savanyú ízűek, töményebb oldatban maró, roncsoló hatásúak. Ismertebb savak: citromsav, ecetsav, almasav, sósav, kénsav, salétromsav, foszforsav, szénsav, kovasav. Azokat az anyagokat, melyek proton (p + azaz H + ) leadására képesek, savaknak nevezzük. A következő sav-bázis reakciókban sósav (HCl), a kénsav (H 2 SO 4 ), a szénsav (H 2 CO 3 ), a salétromsav (HNO 3 ), a foszforsav (H 3 PO 4 ), a kovasav (H 2 SiO 3 ) p + -t (H + -t) adnak le, ezért savként viselkednek, a H 2 O ezekben az esetben bázisként viselkedik, mert p + -t (H + -t) vesz fel. Másrészt mindegyik sav vizes oldata savas kémhatású, mert mindegyik reakcióban a savas kémhatást okozó oxóniumionok (H 3 O + ) keletkeznek. A oxóniumionok megnövekedett mennyisége ( túlsúlya ) miatt az indikátorok savas kémhatást jeleznek (lakmuszpapír piros, fenolftalein-oldat színtelen, univerzális indikátor piros színű lesz). A savak vizes oldatának jellemző alkotórésze az oxóniumion (H 3 O + ). A savas kémhatást okozó oxóniumionok (H 3 O + ) mellett keletkezett anionok a savak savmaradékionjai. HCl + H 2 O Cl - + H 3 O + savmaradék ion: kloridion (Cl - ) H 2 SO 4 + 2H 2 O SO H 3 O + savmaradék ion: szulfátion (SO 2-4 ) H 2 CO 3 + 2H 2 O CO H 3 O + savmaradék ion: karbonátion (CO 2-3 ) HNO 3 + H 2 O NO H 3 O + savmaradék ion: nitrátion (NO - 3 ) H 3 PO 4 + 3H 2 O PO H 3 O + savmaradék ion: foszfátion (PO 3-4 ) H 2 SiO 3 + 2H 2 O SiO H 3 O + savmaradék ion: szilikátion (SiO 2-3 ) A sósav sói a kloridok: NaCl (konyhasó), CaCl 2, KCl (kálisó), NH 4 Cl (szalmiáksó) A kénsav sói a szulfátok: Na 2 SO 4 (glaubersó), CaSO 4 (kalcium-szulfát a gipsz anyaga) A szénsav sói a karbonátok: Na 2 CO 3 (sziksó), CaCO 3 (mészkő), MgCO 3 (Mg-karbonát) A salétromsav sói a nitrátok NaNO 3 (chilei salétrom), KNO 3, NH 4 NO 3 (ammónium-nitrát) A foszforsav sói a foszfátok: Na 3 PO 4 (trisó), Ca 3 (PO 4 ) 2 (trikálcium-difoszfát a csont anyaga) A kovasav sói a szilikátok: CaSiO 3 A savak bázisokkal (lúgokkal) közömbösíthetők. A közömbösítés protonátmenettel járó sav-bázis reakció, amely során só és víz keletkezik. Ha a reakcióban semleges kémhatású oldat keletkezik, akkor a folyamat semlegesítés. Pl.: HCl + NaOH NaCl + H 2 O H 2 SO 4 + 2NaOH Na 2 SO 4 + 2H 2 O H 2 CO 3 + 2NaOH Na 2 CO 3 + 2H 2 O HNO 3 + NaOH NaNO 3 + H 2 O A híg savak (HCl, H 2 SO 4, HNO 3 ) hidrogénfejlődés közben oldják a H-nél nagyobb redukálóképességű fémeket (K, Ca, Na, Mg, Al, Zn, Fe): Zn + 2HCl ZnCl 2 + H 2 elektronátadással járó redoxireakciók, Fe + H 2 SO 4 FeSO 4 + H 2 a fémek a redukálószerek (e - -t adnak le) Na + 2HNO 3 NaNO 3 + H 2 a savak (H + ionjai) az oxidálószerek (e - -t vesznek fel) A híg savak nem oldják a H-nél kisebb redukálóképességű fémeket (Cu, Ag, Hg, Au). A tömény (cc) savak passziválják, nem oldják a H-nél nagyobb redukálóképességű fémeket (Al, Zn, Fe), amelyek cc sav után már híg savakban sem oldódnak. A tömény (cc H 2 SO 4, cc HNO 3 ) savakban oldódik a Cu, Hg. A cc HNO 3 oldja az ezüstöt (Ag), de nem oldja az aranyat(au) (a cc HNO 3 választóvíz). Az aranyat csak a királyvíz (cc HNO 3 és cc HCl 1:3 arányú keveréke) oldja.

