Mintavételezés, jelgenerálás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mintavételezés, jelgenerálás"

Átírás

1 Mintavételezés, jelgenerálás Mérésadatgyűjtés, jelfeldolgozás előadás Schiffer Ádám, egyetemi adjunktus LabVIEW-7.1 EA-1/1

2 A mintavételezési paraméterek beállítása f =1/T p, T p /n s / p =T, f s=1/t, f s = f n s / p, n s/ p n p =nb, 1. Példa, Egy T p =20 ms periódusidejű analóg jelből T s =10 ns időközönként veszünk mintákat. Adja meg a mintavételezési frekvenciát. Megoldás, f s= = =10 Hz=100 MHz. T s Példa A T p =20 ms periódusidejű analóg jelből f s =100 khz mintavételezési frekvenciával veszünk mintákat. Hány mintát veszünk periódusonként? Megoldás, ns / p = Tp T =T p f s =2000 minta. LabVIEW-7.1 EA-1/2

3 f = 1 Tp, Tp n s / p = T, fs = 1 Ts, fs = f ns / p, n s / p n p = nb, 3. Példa Egy f = 20 Hz frekvenciájú, periodikus analóg jelből fs = 5 khz mintavételezési frekvenciával veszünk mintákat. Adja meg a mintavételezési időt. Megoldás, 4. T= 1 1 = = 0, = 0,2 ms fs Példa Egy f = 25 Hz periódusidejű analóg jelből fs = 2kHz mintavételezési frekvenciával veszünk mintákat. Hány mintát veszünk, ha két periódust vizsgálunk. Tp fs n = = = 80 minta Megoldás, s/p T f LabVIEW-7.1 EA-1/3

4 f = 1 Tp, Tp n s / p = T, fs = 1 Ts, fs = f ns / p, n s / p n p = nb, 5. Példa Egy Tp = 6 ms periódusidejű analóg jelből T = 30 ns időközönként veszünk mintákat. Egy periódus beolvasásához mekkora tárterületre, "buffer size", van szükség. Megoldás, nb = 6. Tp T = s = 2 105, Példa Mekkora annak az analóg jelnek a Tp periódus ideje, amelyből T = 5µs mintavételezési idő mellett 100 mintát veszünk. Megoldás, Tp = n s / p T = = 0,5 ms LabVIEW-7.1 EA-1/4

5 A mintavételezett jel középértékei x ed = 1 n s/ p n s/ p -1 x[k ], k =0 x abs d = 1 ns / p n s/ p -1 x [ k ], k =0 x eff d = 1 n s/ p n s / p -1 x [ k ]2, k =0 1. Példa Egy n=6 mintából álló diszkrét idejű jelsorozat értékei x [ k ] ={ 1, 1. 2, 1.8, 2. 4, 2. 2, 1.9 }. Határozza meg a jelsorozat középértékeit. Megoldás, A jelsorozat egyszerű középértéke x ed = 1 n s / p -1 n s/ p k =0 1 x [ k ]= 1 1,2 1,8 2,4 2,2 1,9 =1,7500, 6 A jelsorozat abszolút középértéke megegyezik az egyszerű középpel, minthogy a jelsorozat minden eleme pozitív. A jelsorozat négyzetes középértéke x eff d = 1 n s/ p n s / p -1 k =0 x [ k ]2 = ,22 1,82 2,4 2 2,22 1,92 =1,8207, 6 LabVIEW-7.1 EA-1/5

6 2. Példa Egy n=6 mintából álló diszkrét idejű jelsorozat értékei x [ k ] ={ 1 ; -1,2 ; -1,8 ; 2,4 ; - 2,2 ;1,9 }. Határozza meg a jelsorozat középértékeit. Megoldás, A jelsorozat egyszerű középértéke x ed = n s / p -1 1 n s/ p k =0 1 x [ k ]= 1 1,2 1,8 2,4 2,2 1,9 =0,0167, 6 A jelsorozat abszolút középértéke x abs d = n s / p -1 1 ns / p 1 x [ k ] = 6 1 1,2 1,8 2,4 2,2 1,9 = 1,7500, k =0 A jelsorozat négyzetes középértéke x eff d = = 1 ns / p n s / p -1 x [ k ]2 k = ,2 1,8 2,4 2,2 2 1,9 2 =1,8207, 6 LabVIEW-7.1 EA-1/6

7 3. Példa Egy n=4 mintából álló diszkrét idejű jelsorozat értékei Határozza meg a jelsorozat középértékeit. x [ k ] ={ 1 ; - 2 ; - 4 ;3 ; } Megoldás, A jelsorozat egyszerű középértéke x ed = n s/ p -1 1 n s/ p k =0 1 x [ k ]= = 3 /4, 4 A jelsorozat abszolút középértéke x abs d = 1 ns / p n s / p -1 1 x [ k ] = = 2,5, k =0 A jelsorozat négyzetes középértéke x eff d = = 1 ns / p n s / p -1 x [ k ]2 k = = 30=5, 4772, 4 LabVIEW-7.1 EA-1/7

8 A/D átalakítók Mintavételezésnek nevezzük, ha egy folyamatos analóg jelből egy adott t 0 időpillanatban vagy meghatározott időközönként (T s) mintát veszünk. A mintavételezés lehet egyenletes (periodikus), vagy nem egyenletes. A továbbiakban az egyenletes mintavételezés elvi és gyakorlati kérdéseivel foglalkozunk. s LabVIEW-7.1 EA-1/8

9 A/D átalakítók Egy jelből olyan gyakorisággal kell mintát venni, hogy az eredeti jel reprodukálható legyen. A Nyquist - Shannon mintavételi törvénye értelmében a mintavételi frekvenciát úgy kell megválasztani, hogy az nagyobb legyen, mint a mintavételezett analóg jel legnagyobb frekvenciájú összetevőjének a kétszerese. f s 2f max LabVIEW-7.1 EA-1/9

10 A/D átalakítók Szükségszerűen a mintavételezett jelet digitalizálni kell. A minták függőleges tartományokba sorolását kvantálásnak nevezzük. Egy tartomány szélessége a kvantum (Q). A kvantumok száma meghatározza az átalakító kvantálási pontosságát. A kvantumok számát 2 hatványaként adják meg. Így például egy 8 bites átalakító azt jelenti, hogy a kvantumok száma 2 8., azaz 256. A méréstechnikában legelterjedtebb átalakítók 12 és 16 bitesek. Ezek az analóg jelet 4096, ill kvantumba osztják. LabVIEW-7.1 EA-1/10

11 A/D átalakítók jellemzői A bemeneti jel tartománya lehet unipoláris vagy bipoláris. Az összes kvantumhoz tartozó maximális feszültség bemenet: FS (full scale) = 2N kvantum, vagyis uniploáris esetben: 0 - Umax bipoláris esetben ±Umax/2. Az egy kvantumhoz tartozó feszültég érteket a legkisebb helyértékű bit alapján határoz-hatjuk meg: LSB (least significant bit): FS/2N LabVIEW-7.1 EA-1/11

12 A/D átalakítók jellemzői LSB Least Significant Bit (kvantum) MSB Most Significant Bit FS Full Scale LabVIEW-7.1 EA-1/12

13 apertúra idő A mintavételezés frekvenciáját, mint láttuk, egyrészt meghatározza a mintavételezett jel frekvenciája, másrészt felülről korlátozza az átalakítás ideje. Azt az időt, amely egy minta vételezéséhez és digitalizáláshoz szükséges, apertúra időnek nevezzük. Az apertúra idő meghatározza az átalakító maximális mintavételi frekvenciáját. LabVIEW-7.1 EA-1/13