10 11. Sav-bázis reakció A sav-bázis reakciók azok a kémiai reakciók, melyekben protonátadás történik. A p + -t (azaz H + - t) leadó anyagok a savak, a p + -t (azaz H + -t) felvevő anyagok a bázisok. (H + = p +, mert a hidrogénion egyetlen protonból áll.) Azokat az anyagokat, melyek proton (p + azaz H + ) leadására képesek, savaknak nevezzük. Azokat az anyagokat, melyek proton (p + azaz H + ) felvételére képesek, bázisoknak nevezzük A következő sav-bázis reakciókban sósav (HCl), a kénsav (H 2 SO 4 ), a szénsav (H 2 CO 3 ), a salétromsav (HNO 3 ), a foszforsav (H 3 PO 4 ), a kovasav (H 2 SiO 3 ) p + -t (H + -t) adnak le, ezért savként viselkednek, a H 2 O ezekben az esetben bázisként viselkedik, mert p + -t (H + -t) vesz fel. A savak vizes oldata savas kémhatású, mert mindegyik reakcióban a savas kémhatást okozó oxóniumionok (H 3 O + ) keletkeznek. A savak vizes oldatának jellemző alkotórésze az oxóniumion (H 3 O + ). A savas kémhatást okozó oxóniumionok (H 3 O + ) mellett keletkezett anionok a savak savmaradékionjai. HCl + H 2 O Cl - + H 3 O + H 2 SO 4 + 2H 2 O SO H 3 O + H 2 CO 3 + 2H 2 O CO H 3 O + HNO 3 + H 2 O NO H 3 O + H 3 PO 4 + 3H 2 O PO H 3 O + H 2 SiO 3 + 2H 2 O SiO H 3 O + Ezeknek a sav-bázis reakcióknak a lényege, hogy a vízmolekulák protont kaptak a savaktól és ezáltal a vízmolekulákból a savas kémhatást okozó oxóniumionok keletkeztek: H 2 O + p + H 3 O + vagy másképpen: H 2 O + H + H 3 O + A víz (amfoter) savként és bázisként is viselkedhet a reakciópartnertől függően. Az ammónia protonfelvevő képessége nagyobb, mint a vízé. Az ammóniamolekula vonzó hatást gyakorol a vízmolekulában lévő egyik hidrogénatomra, amely proton formájában az ammóniamolekulához kapcsolódik. Abban a vízmolekulában, amelyik protont adott le, csökkent a protonok száma, de az elektronok száma változatlan maradt, ezért belőle a lúgos kémhatást okozó negatív töltésű hidroxidion keletkezett (OH - ): NH 3 + H 2 O NH OH - Az ammóniamolekulákból ammóniumionok keletkeztek. Ebben a sav-bázis reakcióban a víz savként (adta a protont), az ammónia bázisként viselkedett (kapta a protont). A reakció lényege, hogy a vízmolekulák protont vesztettek és belőlük a lúgos kémhatást okozó hidroxidionok keletkeztek: H 2 O - p + OH - vagy másképpen: H 2 O OH - + H + Az amfoter jellegű dipólusos vízmolekulák egymással is kölcsönhatásba lépnek. Az egyik vízmolekula protont ad le, a másik felveszi ezt a protont. A kölcsönhatás eredményeképpen kémhatást okozó oxóniumionok és hidroxidionok keletkeznek: H 2 O + H 2 O H 3 O + + OH - Ebben a kölcsönhatásban az egyik vízmolekula savként, a másik bázisként viselkedett. A vízben egyenlő az oxóniumionok és a hidroxidionokszáma, ezért a víz semleges kémhatású. A savak bázisokkal (lúgokkal) közömbösíthetők. A közömbösítés protonátmenettel járó savbázis reakció, amely során só és víz keletkezik. Ha a reakcióban semleges kémhatású oldat keletkezik, akkor a folyamat semlegesítés. Pl.: HCl + NaOH NaCl + H 2 O H 2 SO 4 + 2NaOH Na 2 SO 4 + 2H 2 O H 2 CO 3 + 2NaOH Na 2 CO 3 + 2H 2 O HNO 3 + NaOH NaNO 3 + H 2 O Ezekben a reakciókban a savak adják a protont, a lúg hidroxidionja felveszi azt. E reakciók lényege, hogy a sav oxóniumionjai és a lúg hidroxidionjai vízmolekulákká alakulnak: H 3 O + + OH - 2H 2 O

11 12. Egyenletírás A kémiai egyenlet a kémiai reakciók leírása vegyjelekkel és képletekkel. A kémiai egyenlet bal oldalán az egymásra ható (kiindulási anyagok), jobb oldalán a keletkezett anyagok (reakciótermékek) kémiai jelei szerepelnek. Minden kémiai reakcióra érvényes a tömegmegmaradás törvénye, ezért ezt a törvényt minden kémiai egyenletben alkalmazni kell. A tömegmegmaradás törvénye: a kémiai reakciókban a (kiindulási anyagok együttes tömege megegyezik a keletkezett anyagok tömegének összegével. Az egyenletírás menete: A hidrogén-klorid keletkezése alkotóelemeiből: 1. A kiindulási anyagok neve, képlete: hidrogén H 2, klór Cl 2 A keletkezett anyag(ok) neve, képlete: hidrogén-klorid HCl 2. Leírjuk a kémiai reakciót az anyagok jeleivel: (ez még nem egyenlet, mert mennyiségileg nem helyes) H 2 + Cl 2 HCl 3. Alakítsuk egyenletté (alkalmazzuk a tömegmegmaradás törvényét)! Akkor helyes az egyenlet, ha a bal és a jobb oldalon szereplő atomok száma megegyezik. A helyesen felírt képleteken nem (indexszámaikon sem!) változtathatunk. A H 2 jel által jelölt 1 mol hidrogénmolekulából 2 mol atom keletkezik, az Cl 2 jel által jelölt 1 mol klórmolekulából 2 mol atom keletkezik. Ezekből 2 mol hidrogén-klorid molekula keletkezik (1 mol HCl molekulában 1 mol H atom és 1 mol Cl atom van). Ekkor írjuk be az együtthatót: H 2 + Cl 2 2HCl Ezzel leírásunk egyenletté vált, mert nemcsak minőségileg, de mennyiségileg is igaz. A magnézium égése: 1. A kiindulási anyagok jele: Mg, O 2 A keletkezett anyag képlete: MgO 2. Leírjuk jelekkel a kémiai reakciót (ez még nem egyenlet, mert mennyiségileg nem helyes) Mg + O 2 MgO 3. Alakítsuk egyenletté (alkalmazzuk a tömegmegmaradás törvényét)! Az 1 mol O 2 molekula 2 mol atomra bomlik, ebből 2 mol MgO keletkezik, de ehhez 2 mol Mg szükséges, írjuk be az együtthatókat: 2Mg + O 2 2MgO Ezzel leírásunk egyenletté vált, mennyiségileg is helyes. Kész az egyenlet. Magnézium és sósav reakciója: 1. A kiindulási anyagok jele: Mg, HCl A keletkezett anyagok képlete: H 2 és MgCl 2 (mert minden Cl atom 1 e - t vesz fel és mindegyik Mg atom 2 e - t ad le ezért kétszer annyi Cl-id ion keletkezik, mint Mg-ion) 2. Leírjuk jelekkel a kémiai reakciót (ez még nem egyenlet, mert mennyiségileg nem helyes) Mg + HCl MgCl 2 + H 2 3. Alkalmazzuk a tömegmegmaradás törvényét: 1 mol H 2 és 1 mol MgCl 2 keletkezéséhez 2mol HCl szükséges, tehát: Mg + 2HCl MgCl 2 + H 2 A víz bontása: 1. A kiindulási anyag képlete: H 2 O A keletkezett anyagok képlete: H 2 és O 2 2. Leírjuk jelekkel a kémiai reakciót (ez még nem egyenlet, mert mennyiségileg nem helyes) H 2 O H 2 + O 2 3. Alkalmazzuk a tömegmegmaradás törvényét: 1 mol O 2 keletkezéséhez 2 mol H 2 O szükséges, de abból 2 mol H 2 keletkezik: 2H 2 O 2H 2 + O 2

12 13. Fémek és nemfémek tulajdonságai A kémiai elemek az azonos rendszámú atomok halmazai. Az elemek fizikai és kémiai tulajdonságaik alapján három csoportba sorolhatók: fémek, félfémek és nemfémes elemek. A periódusos rendszerben a bórtól (B) a polóniumig (Po) húzott lépcsős vonal választja el a fémes és a nemfémes elemeket egymástól. A félfémek (átmeneti elemek) a vonal mentén, a fémek a vonaltól balra, a nemfémek a vonaltól jobbra helyezkednek el. A fémek számos tulajdonsága hasonló. A fémek szobahőmérsékleten szilárd halmazállapotúak (kivéve a Hg). Színük szürke (kivétel: Cu és Au). Jellegzetes fémfényük van. A fémek könnyen megmunkálhatók, az elektromos áramot és a hőt vezetik. Legjobb vezetők: Au, Ag, Cu, Al. Az elemek többségét (kb. 80%) tulajdonságaik alapján a fémek közé soroljuk. A hasonló tulajdonságok oka: a hasonló atom-, kötés-, és rácsszerkezet. A fémek az I., II., III., IV. főcsoportokban és a mellékcsoportokban vannak. A fématomok külső héján így 1, 2, vagy 3 vegyértékelektron helyezkedik el. Ezek aránylag messze vannak az atommagtól, lazán kötöttek, a többi atommag vonzása miatt leszakadnak, így pozitív töltésű fématomtörzsek és közöttük közös elektronfelhő keletkeznek. A közössé vált elektronok szabadon mozognak. A pozitív töltésű fématomtörzsek és a közöttük szabadon mozgó negatív elektronfelhő közötti vonzóerő a fémes kötés. A fémes kötéssel összekapcsolódott fématomtörzsek szilárd halmaza a fémrács. Ha a fémekre elektromos feszültséget kapcsolunk, az elektronok mozgása rendezetté válik, ezért a fémek vezetik az áramot. Megmunkáláskor a fémrács torzul, de nem esik szét, ezért hengerelhetők, huzallá húzhatók, jól megmunkálhatók. A fémek atomjai kémiai reakciókban a kevés számú vegyértékelektronjuk leadásával érik el a nemesgázszerkezetet, ezért redoxireakciókban redukálószerek (miközben oxidálódnak). Legerősebb redukálószerek az alkálifémek (I. főcsoportban található, nagyobb atomokból álló fémek). Redukáló hatásuk alapján sorba rendezhetők. A redukálósorban a hidrogén előtt állók fémek híg savakban hidrogénfejlődés közben oldódnak, a hidrogén után levő nagyon kicsi redukálóképességű fémek híg savakban nem, tömény savakban különbözőképpen oldódnak (nemesfémek). A nemfémes elemek a periódusos rendszer IV., V., VI., VII:, VIII. főcsoportjában találhatók. Atomjaik külső elektronhéján 4, 5, 6, 7, vagy 8 elektron van. A nemfémes elemekhez tartozik a hidrogén is, amelyik az I. főcsoportban van. A nemfémes elemek egy része szobahőmérsékleten gáz halmazállapotú (pl. hidrogén, oxigén, nitrogén, klór), más része szilárd (pl. kén, szén, foszfor), de van köztük folyékony is (pl. bróm). A nemfémes elemek lehetnek színtelenek (pl. hidrogén, oxigén, nitrogén), színesek (pl. klór, kén, foszfor, bróm). Törékenyek és a grafit kivételével nem vezetik az elektromos áramot. A nemfémek halmazszerkezete közönséges körülmények között lehet önálló egyatomos (nemesgázok), önálló (apoláris kovalens kötésű) molekulákból álló (pl. O 2, H 2, Cl 2, N 2 ), vagy végtelen rácsú (pl. gyémánt, grafit, kén). Térhálós atomrácsos a gyémánt (kovalens kötés); réteges atomrácsos a grafit (kovalens és más kötés). A kén nyolcatomos molekulái szilárd halmazállapotban molekularácsot alkotnak, a molekulák között gyenge másodrendű kötéssel. A nemfémek atomjai kémiai reakciókban elektronfelvétellel érik el a nemesgázszerkezetet, ezért redoxireakciókban oxidálószerek (miközben redukálódnak). Legerősebb oxidálószerek a halogénelemek (VII. főcsoportban található, kisebb atomokból álló nemfémek).