14 A/D átalakítás hibái Offset hiba (javítható) Linearitási hiba (nem javítható) erősítési hiba (javítható) Kódkiesés (nem javítható) LabVIEW-7.1 EA-1/14

15 kvantálási hiba Abszolút kvantálási hiba: U LSB 1 H Q =± Q= 2 2 Relatív kvantálási hiba: h Q= HQ Ux 100 LabVIEW-7.1 EA-1/15

16 kvantálási hiba - példa Legyen egy 12 bites átalakító maximális bementi feszültsége 10V. UFS = 10V ULSB = 10/212=10/4096 = 2,44mV UMSB = 10/2 =5V Mekkora a kvantálás hibája, ha ezzel az átalakítóval 8V-ot mérünk? HQ= ±2,44mV/2= ±1,22mV hq=(1, V/ 8 V) 100% = ±0,015% teljes skálára (FS full scale) hq,fs=(1, V/ 10 V) 100% = ±0,0122% Mekkora a kvantálás hibája, ha ezzel az átalakítóval 50mV-ot mérünk? hq=(1, V/ 0,05 V) 100% = ±2,44% Legyen egy 16 bites átalakító HQ= ULSB /2=(10/65536)/2= ±76μV hq,fs=( V/ 10 V) 100% = ±7,6 10-4% 50mV-ot mérve hq= ( V/ 0,05 V) 100% = ±0,152% LabVIEW-7.1 EA-1/16

17 kvantálás és dinamika zajos jelek esetén a túl kicsire választott Q kvantum érzékelhetően viszi át a zajt a digitális jelre, túl nagy Q kvantum pedig kvantálási zaj formájában növeli meg a zajt. optimális esetben a digitális jel zaja ± kvantum példa OP=1 (1 osztálypontosságú, végkitérés 1%-nál nem nagyobb hibával mérő) analóg műszer esetén a kvantálást min 7 bites kvantálóval kell elvégezni, mivel 100%/128 =0,7812< 1% kvantálási zaj: maimálisan a kvantum fele így az 1% hibával mérő analóg műszernél a kvantálást követően fellép 100/256=0,39% kvantálási zaj is. vagyis, kedvezőtlen esetben a mért érték a valódi értékhez képest 1,4% is lehet LabVIEW-7.1 EA-1/17

18 jel- zajviszony a diszkrét szintek kiindulásánál sokszor a jel-zajviszonyt adják meg. az előző esetben 1,4/100 = 1,4 db-ben ez megfelel: 20 lg 1,4 = 2,92 db példa: a 65 db-es jel-zajviszonynak 20 lg x >65, vagyis x > 1780 szintű digitális jel tesz eleget. Így 11 bites digitalizáló szükséges. LabVIEW-7.1 EA-1/18

19 Ellenállás mérés és adatbeolvasás R n ismert mért adat U n,u x Un Ux i=, R x = Rn i gerjesztés U s külső forrás válaszjelek { U n ach 0 U x ach 1 LabVIEW-7.1 EA-1/19

20 A mintavételezési kártya I A mérési adatbeolvasás típusa A mért érték a nulla potenciálhoz viszonyított abszolút eltérés A mért érték a két pont potenciál különbsége, relatív érték A mérési határ - a maximális és minimális feszültség szintek, amelyek között az ADC (ADC = Analog to Digital Converter) a jel átalakítását, digitalizálását végzi. - A mérés-adatgyűjtő kártyák változtatható méréshatárai tipikusan +/-10 V, +/-5 V értékhez tartanak, - ezeken belül adjuk meg azokat a mérés határokat, amelyekkel adott felbontás mellett a legpontosabban mérhetjük meg a jelet. LabVIEW-7.1 EA-1/20

21 Számítógéppel vezérelt mérések - adatkezelés: gyűjtés, tömörítés, egyszerűsítés, kiértékelés, tárolás, - műszerek, egyéb perifériák, folyamatok vezérlése, - mérési folyamat fejlesztés, - dokumentálás. LabVIEW-7.1 EA-1/21

22 Számítógépes (PC alapú) mérőrendszer feladatait ellátó software háttér LabVIEW-7.1 EA-1/22

23 Soros jelátvitel szabványos protokoll: RS232, RS422, RS485 Az RS232, és továbbfejlesztett változatai, főként az RS485, a gyakorlatban széles körben alkalmazott protokoll, gazdaságos megoldást nyújt olyan esetekben, amikor a feladat nem követel nagy működési sebességet. protokoll: lásd Számítógép architektúrák II Az RS232 szabványt a rendszerigények növekedésével továbbfejlesztették. Az RS422 már differenciál jelátvitelt tesz lehetővé, ahol nincs földátvitel, az adó és a vevő külön földre van kötve. LabVIEW-7.1 EA-1/23

24 RS422, RS485 Az RS 422 alapvető jellemzői: maximális sebesség: 10Mbps (10m-re) maximális kábelhossz: 1200m (100kbps) adók száma: 1 vevők száma max.: 10 Az RS 485 szabvány szerint kétirányú kommunikáció (halfduplex) valósítható meg, amelyben már a vevők száma 32-re emelhető. A maximális sebesség 35Mbps-ra növekedett. LabVIEW-7.1 EA-1/24

25 Párhuzamos jelátvitel szabványos protokoll: IEEE488 (GPIB) párhouzamos adatátvitel Ezzel a rendszerrel a jelátviteli sebesség jelentősen növelhető, viszont nagy távolságokra nehéz gazdaságosan alkalmazni ezt a módszert. Az IEEE488, és változatai a legelterjedtebb párhuzamos kommunikációs protokoll, ame-lyet 1972-ben a Hewlett Packard Corporation fejlesztett ki és jelentetett meg GPIB (General Purpose Interface Bus) elnevezéssel, majd 1975-ben szabványosították (IEEE488). A GPIB hálózatorientált rendszer, amely nagy átviteli sebességet és nagyszámú műszerparkot tesz lehetővé. A rendszerbe kapcsolható berendezéseket 3 kategóriába sorolhatjuk: vevő (listener) adó (talker) vezérlő (controller). LabVIEW-7.1 EA-1/25

26 GPIB A vezérlő nem kizárólag, de legtöbbször egy PC, amely figyeli a hálózatot, és kérésre összekapcsolja az adót és a vevőt ha szükséges, un. party-line kapcsolatot hoz létre, amelyben 1 adótól több vevő is kap adatot egyszerre. A GPIB half-duplex kommunikációt tesz lehetővé. LabVIEW-7.1 EA-1/26

27 GPIB A párhuzamos kommunikációnak köszönhetően a rendszerrel 1 Mbyte/s sebesség érhető el, de emellett ennek a rendszernek is meg vannak a maga korlátai: - 2 berendezés közötti távolság max.: 4 m - 2 berendezés közötti átlagtávolság: 2 m - a berendezések közötti össztávolság: 20 m - legalább a műszerek 2/3-a be kell legyen kapcsolva. A National Instruments cég továbbfejlesztette a GPIB-t. Az új szabvány 2003ban jelent meg IEEE néven, ami a IEEE verzióval kompatibilis, de attól 8-szor gyorsabb (maximális adatátviteli sebessége 8 Mbyte/s). LabVIEW-7.1 EA-1/27

28 GPIB PÉLDA L-listener; T-talker; D-kimarad a kommunikációból L* - vezérlés szempontjából listener. LabVIEW-7.1 EA-1/28