13 14. Tápanyagaink Az emberi szervezetnek alapvető tápanyagokra, valamint védő kiegészítő hatású tápanyagokra van szüksége. Az alapvető tápanyagok: a fehérjék, a zsírok-olajok, a szénhidrátok. A fehérjék az élő szervezetek legfontosabb anyagai, elsősorban sejtépítők, az élőlények testszöveteinek fő alkotórészei. A fehérjék növényi és állati eredetűek lehetnek. Elnevezésük a legismertebb fehérjére, a tojásfehérjére utal. Fehérjedús táplálékok: hús, tojás, tej, tejtermékek, hal, hüvelyes növények. A táplálékkal felvett fehérjék a szervezetben lebomlanak. Ezekből a szervezet saját fehérjét készít. Az emberi szervezet csak a bevitt fehérjékből tudja elkészíteni a saját, egyéni fehérjéit. A fehérjék sok fajtái alkotja szervezetünket, amelyek részt vesznek a szervezet felépítésében, az anyagok szállításában, a betegségek elleni védekezésben, számos szerv működésének szabályozásában is. A zsírok-olajok az élő szervezetekben keletkező anyagok. Részben energiaforrások, részben tartalék tápanyagok, lehetővé teszik a zsírban oldódó vitaminok felszívódását. Sok zsírt és olajat tartalmazó táplálékok: szalonna, állati zsír, növényi olajos magvak pl. dió, mogyoró, margarinok, vaj. A zsírok szilárdak, az olajok folyékonyak, a víznél könnyebbek. Vízben nem, de szerves oldószerekben pl. benzinben jól oldódnak. Huzamosabb ideig tárolva avasodnak. Az emberi szervezet a zsírt vagy a zsíros táplálékból veszi fel, vagy szénhidrátokból állítja elő. A szénhidrátok hevítés hatására vizet veszítenek és elszenesednek. A szénhidrátokat a zöld növények vízből, szén-dioxidból állítják elő a Nap sugárzó energiájának felhasználásával (fotoszintézis). Szervezetünk legfőbb energiaforrásai. Fölöslegük zsírrá alakulva elhízást okoz. Szénhidrátok: cukrok (szőlőcukor, répacukor, nádcukor, gyümölcscukor), a keményítő és a cellulóz. Sok szénhidrátot tartalmazó táplálékok: gabonamagvak, búza, kenyér, édességek, üdítőitalok, növényi rostok, burgonya, rizs. A keményítő a növények magvaiban, gumóiban elraktározott tartalék tápanyag. Az emésztés során szőlőcukorra bomlik. A vérben levő szőlőcukor adja a vércukorszintet. A szőlőcukor agy és sejtek működéséhez nélkülözhetetlen. A cellulóz nem emészthető, a táplálék rosttartalmát adja, ami a bélmozgást segíti. A védő és kiegészítő hatású tápanyagok az anyagcsere helyes működését teszik lehetővé. Ide tartoznak a vitaminok, az ásványi anyagok, a nyomelemek.

14 15. Energiaforrásaink Az energiaforrásokat felhasználhatóságuk szerint két csoportba sorolhatjuk: nem megújuló energiaforrások és megújuló energiaforrások. Nem megújuló energiaforrások: amelyekből nem képződik korlátlan mennyiség. Gyorsabb ütemben fogyasztjuk, mint ahogyan keletkeznek. Ilyenek az urán és a széntartalmú energiahordozók: ásványi szenek, kőolaj, földgáz. Megújuló energiaforrások: folyamatosan újratermelődnek vagy újratermelhetők. Keletkezési sebességük legalább akkora, mint amilyen ütemben fogyasztjuk őket. Ilyenek a Nap, a szél, a víz, a Föld belső energiája, a biomassza. Hagyományos energiaforrások a széntartalmú tüzelőanyagok: a fa, az ásványi szenek, a kőolaj, a földgáz. Ezeket elégetve a légkörbe jutó szén-dioxid fokozza az üvegházhatást és felmelegedést okoz, másrészt a kén-dioxid, a nitrogén-oxidok szmogot, savas esőt okoznak. Az ásványi szenek különböző összetételű széntartalmú anyagokból álló keverékek. A növények anyaga (fák) évmilliók alatt a Föld mélyén levegőtől elzártan, nagy nyomás és magas hőmérséklet hatására lassan átalakult, egyes anyagok eltávoztak belőle, így a széntartalmuk fokozatosan növekszik. Az ásványi szenek széntartalma alapján a következő szénfajtákat ismerjük: tőzeg, lignit, barnakőszén, feketekőszén, antracit. A szenesedés kezdeti fokán van a tőzeg, sok füsttel ég. Almozásra, trágyázásra használják. A lignit barna színű, fás szerkezetű. Égése után sok salak marad. Hőerőművekben energiatermelésre használják. A barnakőszén sötétbarna vagy fekete. A lignitnél nagyobb a fűtőértéke. Fűtésre, ipari fűtőgázok, kátrány előállítására használják. A feketekőszén fekete színű. Füst nélkül ég. Fűtésre, ipari fűtőgázok, kátrány (gyógyszerek, festékek alapanyaga) és koksz előállítására használják. A koksz gyakorlatilag tiszta szén, a vaskohászat fontos anyaga. Az antracit fekete színű, fényes, kemény anyag, füst nélkül ég, kevés hamuja van. A kőolaj és a földgáz szénből és hidrogénből álló szénhidrogén- vegyületek keveréke. Az elpusztult élőlények (planktonok) anyagából az évmilliók során a Föld mélyén, levegőtől elzártan, nagy nyomás és hő hatására szénhidrogének keletkeznek. A földgáz színtelen, éghető gáz. Fő összetevője a metán (CH 4 ). A levegő oxigénjével keveredve robban. Égésterméke széndioxid és víz. Fűtőgázként használjuk és vegyipari alapanyagokat gyártanak belőle. A földgázból különítik el a propán-bután keveréket, melyet PB-gáz néven háztartási fűtőanyagként használnak. A kőolaj sötét színű, sűrűn folyó, a víznél könnyebb folyadék. Cseppfolyós és oldott szilárd és gáz halmazállapotú szénhidrogén vegyületek keveréke. A nyers kőolaj csak fűtésre használhazó. A kőolajfinomítókban történő feldolgozása az összetevőinek eltérő forráspont alapján való elkülönítését jelenti. A kőolajfeldolgozás főbb termékei: a benzin, a petróleum, a gázolaj vagy dízelolaj, a pakúra. A benzin jellegzetes szagú folyadék, könnyen párolog, tűzveszélyes, gőze a levegővel keveredve robbanó elegyet képeznek. Gőzeinek belélegzése mérgező. Robbanó motorok üzemanyaga. Jó oldószer, a zsírokat, festékeket, lakkokat oldja. A petróleum jellegzetes szagú folyadék, ma repülőgépek üzemanyagaként használják (kerozin). A gázolaj vagy dízelolaj kellemetlen szagú sárga folyadék, dízelmotorok üzemanyaga, háztartási fűtőanyag. A pakura sötét sűrű folyadék, gépzsírokat, gépek kenőolaját, vazelint (bőrgyógyászat), paraffint gyártanak belőle. A visszamaradó anyag az aszfalt, amelyet szigetelésre, útburkolásra használnak.