29 GPIB LINEÁRIS MŰSZERELRENDEZÉS Lineáris műszer elrendezésben a vezérlőhöz (pl. PC) egy műszer csatlakozik ( A berendezés) a vezérlőhöz csatlakozó berendezés aljzatához kapcsolódik a B berendezés vezetéke, majd ahhoz a következő. Ezzel az elrendezéssel lehet a vezérlőtől a legnagyobb távolságra elhelyezni egy adott műszert. 10 műszeres rendszer esetén, a 2 m-es átlagtávolságot figyelembe véve 20 m távolságra helyezhető el a 10. műszer a vezérlő PC-től. Vezérlés szempontjából azonban figyelembe kell venni, hogy egy műszer elérési sebessége a vezérlőtől való távolságtól is függ. LabVIEW-7.1 EA-1/29

30 GPIB CSILLAG MŰSZERELRENDEZÉS Csillag elrendezésben minden műszer a vezérlőhöz csatlakozik közvetlenül, vagyis a vezérlőtől a maximális műszertávolság 4 m lehet. Ebben az elrendezésben minden műszer azonos elérési sebességgel vezérelhető. LabVIEW-7.1 EA-1/30

31 VXI (VMEbus extensions for Instrumentation, IEEE1155/1993) cél, hogy javítsák a GPIB-hez képest a modul-kártyákból összekombinált mérőeszközök időzítési és szinkronizációs jellemzőit. Mára a műszerezés legdinamikusabban fejlődő ágává vált, VXI rendszer lehetséges konfigurációi: PC GPIB interfészen keresztül kommunikál a VXI-kerettel, a fordítás a VXI-kereten belül történik VXI Word Serial Protocol-lal A számítógép a VXI-keretben van elhelyezve, hasonlóan az általa irányított kártyákhoz PC High Speed MXIbus linken (lásd később) keresztül kommunikál a VXI-kerettel LabVIEW-7.1 EA-1/31

32 VXIbus alapjai VME busz (VERSAmodule Eurocard, 1981, IEEE ) Célja egy nyitott, mikroprocesszortól független, robusztus számítógépes buszszabvány kialakítása. Alapját VERSAbus elektronikai specifikációi és az Eurocard formátum képezi. A VMEbus elsősorban számítógép rendszerek számára lett kifejlesztve, műszerezéshez korlátozott lehetőségeket nyújt. A VMEbus modulok kb 15cm (6 inch) széles, 11 (4 inch) vagy 23cm (9 inch) magas modulok ( A és B méret), a pontos méreteket az Eurocard szabvány határozza meg. LabVIEW-7.1 EA-1/32

33 VXIbus jellemzői Mester-szolga architektúra (több mester is lehet a buszon) Aszinkron működés (nincs órajel) Változtatható sebességű kézfogásos protokoll 16-tól 32 bitesig változtatható címzési rendszer 8-tól 32 bitesig változtatható adatbusz 40 MB/s adatátviteli sebesség megszakítás lehetőségek akár 21 eszköz is csatlakoztatható a buszra LabVIEW-7.1 EA-1/33

34 VXIbus jellemzői A VXIbus a VMEbus bővítésével jött létre, és modulrendszerű kártyaműszerek (instruments on a card) alkalmazását teszi lehetővé. Ez egy nyitott rendszer, különböző gyártók műszerei, interfaceek, számítógépei teljesen kompatibilis modulokban építhetők egybe ugyanazon kártyabővítő keretbe (card chassis). Amíg a GPIB egy kommunikációs szabvány, a VXIbus egy rendszer szabvány. LabVIEW-7.1 EA-1/34

35 VXIbus architektúrája A VXIbus rendszer 5 elemből épülhet fel: rendszer alrendszer műszer modul csatlakozó. A rendszer lehet egy kis, néhány műszert tartalmazó hordozható egység, vagy egy több-keretes nagy rendszer. A rendszerbe beépíthető egy vagy több (max. 13 modul) alendszer egy központi órajel modullal ellátva. A VXIbus műszer általában egy kiegészítő kártyára épített egység, amely magába foglal-hat CPU-t, interfaceket, digitál I/O-kat vagy a legkülönfélébb kártyára épített műszereket, mint A/D, számláló, jelgenerátor, logikai analizátor, stb. A modul alatt tipikusan egy kártyaösszeállítást értünk. A VXIbus specifikáció meghatározza a 3 csatlakozó kiosztását is, amely a rendszerbe foglalt műszerek közötti kapcsolatot teremti meg. LabVIEW-7.1 EA-1/35

36 VXI rendszer különböző konfiguráció lehetőségei LabVIEW-7.1 EA-1/36

37 PXI (PCI extensions for Instrumentation, nyílt ipari specifikáció, 1997) A National Instruments, PXI System Alliance hozta létre. A PXI célja a mérőrendszerek és a PC-k nagyobb fokú integrációjának elérése, hogy a PC-k rohamos fejlődése közvetlen hatással legyen a méréstechnika minőségi jellemzőire és áraira is Alapja a CompactPCI specifikáció (mely a PCI buszrendszert házasította össze az Eurocard robusztus rendszerével), elektronikai, mechanikai és szoftver kiegészítésekkel. LabVIEW-7.1 EA-1/37

38 PXI (PCI extensions for Instrumentation, nyílt ipari specifikáció, 1997) NI PXI-8108 controller 2.53 GHz Intel Core 2 Duo T9400 LabVIEW-7.1 EA-1/38

39 MXI busz (Multisystem extention Interface Bus) MXI-1 busz: GPIB eszköz és VXI-keret kommunikációja MXI-2 busz: VXI és PXI eszközök kommunikációja MXI-3 busz: PXI-PXI vagy PC-PXI, tulajdonképpen egy PCIPCI híd (bridge), mely soros kommunikációt használ réz vagy optikai kábelen MXI-4 busz: PC és PXI eszköz kommunikációja LabVIEW-7.1 EA-1/39

40 MXI busz (Multisystem extention Interface Bus) Az MXI busz a VME ill. VXI rendszerekhez lett kifejlesztve. Ez a VME busztól származó rendszer, rugalmas kábelen teszi lehetővé, hogy a különböző műszer-keretek akár 20 méter távolságról egymással kommunikáljanak. Fontos jellemzője, hogy az így összekapcsolt eszközök képesek olvasási és írási műveleteket végezni egymás regisztereibe, a kommunikációt hardverszinten valósítják meg. LabVIEW-7.1 EA-1/40

41 USB (Universal Serial Bus) Az USB-t egy szabványosított interfésznek tervezték, amin keresztül könnyedén lehet eszközöket kapcsolni a számítógéphez annak újraindítása nélkül. Az USB így nem csak adatok szállítására alkalmas, hanem árammal is elláthatja azokat az eszközöket, amelyek áramfelvétele nem nagyobb 500mA-nél. Különböző elosztok (HUB) segítségével egy USB kapura akár 127 egységet is csatlakoztathatunk. USB által támogatott adatátviteli sebességek: Alacsony sebesség Low Speed (1.1, 2.0 verziónál): 1,5 Mbps (192 KB/s) Teljes Sebesség Full Speed (1.1, 2.0 verziónál): 12 Mbit (1,5 MB/s), Megemelt sebesség Hi-Speed (2.0 verziónál): 480 Mbps (60 MB/s) LabVIEW-7.1 EA-1/41

42 USB (Universal Serial Bus) LabVIEW-7.1 EA-1/42

43 FireWire (IEEE 1394) A szabványt az Apple alkotta meg 1995-ben. Az USB -hez hasonló, kevésbé elterjedt, nagy sebességű soros kommunikáció szabvány. Maximálisan 63 berendezést lehet hozzácsatlakoztatni és az USB-hez hasonlóan ez is elláthatja árammal a berendezést. FireWire 400 (IEEE 1394a): 100, 200, or 400 Mbps FireWire 800 (IEEE 1394b): maximum 800 Mbps FireWire csatlakozótípusok NI DAQPad-6052E FireWire-al LabVIEW-7.1 EA-1/43