15 16. Számítási feladatok (egyenlet alapján a keletkezett anyag mennyiségének kiszámítása) A kémiai reakciókban az egymással maradék nélkül reagáló anyagok mennyiségét a helyes reakcióegyenlet jelöli. A kémiai folyamatokban az egyenletben szereplő anyagmennyiségekhez képest arányosan több vagy kevesebb anyag vesz részt. Pl. a kalcium égésének helyesen felírt egyenletéből a következőket is megtudhatjuk: Egyenlet: 2Ca + O 2 2CaO Anyagmennyiségek: 2 mol Ca 1 mol O 2 2 mol CaO Tömegek: 80g Ca 32g O 2 112g CaO Tehát, ha 80g Ca-t égetünk el, 112g CaO keletkezik. Ha ennél kevesebb kalciumot égetünk el, akkor arányosan kevesebb kalcium-oxid keletkezik. 240g Ca égetésekor 112* 3=336g CaO keletkezik. Vagy 20g Ca égetésekor 112g negyede azaz 28g CaO lesz a termék. A reakcióegyenlet alapján pontosan ki tudjuk számítani a reakcióban szereplő anyagok tömegeit. A számítás menete: Felírjuk a reakció egyenletét (alkalmazzuk a tömegmegmaradás törvényét); beírjuk az egyenletben szereplő anyagmennyiségek tömegeit; megoldjuk az egyenes arányossági feladatot; válaszolunk a kérdésre g magnézium elégetésekor mennyi (hány g) magnézium-oxid keletkezik? Egyenlet: 2Mg + O 2 2MgO Anyagmennyiségek: 2 mol Mg 1 mol O 2 2 mol MgO Tömegek: 48g 32g 2*40g=80g Tehát, ha 48g Mg égetésével 80g MgO keletkezik, akkor 24g Mg égetésével 80:2= 40g MgO keletkezik. (mindegyik fele az egyenletben levőnek). Válasz: 40g MgO lesz g magnéziummal sósavból hány g hidrogén fejleszthető? Egyenlet: Mg + 2HCl MgCl 2 + H 2 Anyagmennyiségek: 1 mol Mg 2 mol HCl 1 mol MgCl 2 1 mol H 2 Tömegek: 24g 73g 95g 2g Eredményünk a tömegekből további számítás nélkül kiolvasható. Tehát, 24g Mg segítségével 2g H 2 keletkezik 3. 9g víz bontásakor hány g oxigén és hány g hidrogén keletkezik? Egyenlet: 2H 2 O O 2 + 2H 2 Anyagmennyiségek: 2 mol H 2 O 1 mol O 2 2 mol H 2 Tömegek: 36g 32g 4g Tehát, ha 36g H 2 O bontásakor 32g O 2 és 4g H 2 keletkezik, akkor 9g H 2 O bontásakor 32:4=8g O 2 és 4:4=1g H 2 keletkezik. (mindegyik negyede az egyenletben levőnek). Válasz: 8g O 2 és 1g H 2 keletkezik kg mészkő hőbontásával mennyi égetett mész állítható elő? Egyenlet: CaCO 3 CaO + CO 2 Anyagmennyiségek: 1 mol CaCO 3 1 mol CaO 1 mol CO 2 Tömegek: 100g 56g 44g Tehát, ha 100kg CaCO 3 bontásakor 56 kg CaO keletkezik, akkor 800kg CaCO 3 bontásakor 56*8= 448kg CaO keletkezik. (8-szor annyi mészkőből 8-szor annyi égetett mész keletkezik). Válasz: 800 kg mészkőből 448 kg égetett mész állítható elő. 4. Az ammónia gyártásához szükséges nitrogént a levegőből nyerik. 1 tonna levegőből hány tonna ammónia állítható elő? Egyenlet: N H 2 2NH 3 Anyagmennyiségek: 1 mol N 2 3 mol H 2 2 mol NH 3 Tömegek: 28g 6g 34g 1t levegőben (78%-a N 2 ) 0,78t=780000g N 2 Tehát, ha 28g N 2 -ből 34g NH 3 állítható elő, akkor g N 2 -ből :28*34= ,82g NH 3 keletkezik, ami közel 0,95t. Válasz: 1t levegőből megközelítőleg 0,95t ammónia állítható elő.

1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10

1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10 Név:.. Osztály.. 1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10 A B a) hidrogén... 1. sárga, szilárd anyag b) oxigén...

Részletesebben

KÉMIA FELVÉTELI KÖVETELMÉNYEK

KÉMIA FELVÉTELI KÖVETELMÉNYEK KÉMIA FELVÉTELI KÖVETELMÉNYEK Atomszerkezettel kapcsolatos feladatok megoldása a periódusos rendszer segítségével, illetve megadott elemi részecskék alapján. Az atomszerkezet és a periódusos rendszer kapcsolata.