44 Ethernet Manapság használatos helyi hálózati technológia. Eredeti verziója mintegy 10MB/s körü-li adatátviteli sebességet tett lehetővé, de megjelent azóta Fast Ethernet (100MB/s) és Gigabit Ethernet technológiák (1000MB/s). Az Ethernet átviteli közegként koaxiális kábel, sodort érpár és optikai kábel egyaránt használható. Az Ethernet hálózatok busz és csillagtipológia mentén kialakíthatók. LabVIEW-7.1 EA-1/44

45 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési kártya, Built in LabVIEW-7.1 EA-1/45

46 Adatfeldolgozás a számítógépes mérőrendszerben LabVIEW-7.1 EA-1/46

47 A PC alapú mérőrendszerek struktúrája A mérőberendezések és a PC funkcionális szervezését, a mérőpark elrendezését az adott mérési feladat szabja meg. A legegyszerűbb mérőpark struktúra az 1 PC-ből és 1 műszerből álló rendszer, a kettő között egy szabványos protokoll szerint, pl. RS232, történik az adattovábbítás. Az ilyen elrendezésű mérőpark, különösen soros kommunikáció esetén igen korlátozott formában alkalmas realtime feladatok ellátására. ( PC és a műszer közötti kommunikáció lefoglalja a rendszert). LabVIEW-7.1 EA-1/47

48 Több műszer csatlakoztatása PC-hez A PC és a műszerek között a kommunikáció szabványos protokoll szerint történik, pl. IEEE488, és a PC egy a protokollt támogató egységgel van ellátva. Ez az elrendezés bizonyos mértékig flexibilis, új műszerek könnyen, és egyszerűen illeszthetőek a rendszerhez. LabVIEW-7.1 EA-1/48

49 Több műszer csatlakoztatása PC-hez A rendszer működési sebessége a műszerek számának növekedésével elérhet egy olyan igényszintet, amelyet a PC már nem tud teljesíteni, ezért ilyen esetben a sebesség növelésének az egyik módja az lehet, hogy a mérőparkba további PC-ket kapcsolunk be. Ezzel az egy PC-re jutó műszerszám csökken, a vezérlésre több idő jut. A PC-k kommunikációja osztott csatornán (shared communication channel) történik A kommunikációs csatorna egy másik formája lehet ennél az elrendezésnél az un. LAN (Local Area Network). Ezen keresztül a processzorok közötti kommunikáció általában lassabb, mivel a rendszernek illeszkednie kell a LAN szabványos kommunikációjához is, LabVIEW-7.1 EA-1/49

50 Supervisor PC egyes PC-k egymás közötti kapcsolatának koordinálása. műszerek nem kapcsolódnak hozzá, feladata a PC-k munkájának az irányítása. Ezt un. master-slave elrendezésnek hívják LabVIEW-7.1 EA-1/50

51 Supervisor PC A supervisor PC folyamatosan felügyeli a rendszer működését A rendszer rugalmassága nő, könnyen átkonfigurálhatóak a mérőberendezések, új mérési folyamatok fejlesztése és installálása elvégezhető Meghibásodás esetén a supervisor PC átveheti a meghibásodott PC feladatát Többfelhasználós rendszer alakítható ki, ami azt jelenti, hogy az egyes szabad kapacitással rendelkező slave PC-k a folyamattól független külső feladatokat is elláthatnak (time sharing) LabVIEW-7.1 EA-1/51

52 Mérőrendszerekben alkalmazott adattovábbítási módszerek A PC alapú mérőrendszerekben 3 különböző módon végezhetjük az adatok mozgatását: - program vezérelt - megszakítás (interrupt) vezérelt -közvetlen memória elérés (DMA - direct memory acces) vezérelt A relatív sebesség a rendszer adatátviteli sebességére, a vezérelhetőség a CPU kihasználására utal. LabVIEW-7.1 EA-1/52

53 Mérőrendszerekben alkalmazott adattovábbítási módszerek A magas szintű vezérelhetőség azt mutatja, hogy a CPU a folyamat minden egyes lépése felett kontrollal rendelkezik, a vezérlő utasítások szigorúan meghatározott sorrendjét hajtja végre. Az alacsony vezérelhetőség azt jelenti, hogy a CPU kiadja a vezérlést más egységnek, így az kevésbé, vagy egyáltalán nem vesz részt az adattovábbítás irányításában. A táblázatból látható, hogy a sebesség növelésével a rendszer vezérelhetősége csökken, és fordítva. Ezért mindig az adott mérési feladat dönti el, hogy az egyes esetekben melyik módszer alkalmazása ad hatékonyabb működést. LabVIEW-7.1 EA-1/53

54 Programvezérelt adattovábbítás A processzor ebben az esetben mindig kézben tartja a folyamat vezérlését. meghatározott utasítássort követve kezeli a perifériákat, vezérli az adatgyűjtést, az adatmozgatást, adattárolást, és feldolgozást. Például programból vezéreljük, hogy várjon a processzor, amíg a mintavételezés folyamatban van LabVIEW-7.1 EA-1/54

55 Megszakítás vezérelt adattovábbítás Minden periféria rendelkezik egy a felhasználó által meghatározott megszakítás szinttel (interrupt - IRQ -level). Ami-kor egy periféria szóhoz akar jutni, akkor egy megszakítás kérést továbbít a prioritás kódoló felé. A processzor ekkor felfüggeszti az éppen futó műveletet, és engedélyezi az adott perifériának az adatközlést. Amikor az adatközlés befejeződött, a CPU folytatja a munkáját ott, ahol azt a megszakítás előtt abbahagyta. Több megszakítás kérés esetén az a periféria kap először lehetőséget az adatközlésre, amelyiknek az IRQ szintje magasabb. Így a magasabb prioritású periféria félbeszakíthatja egy alacsonyabb prioritású periféria éppen folyamatban lévő műveletét is. LabVIEW-7.1 EA-1/55

56 DMA vezérelt adattovábbítás Ez a leggyorsabb adattovábbítási módszer, ugyanakkor ennél a módszernél a vezérlés szinte teljes egészében kikerül a CPU kezéből. A vezérlést (I/O műveletek kezelését) ilyenkor a processzortól egy külön áramkör, az un. közvetlen memória elérésű vezérlő (DMA - direct memory access - controller) veszi át. LabVIEW-7.1 EA-1/56

57 A mintavételezési kártya méréshatárának beállítása I LabVIEW-7.1 EA-1/57

58 A mintavételezési kártya méréshatárának beállítása II LabVIEW-7.1 EA-1/58

59 National Instruments/LabVIEW 7.1/examples/DAQmx/Anlog In/ LabVIEW-7.1 EA-1/59

60 National Instruments/LabVIEW 7.1/examples/DAQmx/Anlog In/ LabVIEW-7.1 EA-1/60

61 National Instruments/LabVIEW 7.1/examples/DAQmx/Anlog In/ LabVIEW-7.1 EA-1/61

62 National Instruments/LabVIEW 7.1/examples/DAQmx/Anlog In/ LabVIEW-7.1 EA-1/62

63 A mintavételezési kártya II Resolution (felbontás, pontosság) A bitek száma amelyet a mérés-adatgyűjtő analóg/digitális átalakító (ADC = Analog to Digital Converter) használ, hogy az analóg jelet ábrázolja. pl. 3 bites ADC a mérési határt digitalizálja, azaz 23=8 részre osztja, a 8 bite felbontású kártya a méréshatárt 28=256 részre osztja, a 12 bite felbontású kártya a méréshatárt 212=4096 részre osztja. 1. Példa, Mekkora az a legkisebb feszültés érték, amelyet még mérni lehet egy 4 bites AD kártyával, ha a méréshatár -10V-tól +10 V-ig terjed. Megoldás, A 4 bites AD kártya a 20 V mérési tartományt 2 4=16 részre osztja, tehát a legkisebb mérhető feszültség DU=20/16=1,25 V. 2. Példa, Egy 6 bites AD kártyával mekkora %-os relatív pontosság érhető el. Megoldás, A 6 bites kártya felbontása 26=64, azaz a 1/64*100=1,5625 %-os pontosság érhető el. LabVIEW-7.1 EA-1/63

64 A mintavételezési kártya III Gain (Erősítés)) Az erősítés alkalmazásával lecsökkenthető az ADC bemeneti mérési határa, ezzel biztosítható, hogy az ADC a lehető legtöbb digitális osztást alkalmazza a jel ábrázolásához. Például, 3 bites ADC esetén ha a mérési határok 0 és +10 Volt, akkor erősítés nélkül, egyszeres erősítéssel az ADC csak négy osztást használ a nyolc lehetségesből. Digitalizálás előtt felerősítve a jelet kétszeres erősítéssel az ADC használni tudja mind a nyolc osztást, a digitális ábrázolás sokkal pontosabb. Ebben az esetben a kártya tényleges bemeneti méréshatára 0 és +5 Volt lettek, mivel bármilyen +5 Volt-nál nagyobb jel kétszeres erősítéssel az ADC bemenetén +10 Volt-nál nagyobb jelet eredményez. Az erősítés mértéke általában 0,5; 1.0; 10; 100. LabVIEW-7.1 EA-1/64

65 A mintavételezési kártya IV Gain (Erősítés) A DAQ kártyán lehetséges mérési határok, a felbontás és az erősítés meghatározzák a legkisebb érzékelhető bemeneti feszültség nagyságát. mérési határok különbsége U min = erösités 2 felbontás ( bitekben ) Példa, 12 bites DAQ kártya, 0-tól +10 V méréshatárral egyszeres erősítéssel 10/4096=0,0024 V=2,4 mv változást még érzékel, kétszeres erősítéssel 1,2 mv a legkisebb érzékelt változás. Példa 12 bites DAQ kártya +/-10V méréshatárral kétszeres erősítéssel 20/(2*4096)= 0,0048 V változást érzékel. Példa, 12 bites kártya 0-10V méréshatárral, 10 szeres erősítéssel 10/ (10*4096)=0, V=0,244 mv legkisebb változást tud érzékelni. LabVIEW-7.1 EA-1/65

66 A mintavételezési kártya V Sampling rate (a mintavételezés sebessége, a mintavételezés frekvenciája) A mintavételezés sebessége=az analóg-digitális átalakítás ADConverzió gyakorisága, fs. Jól mintavételezett jel Rosszul mintavételezett jel A Nyquist-féle mintavételezési elv szerint a bejövő jelből a teljes visszaállíthatósághoz olyan fs frekvenciával kell mintát venni, amely (minimálisan) kétszer nagyobb, mint a bejövő jel legmagasabb frekvenciájú komponense, azaz a periódikus jel periódusidejéhez tartozó 1/Tp=fp </= fs/2 Példa, Tp=25 ms periódusidejű jelből milyen fs mintavételezési frekvenciával kell mintát venni, hogy rekonstruálható legyen. Megoldás, fp=1/tp=40 Hz, ezért fs>/=80 Hz. LabVIEW-7.1 EA-1/66

67 page 32 LabVIEW-7.1 EA-1/67 A 'Built in' mintavételezési kártya csatlakozási pontjai

68 Csatlakozó felület LabVIEW-7.1 EA-1/68

69 A mintavételezési kártya-(built in) fs=200 khz LabVIEW-7.1 EA-1/69

70 Ellenőrző kérdések Egy f=200 Hz frekvenciájú, periodikus analóg jelből fs = 1MHz mintavételezési frekvenciával veszünk mintákat. Hány mintát veszünk periódusonként? Mekkora a mintavételezési idő? Ha [-10V..+10V] mérési tartományban mintavételezünk egy 24 bites A/D kártyával, mekkora a kvantum értéke? (Q) Mi a supervisor PC feladata? LabVIEW-7.1 EA-1/70

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) Számítógépes mérőrendszerek Mérésadatgyűjtés, jelfeldolgozás 9. előadás Dr. Iványi Miklósné, egyetemi tanár Schiffer

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

Jelgenerálás virtuális eszközökkel,kommunikációs protokollok

Jelgenerálás virtuális eszközökkel,kommunikációs protokollok Jelgenerálás virtuális eszközökkel,kommunikációs protokollok Mérésadatgyűjtés, jelfeldolgozás 10. előadás Schiffer Ádám egyetemi adjunktus LabVIEW-7.1 EA-3/1 Soros jelátvitel szabványos protokoll: RS232,

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás

Villamos jelek mintavételezése, feldolgozása. Mérésadatgyűjtés, jelfeldolgozás 9. előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) Számítógépes mérőrendszerek Mérésadatgyűjtés, jelfeldolgozás 9. előadás Dr. Iványi Miklósné, egyetemi tanár Schiffer

Részletesebben

Folytonos idejű jelek mintavételezése, diszkrét adatsorok analízise

Folytonos idejű jelek mintavételezése, diszkrét adatsorok analízise Folytonos idejű jelek mintavételezése, diszkrét adatsorok analízise Mérésadatgyűjtés, jelfeldolgozás 8. előadás Dr. Iványi Miklósné, egyetemi tanár Schiffer Ádám, egyetemi adjunktus LabVIEW-7. EA-/ Jelalak

Részletesebben

Mintavételezés és AD átalakítók

Mintavételezés és AD átalakítók HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Analóg digitális átalakítók ELEKTRONIKA_2

Analóg digitális átalakítók ELEKTRONIKA_2 Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs

Részletesebben

USB adatgyűjtő eszközök és programozásuk Mérő- és adatgyűjtő rendszerek

USB adatgyűjtő eszközök és programozásuk Mérő- és adatgyűjtő rendszerek USB adatgyűjtő eszközök és programozásuk Mérő- és s adatgyűjt jtő rendszerek Az USB kialakulása Az USB felépítése Az USB tulajdonságai USB eszközök Áttekintés USB eszközök programozása 2 Az USB kialakulása

Részletesebben

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet 2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző

Részletesebben

Digitális rendszerek. Digitális logika szintje

Digitális rendszerek. Digitális logika szintje Digitális rendszerek Digitális logika szintje CPU lapkák Mai modern CPU-k egy lapkán helyezkednek el Kapcsolat a külvilággal: kivezetéseken (lábak) keresztül Cím, adat és vezérlőjelek, ill. sínek (buszok)

Részletesebben

Jelgenerálás virtuális eszközökkel. LabVIEW 7.1

Jelgenerálás virtuális eszközökkel. LabVIEW 7.1 Jelgenerálás virtuális eszközökkel (mágneses hiszterézis mérése) LabVIEW 7.1 3. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-3/1 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési

Részletesebben

Roger UT-2. Kommunikációs interfész V3.0

Roger UT-2. Kommunikációs interfész V3.0 ROGER UT-2 1 Roger UT-2 Kommunikációs interfész V3.0 TELEPÍTŐI KÉZIKÖNYV ROGER UT-2 2 ÁLTALÁNOS LEÍRÁS Az UT-2 elektromos átalakítóként funkcionál az RS232 és az RS485 kommunikációs interfész-ek között.

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

2. gyakorlat Mintavételezés, kvantálás

2. gyakorlat Mintavételezés, kvantálás 2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak

Részletesebben

Számítógépes mérések

Számítógépes mérések M I S K O L C I E G Y E T E M Elektrotechnikai - Elektronikai Tanszék Számítógépes mérések Oktatási segédlet a Miskolci Egyetem főiskolai villamosmérnök, valamint műszaki informatikus hallgatói részére

Részletesebben

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez.