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont) KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO

Részletesebben

ISMÉTLÉS, RENDSZEREZÉS

ISMÉTLÉS, RENDSZEREZÉS ISMÉTLÉS, RENDSZEREZÉS A) változat 1. Egészítsd ki az ábrát a hiányzó anyagcsoportokkal és példákkal! ANYAGOK (összetétel szerint) egyszerű anyagok összetett anyagok......... oldat pl.... pl.... pl. levegő

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

Az elemek általános jellemzése

Az elemek általános jellemzése Az elemek általános jellemzése A periódusos rendszer nemcsak az elemek, hanem az atomok rendszere is. Az atomok tulajdonságait, kémiai reakciókban való viselkedését nagymértékben befolyásolja a vegyértékelektronok

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

A feladatokat írta: Kódszám: Harkai Jánosné, Szeged Kálnay Istvánné, Nyíregyháza Lektorálta: .. Kozma Lászlóné, Sajószenpéter

A feladatokat írta: Kódszám: Harkai Jánosné, Szeged Kálnay Istvánné, Nyíregyháza Lektorálta: .. Kozma Lászlóné, Sajószenpéter A feladatokat írta: Harkai Jánosné, Szeged Kálnay Istvánné, Nyíregyháza Lektorálta: Kódszám:.. Kozma Lászlóné, Sajószenpéter 2011. május 14. Curie Kémia Emlékverseny 8. évfolyam Országos döntő 2010/2011.

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam A feladatok megoldásához csak

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N

Részletesebben

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve Foszfátion Szulfátion

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatok megoldásához csak

Részletesebben

7. évfolyam kémia osztályozó- és pótvizsga követelményei Témakörök: 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2.

7. évfolyam kémia osztályozó- és pótvizsga követelményei Témakörök: 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2. 7. évfolyam kémia osztályozó- és pótvizsga követelményei 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2. Hőtermelő és hőelnyelő folyamatok, halmazállapot-változások 3. A levegő,

Részletesebben

7. osztály 2 Hevesy verseny, országos döntő, 2004.

7. osztály 2 Hevesy verseny, országos döntő, 2004. 7. osztály 2 Hevesy verseny, országos döntő, 2004. Kedves Versenyző! Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő tíz feladat megoldására 90 perc áll rendelkezésedre.

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a

Részletesebben

Minta vizsgalap (2007/08. I. félév)

Minta vizsgalap (2007/08. I. félév) Minta vizsgalap (2007/08. I. félév) I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4,

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

A tételek: Elméleti témakörök. Általános kémia

A tételek: Elméleti témakörök. Általános kémia A tételek: Elméleti témakörök Általános kémia 1. Az atomok szerkezete az atom alkotórészei, az elemi részecskék és jellemzésük a rendszám és a tömegszám, az izotópok, példával az elektronszerkezet kiépülésének

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

Vegyületek - vegyületmolekulák

Vegyületek - vegyületmolekulák Vegyületek - vegyületmolekulák 3.Az anyagok csoportosítása összetételük szerint Egyszerű összetett Azonos atomokból állnak különböző atomokból állnak Elemek vegyületek keverékek Fémek Félfémek Nemfémek

Részletesebben

Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só?

Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só? Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x) 1. Melyik sorban szerepel csak só? A) CH 3 COONa, K 2 SO 4, Na 3 PO 4, NH 4 Cl B) H 2 SO 4, Na 3 PO 4, NH 4 Cl, NaCl C) Fe(NO

Részletesebben

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s

Részletesebben

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

7. osztály Hevesy verseny, megyei forduló, 2003.

7. osztály Hevesy verseny, megyei forduló, 2003. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos

Részletesebben

8. osztály 2 Hevesy verseny, megyei forduló, 2008.

8. osztály 2 Hevesy verseny, megyei forduló, 2008. 8. osztály 2 Hevesy verseny, megyei forduló, 2008. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

+oxigén +víz +lúg Elemek Oxidok Savak Sók

+oxigén +víz +lúg Elemek Oxidok Savak Sók Összefoglalás2. +oxigén +víz +lúg Elemek Oxidok Savak Sók Nitrogén Foszfor Szén Gyémánt, grafit szilícium Szén-dioxid, Nitrogéndioxid Foszforpentaoxid Szénmonoxid Szilíciumdioxid Salétromsav Nitrátok foszforsav

Részletesebben

IV.főcsoport. Széncsoport

IV.főcsoport. Széncsoport IV.főcsoport Széncsoport Sorold fel a főcsoport elemeit! Szén C szilárd nemfém Szilícium Si szilárd félfém Germánium Ge szilárd félfém Ón Sn szilárd fém Ólom Pb szilárd fém Ásványi szén: A szén (C) Keverék,

Részletesebben

Energiaminimum- elve

Energiaminimum- elve Energiaminimum- elve Minden rendszer arra törekszi, hogy stabil állapotba kerüljön. Milyen kapcsolat van a stabil állapot, és az adott állapot energiája között? Energiaminimum elve Energiaminimum- elve

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p Név: Elérhető pont: 5 p Dátum: Elért pont: Javítóvizsga A teszthez tollat használj! Figyelmesen olvasd el a feladatokat! Jó munkát.. Mi a neve az anyag alkotórészeinek? A. részecskék B. összetevők C. picurkák

Részletesebben

Magyar vagyok. Legszebb ország hazám az öt világrész nagy terűletén.

Magyar vagyok. Legszebb ország hazám az öt világrész nagy terűletén. 7. osztály 2 Hevesy verseny, megyei forduló, 2006. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.

Részletesebben

8. osztály 2 Hevesy verseny, megyei forduló, 2004.

8. osztály 2 Hevesy verseny, megyei forduló, 2004. 8. osztály 2 Hevesy verseny, megyei forduló, 2004. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő 8. Osztály Kedves Versenyző! A jobb felső sarokban található mezőbe írd fel a verseny lebonyolításáért felelős személytől kapott kódot a feladatlap minden oldalára. A feladatokat lehetőleg a feladatlapon

Részletesebben

Mit tanultunk kémiából?2.