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez. Méréselmélet és mérőrendszerek (levelező) Kérdések - 2. előadás 1. rész Írja fel a hiba fogalmát és hogyan számítjuk ki? Hogyan számítjuk ki a relatív hibát? Mit tud a rendszeres hibákról és mi az okozója

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

Betekintés a gépek állapot felügyeletére kifejlesztett DAQ rendszerbe

Betekintés a gépek állapot felügyeletére kifejlesztett DAQ rendszerbe BEMUTATÓ Bevezetés a virtuális műszerezés világába A DAQ rendszer alkotóelemei Hardveres lehetőségek NI jelfolyam technológia Szoftveres lehetőségek Betekintés a gépek állapot felügyeletére kifejlesztett

Részletesebben

Nagy Gergely április 4.

Nagy Gergely április 4. Mikrovezérlők Nagy Gergely BME EET 2012. április 4. ebook ready 1 Bevezetés Áttekintés Az elektronikai tervezés eszközei Mikroprocesszorok 2 A mikrovezérlők 3 Főbb gyártók Áttekintés A mikrovezérlők az

Részletesebben

Nyíregyházi Egyetem Matematika és Informatika Intézete. Input/Output

Nyíregyházi Egyetem Matematika és Informatika Intézete. Input/Output 1 Input/Output 1. I/O műveletek hardveres háttere 2. I/O műveletek szoftveres háttere 3. Diszkek (lemezek) ------------------------------------------------ 4. Órák, Szöveges terminálok 5. GUI - Graphical

Részletesebben

Digitális tárolós oszcilloszkópok

Digitális tárolós oszcilloszkópok 1 Az analóg oszcilloszkópok elsősorban periodikus jelek megjelenítésére alkalmasak, tehát nem teszik lehetővé a nem periodikusan ismétlődő vagy csak egyszeri alkalommal bekövetkező jelváltozások megjelenítését.

Részletesebben

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt. Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 9. óra Mingesz Róbert Szegedi Tudományegyetem 2012. április 2. MA - 9. óra Verzió: 2.1 Utolsó frissítés: 2012. április 2. 1/42 Tartalom I 1 További műszerek 2 Multifinkciós műszerek

Részletesebben

Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata

Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata ARM programozás 6. Óra ADC és DAC elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az ADC? ADC -> Analog Digital Converter Analóg jelek mintavételezéssel

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A számítógép fő részei

A számítógép fő részei Hardver ismeretek 1 A számítógép fő részei 1. A számítógéppel végzett munka folyamata: bevitel ==> tárolás ==> feldolgozás ==> kivitel 2. A számítógépet 3 fő részre bonthatjuk: központi egységre; perifériákra;

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Új kompakt X20 vezérlő integrált I/O pontokkal

Új kompakt X20 vezérlő integrált I/O pontokkal Új kompakt X20 vezérlő integrált I/O pontokkal Integrált flash 4GB belső 16 kb nem felejtő RAM B&R tovább bővíti a nagy sikerű X20 vezérlő családot, egy kompakt vezérlővel, mely integrált be és kimeneti

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

OPERÁCIÓS RENDSZEREK. Elmélet

OPERÁCIÓS RENDSZEREK. Elmélet 1. OPERÁCIÓS RENDSZEREK Elmélet BEVEZETÉS 2 Az operációs rendszer fogalma Az operációs rendszerek feladatai Csoportosítás BEVEZETÉS 1. A tantárgy tananyag tartalma 2. Operációs rendszerek régen és most

Részletesebben

BEÁGYAZOTT RENDSZEREK TERVEZÉSE UDP csomag küldése és fogadása beágyazott rendszerrel példa

BEÁGYAZOTT RENDSZEREK TERVEZÉSE UDP csomag küldése és fogadása beágyazott rendszerrel példa BEÁGYAZOTT RENDSZEREK TERVEZÉSE 1 feladat: A Netburner MOD5270 fejlesztőlap segítségével megvalósítani csomagok küldését és fogadását a fejlesztőlap és egy PC számítógép között. megoldás: A fejlesztőlapra,

Részletesebben

PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő

PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő GW Instek PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő Új termék bejelentése A precízen elvégzett mérések nem hibáznak GW Instek kibocsátja az új PCS-1000I szigetelt kimenetű nagypontosságú

Részletesebben

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA

4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA 4.1.1. I 2 C, SPI, I 2 S, USB, PWM, UART, IrDA A címben található jelölések a mikrovezérlők kimentén megjelenő tipikus perifériák, típus jelzései. Mindegyikkel röviden foglalkozni fogunk a folytatásban.

Részletesebben

11.3.7 Feladatlap: Számítógép összetevők keresése

11.3.7 Feladatlap: Számítógép összetevők keresése 11.3.7 Feladatlap: Számítógép összetevők keresése Bevezetés Nyomtasd ki a feladatlapot és old meg a feladatokat. Ezen feladatlap megoldásához szükséged lesz az Internetre, katalógusokra vagy egy helyi

Részletesebben

SZÁMÍTÓGÉPES MÉRÉSTECHNIKA

SZÁMÍTÓGÉPES MÉRÉSTECHNIKA SZÁMÍTÓGÉPES MÉRÉSTECHNIKA Váradiné dr. Szarka Angéla Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék Tel: 06-46-565-143 e-mail: elkvsza@uni-miskolc.hu 2 Számítógépes méréstechnika mérőeszközei

Részletesebben

Informatikai eszközök fizikai alapjai Lovász Béla

Informatikai eszközök fizikai alapjai Lovász Béla Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,

Részletesebben

Programmable Chip. System on a Chip. Lazányi János. Tartalom. A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban?

Programmable Chip. System on a Chip. Lazányi János. Tartalom. A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban? System on a Chip Programmable Chip Lazányi János 2010 Tartalom A hagyományos technológia SoC / PSoC SoPC Fejlesztés menete Mi van az FPGA-ban? Page 2 1 A hagyományos technológia Elmosódó határvonalak ASIC

Részletesebben

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció A gyakorlat célja A gyakorlat során a dspic30f6010 digitális jelprocesszor Analóg Digital konverterét tanulmányozzuk. A mintavételezett

Részletesebben

Tartalom. Port átalakítók, AD/DA átalakítók. Port átalakítók, AD/DA átalakítók H.1. Port átalakítók, AD/DA átalakítók Áttekintés H.

Tartalom. Port átalakítók, AD/DA átalakítók. Port átalakítók, AD/DA átalakítók H.1. Port átalakítók, AD/DA átalakítók Áttekintés H. Tartalom Port átalakítók, Port átalakítók, Port átalakítók, Port átalakítók, Áttekintés.2 Soros port átalakítók.4.6.1 Port átalakítók, Áttekintés Port átalakítók, Soros port jelátalakítók és /RS485/422

Részletesebben

MaxiCont. MOM690 Mikroohm mérő

MaxiCont. MOM690 Mikroohm mérő MOM690 Mikroohm mérő A nagyfeszültségű megszakítók és szakaszolók karbantartásának fontos része az ellenállás mérése. A nagy áramú kontaktusok és egyéb átviteli elemek ellenállásának mérésére szolgáló

Részletesebben

A/D és D/A átalakítók gyakorlat

A/D és D/A átalakítók gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem A/D és D/A átalakítók gyakorlat Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2013. február 27. ebook ready Tartalom 1 A/D átalakítás alapjai (feladatok)

Részletesebben

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.

Részletesebben

Yottacontrol I/O modulok beállítási segédlet

Yottacontrol I/O modulok beállítási segédlet Yottacontrol I/O modulok beállítási segédlet : +36 1 236 0427 +36 1 236 0428 Fax: +36 1 236 0430 www.dialcomp.hu dial@dialcomp.hu 1131 Budapest, Kámfor u.31. 1558 Budapest, Pf. 7 Tartalomjegyzék Bevezető...

Részletesebben

Az interrupt Benesóczky Zoltán 2004

Az interrupt Benesóczky Zoltán 2004 Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL

XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL Ma, a sok más felhasználás mellett, rendkívül jelentős az adatok (információk) átvitelével foglakozó ágazat. Az átvitel történhet rövid távon, egy berendezésen belül,

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Kommunikáció az EuroProt-IED multifunkcionális készülékekkel

Kommunikáció az EuroProt-IED multifunkcionális készülékekkel Kommunikáció az EuroProt-IED multifunkcionális készülékekkel A Protecta intelligens EuroProt készülékei a védelem-technika és a mikroprocesszoros technológia fejlődésével párhuzamosan követik a kommunikációs

Részletesebben

Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat

Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat 1 2 3 Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat XT: 83. CPU ugyanaz, nagyobb RAM, elsőként jelent

Részletesebben

PWM elve, mikroszervó motor vezérlése MiniRISC processzoron

PWM elve, mikroszervó motor vezérlése MiniRISC processzoron PWM elve, mikroszervó motor vezérlése MiniRISC processzoron F1. A mikroprocesszorok, mint digitális eszközök, ritkán rendelkeznek közvetlen analóg kimeneti jelet biztosító perifériával, tehát valódi, minőségi

Részletesebben

MŰSZAKI LEÍRÁS Az I. részhez

MŰSZAKI LEÍRÁS Az I. részhez MŰSZAKI LEÍRÁS Az I. részhez Megnevezés: Automatizálási rendszerek bővítése korszerű gyártásautomatizálási, ipari kommunkiációs és biztonsági modulokkal. Mennyiség: 1 db rendszer, amely az alábbi eszközökből

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók

11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók 1 11. Analóg/digitális (ADC) és Digital/analóg (DAC) átalakítók A digitális jelekkel dolgozó mikroprocesszoros adatgyűjtő és vezérlő rendszerek csatlakoztatása az analóg jelekkel dolgozó mérő- és beavatkozó

Részletesebben

LOGSYS LOGSYS SZTEREÓ CODEC MODUL FELHASZNÁLÓI ÚTMUTATÓ szeptember 16. Verzió

LOGSYS LOGSYS SZTEREÓ CODEC MODUL FELHASZNÁLÓI ÚTMUTATÓ szeptember 16. Verzió LOGSYS SZTEREÓ CODEC MODUL FELHASZNÁLÓI ÚTMUTATÓ 2012. szeptember 16. Verzió 1.0 http://logsys.mit.bme.hu Tartalomjegyzék 1 Bevezetés... 1 2 A modul működése... 2 3 A CODEC konfigurációja... 3 4 Időzítési

Részletesebben

Tartalomjegyzék. Előszó... xi. 1. Bevezetés... 1. 2. Mechanikai, elektromos és logikai jellemzők... 13

Tartalomjegyzék. Előszó... xi. 1. Bevezetés... 1. 2. Mechanikai, elektromos és logikai jellemzők... 13 Előszó... xi 1. Bevezetés... 1 1.1. Fogalmak, definíciók... 1 1.1.1. Mintapéldák... 2 1.1.1.1. Mechanikus kapcsoló illesztése... 2 1.1.1.2. Nyomtató illesztése... 3 1.1.1.3. Katódsugárcsöves kijelző (CRT)

Részletesebben

RUBICON Serial IO kártya

RUBICON Serial IO kártya RUBICON Serial IO kártya Műszaki leírás 1.0 Készítette: Forrai Attila Jóváhagyta: Rubin Informatikai Zrt. 1149 Budapest, Egressy út 17-21. telefon: +361 469 4020; fax: +361 469 4029 e-mail: info@rubin.hu;

Részletesebben

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív

Részletesebben

ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja

ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja ÖNÁLLÓ LABOR Mérésadatgyűjtő rendszer tervezése és implementációja Nagy Mihály Péter 1 Feladat ismertetése Általános célú (univerzális) digitális mérőműszer elkészítése Egy- vagy többcsatornás feszültségmérés

Részletesebben

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. október 17. Laboratóriumi berendezések

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

HSS60 ( ) típusú léptetőmotor meghajtó

HSS60 ( ) típusú léptetőmotor meghajtó HSS60 (93.034.027) típusú léptetőmotor meghajtó Jellemzők Teljesen zárt kör Alacsony motorzaj Alacsony meghajtó és motormelegedés Gyors válaszidő, nagy motorsebesség Optikailag leválasztott ki és bemenetek

Részletesebben

HSS86 ( ) típusú léptetőmotor meghajtó

HSS86 ( ) típusú léptetőmotor meghajtó HSS86 (93.034.028) típusú léptetőmotor meghajtó Jellemzők Teljesen zárt kör Alacsony motorzaj Alacsony meghajtó és motormelegedés Gyors válaszidő, nagy motorsebesség Optikailag leválasztott ki és bemenetek

Részletesebben

SWARCO TRAFFIC HUNGARIA KFT. Vilati, Signelit együtt. MID-8C Felhasználói leírás Verzió 1.3. SWARCO First in Traffic Solution.

SWARCO TRAFFIC HUNGARIA KFT. Vilati, Signelit együtt. MID-8C Felhasználói leírás Verzió 1.3. SWARCO First in Traffic Solution. SWARCO TRAFFIC HUNGARIA KFT. Vilati, Signelit együtt. MID-C Felhasználói leírás Verzió. SWARCO First in Traffic Solution. Tartalomjegyzék. Bevezetés.... Szándék.... Célok.... Általános ismertetés.... Működési

Részletesebben

Procontrol RFP-3. Műszaki adatlap. Rádiótransceiver / kontroller 433 vagy 868 MHz-re, felcsavarható SMA gumiantennával. Verzió: 4.1 2007.12.

Procontrol RFP-3. Műszaki adatlap. Rádiótransceiver / kontroller 433 vagy 868 MHz-re, felcsavarható SMA gumiantennával. Verzió: 4.1 2007.12. Procontrol RFP-3 Rádiótransceiver / kontroller 433 vagy 868 MHz-re, felcsavarható SMA gumiantennával Műszaki adatlap Verzió: 4.1 2007.12.21 1/6 Tartalomjegyzék RFP-3... 3 Rádiótransceiver / kontroller

Részletesebben

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák

I. C8051Fxxx mikrovezérlők hardverfelépítése, működése. II. C8051Fxxx mikrovezérlők programozása. III. Digitális perifériák I. C8051Fxxx mikrovezérlők hardverfelépítése, működése 1. Adja meg a belső RAM felépítését! 2. Miben különbözik a belső RAM alsó és felső felének elérhetősége? 3. Hogyan érhetők el az SFR regiszterek?

Részletesebben

A Texas Instruments MSP430 mikrovezérlőcsalád

A Texas Instruments MSP430 mikrovezérlőcsalád 1.4.1. A Texas Instruments MSP430 mikrovezérlőcsalád A Texas Instruments MSP430-as mikrovezérlői 16 bites RISC alapú, kevert jelű (mixed signal) processzorok, melyeket ultra kis fogyasztásra tervezték.

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben

MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek

MSP430 programozás Energia környezetben. Kitekintés, további lehetőségek MSP430 programozás Energia környezetben Kitekintés, további lehetőségek 1 Még nem merítettünk ki minden lehetőséget Kapacitív érzékelés (nyomógombok vagy csúszka) Az Energia egyelőre nem támogatja, csak

Részletesebben

TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó

TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó Bevezetés A TxBlock-USB érzékelőfejbe építhető, kétvezetékes hőmérséklet távadó, 4-20mA kimenettel. Konfigurálása egyszerűen végezhető el, speciális

Részletesebben

6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes.