Mit tanultunk kémiából?2. Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000

Részletesebben

Az atom felépítése. 1. Jellemezd az atomot felépítõ elemi részecskéket és az atomon belüli tömegviszonyokat! p + neutron

Az atom felépítése. 1. Jellemezd az atomot felépítõ elemi részecskéket és az atomon belüli tömegviszonyokat! p + neutron Az atom felépítése 1. Jellemezd az atomot felépítõ elemi részecskéket és az atomon belüli tömegviszonyokat! Név Jelölés Relatív tömeg Relatív töltés p + neutron g 2. A magnézium moláris tömege 24,3, tömegszáma

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyz jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 12 pont. 3. feladat Összesen: 14 pont. 4. feladat Összesen: 15 pont 1. feladat Összesen: 8 pont Az autók légzsákját ütközéskor a nátrium-azid bomlásakor keletkező nitrogéngáz tölti fel. A folyamat a következő reakcióegyenlet szerint játszódik le: 2 NaN 3(s) 2 Na (s) +

Részletesebben

Szent-Györgyi Albert kémiavetélkedő Kód

Szent-Györgyi Albert kémiavetélkedő Kód 9. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 2000 Megoldás 000. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 000 JAVÍTÁSI ÚTMUTATÓ I. A NITROGÉN ÉS SZERVES VEGYÜLETEI s s p 3 molekulák között gyenge kölcsönhatás van, ezért alacsony olvadás- és

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:...

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:... T I T - M T T Hevesy György Kémiaverseny országos döntő Az írásbeli forduló feladatlapja 7. osztály A versenyző azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. országos dönt. Az írásbeli forduló feladatlapja. 8. osztály. 2. feladat:... pont. 3. feladat:...

T I T - M T T. Hevesy György Kémiaverseny. országos dönt. Az írásbeli forduló feladatlapja. 8. osztály. 2. feladat:... pont. 3. feladat:... T I T - M T T Hevesy György Kémiaverseny országos dönt Az írásbeli forduló feladatlapja 8. osztály A versenyz azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003

KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 KÉMIA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ 2003 I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATK 2003. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt

Részletesebben

6. Melyik az az erős oxidáló- és vízelvonó szer, amely a szerves vegyületeket is roncsolja?

6. Melyik az az erős oxidáló- és vízelvonó szer, amely a szerves vegyületeket is roncsolja? 10. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam 1. feladat (12 pont) Hevesy György Országos Kémiaverseny Kerületi forduló 2012. február 14. 8. évfolyam 212 éve született a dinamó és a szódavíz feltalálója. Töltsd ki a rejtvény sorait és megfejtésül

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny

T I T - M T T. Hevesy György Kémiaverseny T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

(2014. március 8.) TUDÁSFELMÉRŐ FELADATLAP A VIII. OSZTÁLY SZÁMÁRA

(2014. március 8.) TUDÁSFELMÉRŐ FELADATLAP A VIII. OSZTÁLY SZÁMÁRA SZERB KÖZTÁRSASÁG OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM SZERB KÉMIKUSOK EGYESÜLETE KÖZSÉGI VERSENY KÉMIÁBÓL (2014. március 8.) TUDÁSFELMÉRŐ FELADATLAP A VIII. OSZTÁLY SZÁMÁRA

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

7. osztály 2 Hevesy verseny, megyei forduló, 2004.

7. osztály 2 Hevesy verseny, megyei forduló, 2004. 7. osztály 2 Hevesy verseny, megyei forduló, 2004. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g. MAGYAR TANNYELVŰ KÖZÉPISKOLÁK IX. ORSZÁGOS VETÉLKEDŐJE AL IX.-LEA CONCURS PE ŢARĂ AL LICEELOR CU LIMBĂ DE PREDARE MAGHIARĂ FABINYI RUDOLF KÉMIA VERSENY - SZERVETLEN KÉMIA Marosvásárhely, Bolyai Farkas

Részletesebben

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást! FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004.

KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. KÉMIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADATOK 2004. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt

Részletesebben

Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003.

Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003. Hevesy György Kémiaverseny 8. osztály megyei döntő 2003. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető

Részletesebben

KÖZSÉGI VERSENY KÉMIÁBÓL (2016. március 5.)

KÖZSÉGI VERSENY KÉMIÁBÓL (2016. március 5.) SZERB KÖZTÁRSASÁG OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM SZERB KÉMIKUSOK EGYESÜLETE KÖZSÉGI VERSENY KÉMIÁBÓL (2016. március 5.) TUDÁSFELMÉRŐ FELADATLAP A VII. OSZTÁLY SZÁMÁRA A

Részletesebben

A SZÉN ÉS VEGYÜLETEI

A SZÉN ÉS VEGYÜLETEI A SZÉN ÉS VEGYÜLETEI 1. A IV. FŐCSOPORT ELEMEI A periódusos rendszer IV. főcsoportját az első eleméről széncsoportnak is nevezzük. A széncsoport elemei: a szén (C), a szilícium (Si), a germánium (Ge),

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Mi a hasonlóság és mi a különbség a felsorolt kémiai részecskék között? Hasonlóság:... Különbség: atom a belőle származó (egyszerű) ion

Mi a hasonlóság és mi a különbség a felsorolt kémiai részecskék között? Hasonlóság:... Különbség: atom a belőle származó (egyszerű) ion Kedves Versenyző! 2 Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő kilenc feladat megoldására 90 perc áll rendelkezésedre. A feladatokat a számítási feladatok

Részletesebben

Vészjelzések: Robbanásveszély, égést tápláló, tűzveszélyes, égető, maró, irratív, környezeti veszély. Ismerkedés a kémiával.

Vészjelzések: Robbanásveszély, égést tápláló, tűzveszélyes, égető, maró, irratív, környezeti veszély. Ismerkedés a kémiával. Hogyan kísérletezzünk? A kísérletezésnél be kell tartani a balesetvédelmi szabályokat. 1. Kísérletet, vizsgálatot csak tanári engedéllyel szabad megkezdeni. 2. Pontosan olvasd el a kísérlet leírását! 3.

Részletesebben

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion. 4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik Elektrokémia Redoxireakciók: Minden olyan reakciót, amelyben elektron leadás és elektronfelvétel történik, redoxi reakciónak nevezünk. Az elektronleadás és -felvétel egyidejűleg játszódik le. Oxidálószer

Részletesebben

Kormeghatározás gyorsítóval

Kormeghatározás gyorsítóval Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval

Részletesebben

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK

KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK KÉMIA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon, az alábbi kompetenciák meglétét kell bizonyítania: - a természettudományos

Részletesebben

Az elemek periódusos rendszere (kerekített relatív atomtömegekkel)

Az elemek periódusos rendszere (kerekített relatív atomtömegekkel) Kedves versenyző! A kémia feladatsor megoldására 60 perc áll rendelkezésedre. Nem kell arra törekedned, hogy ennyi idő alatt minden feladatot megoldj, az a fontos, hogy minél több pontot szerezz! A feladatok

Részletesebben

T I T M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Kémiai átalakulások. Kémiai átalakulások. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 201

Kémiai átalakulások. Kémiai átalakulások. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 201 Kémiai átalakulások Kémiai átalakulások A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 201 1 Kémiai átalakulások Reakcióegyenlet fogalma A kémiai változások során az atomok között elsőrendű

Részletesebben

XVII. SZERVETLEN KÉMIA (Középszint)

XVII. SZERVETLEN KÉMIA (Középszint) XVII. SZERVETLEN KÉMIA (Középszint) XVII. 1. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 C A D C D C D A C 1 B D B C A D D D D E 2 D C C C A A A D D C B C C B D D XVII. 4. TÁBLÁZATKIEGÉSZÍTÉS Nemfémes

Részletesebben

Hevesy verseny döntő, 2001.

Hevesy verseny döntő, 2001. 7. osztály 2 Kedves Versenyző! Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő kilenc feladat megoldására 90 perc áll rendelkezésedre. A feladatokat a számítási

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyz jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyz jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyz jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

I. MINDENNAPI ANYAGAINK

I. MINDENNAPI ANYAGAINK I. MINDENNAPI ANYAGAINK 1. Az anyagok tulajdonságai és változásai Az edényben lévő nem víz van, hanem jód darabok 1. Jelöld színezéssel, mi történik a jóddal a hevítés hatására! Lila lesz. 2. Sorold fel

Részletesebben

I. ATOMOK, IONOK I. 1 3. FELELETVÁLASZTÁSOS TESZTEK

I. ATOMOK, IONOK I. 1 3. FELELETVÁLASZTÁSOS TESZTEK I. ATMK, INK I. 1 3. FELELETVÁLASZTÁSS TESZTEK 0 1 2 3 4 5 6 7 8 9 0 A C C D C D A D C 1 C B C E* B E C C ** E 2 D C E D C B D A E C 3 A B D B B B D C D C 4 B B D B B D D C C D 5 D B * a negyedik, vagyis

Részletesebben

KÉMIA TANMENETEK 7-8-9-10 osztályoknak

KÉMIA TANMENETEK 7-8-9-10 osztályoknak KÉMIA TANMENETEK 7-8-9-10 osztályoknak Néhány gondolat a mellékletekhez: A tanterv nem tankönyvhöz készült, hanem témakörökre bontva mutatja be a minimumot és az optimumot. A felsőbb osztályba lépés alapja

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

A nemfémes elemek oxidjai közül válassz két-két példát a megadott szempontok szerint! A vegyületek képletével válaszolj!

A nemfémes elemek oxidjai közül válassz két-két példát a megadott szempontok szerint! A vegyületek képletével válaszolj! 8. osztály 1 Hevesy verseny, országos döntő, 2005. Kedves Versenyző! Köszöntünk a Hevesy György kémiaverseny országos döntőjének írásbeli fordulóján. A következő kilenc feladat megoldására 90 perc áll

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ 1 oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ I A VÍZ - A víz molekulája V-alakú, kötésszöge 109,5 fok, poláris kovalens kötések; - a jég molekularácsos, tetraéderes elrendeződés,

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

T I T M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 8. osztály

T I T M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 8. osztály T I T M T T Hevesy György Kémiaverseny országos döntő Az írásbeli forduló feladatlapja 8. osztály A versenyző azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

2011/2012 tavaszi félév 3. óra

2011/2012 tavaszi félév 3. óra 2011/2012 tavaszi félév 3. óra Redoxegyenletek rendezése (diszproporció, szinproporció, stb.); Sztöchiometria Vegyületek sztöchiometriai együtthatóinak meghatározása elemösszetétel alapján Adott rendezendő

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Csermák Mihály: Kémia 8. Panoráma sorozat

Csermák Mihály: Kémia 8. Panoráma sorozat Csermák Mihály: Kémia 8. Panoráma sorozat Kedves Kollégák! A Panoráma sorozat kiadványainak megalkotása során két fő szempontot tartottunk szem előtt. Egyrészt olyan tankönyvet szerettünk volna létrehozni,

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

V É R Z K A S A Y E N P

V É R Z K A S A Y E N P Hevesy György Országos Kémiaverseny Kerületi forduló 2012. február 14. 7. évfolyam 1. feladat (1) Írd be a felsorolt anyagok sorszámát a táblázat megfelelő helyére! fémek anyagok kémiailag tiszta anyagok

Részletesebben

7. Kémia egyenletek rendezése, sztöchiometria

7. Kémia egyenletek rendezése, sztöchiometria 7. Kémia egyenletek rendezése, sztöchiometria A kémiai egyenletírás szabályai (ajánlott irodalom: Villányi Attila: Ötösöm lesz kémiából, Példatár) 1.tömegmegmaradás, elemek átalakíthatatlansága az egyenlet

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály T I T - M T T Hevesy György Kémiaverseny országos döntő Az írásbeli forduló feladatlapja 7. osztály A versenyző azonosítási száma:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:...

Részletesebben

A tudós neve: Mit tudsz róla:

A tudós neve: Mit tudsz róla: 8. osztály Kedves Versenyző! A jobb felső sarokban található mezőbe a verseny lebonyolításáért felelős személy írja be a kódot a feladatlap minden oldalára a verseny végén. A feladatokat lehetőleg a feladatlapon

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1999

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1999 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1999 JAVÍTÁSI ÚTMUTATÓ I. HALOGÉNTARTALMÚ SZÉNVEGYÜLETEK A szénhidrogén és a halogén nevének összekapcsolásával Pl. CH 3 Cl metil-klorid, klór-metán

Részletesebben