6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. 6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. Neumann elv: Külön vezérlő és végrehajtó egység van Kettes

Részletesebben

SR mini PLC Modbus illesztő modul. Modul beállítása Bemeneti pontok kiosztása főmodul esetén Bemeneti pontok címkiosztása kiegészítő modul esetében

SR mini PLC Modbus illesztő modul. Modul beállítása Bemeneti pontok kiosztása főmodul esetén Bemeneti pontok címkiosztása kiegészítő modul esetében SR mini PLC Modbus illesztő modul Modul beállítása Bemeneti pontok kiosztása főmodul esetén Bemeneti pontok címkiosztása kiegészítő modul esetében Kimeneti pontok címkiosztása főmodul esetében, olvasásra

Részletesebben

A számítógép egységei

A számítógép egységei A számítógép egységei A számítógépes rendszer két alapvető részből áll: Hardver (a fizikai eszközök összessége) Szoftver (a fizikai eszközöket működtető programok összessége) 1.) Hardver a) Alaplap: Kommunikációt

Részletesebben

Brüel & Kjaer 2238 Mediátor zajszintmérő

Brüel & Kjaer 2238 Mediátor zajszintmérő Brüel & Kjaer 2238 Mediátor zajszintmérő A leírást készítette: Deákvári József, intézeti mérnök Az FVM MGI zajszintméréseihez a Brüel & Kjaer gyártmányú 2238 Mediátor zajszintmérőt és frekvenciaanalizálót

Részletesebben

Orvosi Fizika és Statisztika

Orvosi Fizika és Statisztika Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 0. TANTÁRGY ISMERTETŐ Dr. Soumelidis Alexandros 2018.09.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A tárgy célja

Részletesebben

Fókuszban a MEGOLDÁSOK KTS 560 / KTS 590. Vezérlőegység diagnosztika az ESI[tronic] használatával

Fókuszban a MEGOLDÁSOK KTS 560 / KTS 590. Vezérlőegység diagnosztika az ESI[tronic] használatával Fókuszban a MEGOLDÁSOK KTS 560 / KTS 590 Vezérlőegység diagnosztika az ESI[tronic] használatával Élvonalbeli Vezérlőegység diagnosztika az optimális hatékonyságért Az új és erős KTS 560 és KTS 590 modulok

Részletesebben

RhT Léghőmérséklet és légnedvesség távadó

RhT Léghőmérséklet és légnedvesség távadó RhT Léghőmérséklet és légnedvesség távadó UNITEK 2004-2007 2 Unitek Általános leírás Az RhT léghőmérséklet és légnedvességmérő távadó az UNITEK új fejlesztésű intelligens mérőtávadó családjának tagja.

Részletesebben

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD

ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Misák Sándor ATMEL ATMEGA MIKROVEZÉRLŐ-CSALÁD Nanoelektronikai és Nanotechnológiai Részleg DE TTK v.0.1 (2007.02.13.) 1. előadás 1. Általános ismeretek. 2. Sajátos tulajdonságok. 3. A processzor jellemzői.

Részletesebben

Modbus kommunikáció légkondícionálókhoz

Modbus kommunikáció légkondícionálókhoz Modbus kommunikáció légkondícionálókhoz FJ-RC-MBS-1 Mobus szervezet: -> http://www.modbus.org (néha Modbus-IDA) -> Modbus eszköz kereső motor http://www.modbus.org/devices.php Modbus (RTU) - soros kommunikációs

Részletesebben

ACR122U-A9. NFC USB intelligens kártyaolvasó. Műszaki Specifikáció V3.04 verzió

ACR122U-A9. NFC USB intelligens kártyaolvasó. Műszaki Specifikáció V3.04 verzió ACR122U-A9 NFC USB intelligens kártyaolvasó Műszaki Specifikáció V3.04 verzió Fenntartjuk a változtatás jogát előzetes értesítés nélkül info@u2fkeys.eu 1.oldal Tartalomjegyzék 1. Bevezetés...3 2. Jellemzők...4

Részletesebben

Dell Inspiron 580s: Részletes műszaki adatok

Dell Inspiron 580s: Részletes műszaki adatok Dell Inspiron 580s: Részletes műszaki adatok Ez a dokumentum alapvető információkat tartalmaz a számítógép beállításáról és frissítéséről, valamint az illesztőprogramok frissítéséről. MEGJEGYZÉS: A kínált

Részletesebben

Bepillantás a gépházba

Bepillantás a gépházba Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt

Részletesebben

OPTIKAIKÁBEL ILLESZTŐ INT-FI

OPTIKAIKÁBEL ILLESZTŐ INT-FI OPTIKAIKÁBEL ILLESZTŐ INT-FI int-fi_hu 05/09 Az INT-FI illesztő lehetővé teszi az adatok átalakítását és optikai kábelen történő átvitelét. INTEGRA vezérlőpanelekkel kommunikációs buszával vagy az ACCO

Részletesebben

Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás

Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás Kompenzációs kör vizsgálata LabVIEW 7.1 4. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-4/1 Mágneses hiszterézis mérése előírt kimeneti jel mellett DAQ Rn Un etalon ellenállás etalon ellenállás

Részletesebben

Mérés, Vezérlés. mérésadat rögzítés CMC - 99 CMC kis és nagytestvér

Mérés, Vezérlés. mérésadat rögzítés CMC - 99 CMC kis és nagytestvér Mérés, Vezérlés mérésadat rögzítés CMC - 99 CMC - 141 kis és nagytestvér Bevezetés A MultiCon eszközök nagyhatékonyságú kijelzőt, mérés adatgyűjtőt és szabályzókat foglalnak magukban. Mindez a tudás és

Részletesebben

Perifériák hozzáadása a rendszerhez

Perifériák hozzáadása a rendszerhez Perifériák hozzáadása a rendszerhez Intellectual Property (IP) katalógus: Az elérhető IP modulok listája Bal oldalon az IP Catalog fül Ingyenes IP modulok Fizetős IP modulok: korlátozások Időkorlátosan

Részletesebben

Kaméleon K860. IAS Automatika Kft www.iasautomatika.hu

Kaméleon K860. IAS Automatika Kft www.iasautomatika.hu Kaméleon K860 Univerzális Digitális Szabályozó A K860 szabályozók általános automatizálási feladatokra kifejlesztett digitális szabályozók. Épületgépészeti alkalmazásokra kiválóan alkalmasak, gazdaságos

Részletesebben

Programozási segédlet DS89C450 Fejlesztőpanelhez

Programozási segédlet DS89C450 Fejlesztőpanelhez Programozási segédlet DS89C450 Fejlesztőpanelhez Készítette: Fekete Dávid Processzor felépítése 2 Perifériák csatlakozása a processzorhoz A perifériák adatlapjai megtalálhatók a programozasi_segedlet.zip-ben.

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok 1 Számítógépes hálózatok Hálózat fogalma A hálózat a számítógépek közötti kommunikációs rendszer. Miért érdemes több számítógépet összekapcsolni? Milyen érvek szólnak a hálózat kiépítése mellett? Megoszthatók

Részletesebben

KIBŐVÍTETT RUGALMAS AUTOMATIZÁLÁS

KIBŐVÍTETT RUGALMAS AUTOMATIZÁLÁS KIBŐVÍTETT RUGALMAS AUTOMATIZÁLÁS ZEN-C4 nagyobb rugalmasság RS-485 kommunikációval Kínálatunk kommunikációs típussal bővült. Így már lehetősége van több ZEN egység hálózati környezetbe csatlakoztatására.

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben