Bari Ferenc egyetemi tanár

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bari Ferenc egyetemi tanár"

Átírás

1 Biofizika Biológia MSc 2011/2012 őszi szemeszter Radioaktív sugárzások keletkezése és tulajdonságai (bomlási törvény, bomlási módok, sugárzásfajták). Dozimetria (dózisfogalmak, egységek, sugárzásmérők). Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, november 14.

2 Radioaktivitás felfedezése ban Henri Becquerel jött rá arra, hogy az uránsók olyan sugarakat árasztanak magukból melyek hasonlítanak a röntgensugárzás átható erejéhez. Ez a sugárzás annyiban különbözik a foszforeszkálás jelenségétől, hogy nem külső energiaforrás hatására történik, hanem uránból eredő spontán sugárzás. Becquerel ezzel ténylegesen felfedezte a radioaktivitást. Marie Curie ( ) felfedezte, hogy az uránsugárzás az urán kísérleti mintadarabját körülvevő légtérben elektromos áramvezetést okoz. Felfedezésének első eredménye az volt, hogy az urán aktivitása a jelenlévő urán mennyiségétől függ. Kimutatta, hogy a sugárzás nem a molekulák egymásra hatásának eredménye, hanem inkább magukból az atomokból erednek. 2

3 A radioaktivitás felfedezése 2. Ernest Rutherford A radioaktív anyagból kilépő sugarakat elektromos mezőbe vezette, a sugárzás három összetevőjét figyelte meg. - + Ernest Rutherford

4 A sugárzás tulajdonságai külső hatás nélkül keletkezik erőssége az elem mennyiségétől függ fizikai és kémiai változások nem befolyásolják kémiai hatása van, megfeketíti a filmet ionizáló hatása van élő sejteket károsítja fluoreszkálást, foszforeszkálást okoz

5 Radioaktív bomlás A természetben csak 279 féle stabil atommag (izotóp) van. Kb olyan különböző atommag létezik, melyek nem stabilak, elbomlanak. Ezeket radioaktív izotópoknak nevezzük. A radioaktív bomlás véletlenszerű folyamat. A bomlás sebességére jellemző a felezési idő. FELEZÉSI IDŐ T 1/ 2 Az az átlagos időtartam, mely ahhoz szükséges, hogy a radioaktív magok fele elbomoljon, más maggá alakuljon át. A felezési idő csak nagyszámú atommagra értelmezhető. Az időegység alatt elbomlott magok száma, a dn/dt bomlási sebesség, az aktivitás arányos a magok N számával AKTIVITÁS dn dt N 5

6 1 Bq (becquerel) = 1 bomlás/s 1Ci Ci bomlás/s Bq 37,1GBq (gigabecquerel) A RADIOAKTÍV BOMLÁS TÖRVÉNYE N dn dt N N N e t T1 / 2 1/ 2 N e 0 ln2 a bomlási állandó T T 1 / 2 ln2 A RADIOAKTÍV BOMLÁS TÖRVÉNYE N N e 0 ln2/ T 1/ 2 t március 7. 6

7 Radioaktív nyomjelzés Hevesy György (Budapest, aug. 1. Freiburg, júl. 5.) 1923 A növények kálcium anyagcseréjének tanulmányozás radioaktív ólommal apró mennyiségben hozzákeverik a radioaktív izotópot a vele kémiailag azonosan viselkedő elemhez a szervezetbe juttatva sugárzással jelzi a megtett útvonalat 1935 Anyagcsere vizsgálatok foszfor izotóppal állatokban ban neki ítélték a kémiai Nobel-díjat az izotópok indikátorként való alkalmazásáért. Díjátadás csak 1944-ben 7

8 Labilis atommag Elektromágneses sugárzás részecske Magsugárzások Alfa bomlás Beta bomlás Pozitron kibocsátás K-befogás Gamma bomlás Neutron sugárzás Proton sugárzás 8

9 A sugárzások fajtái alfa sugárzás (α részecske) nagy sebességű He 2+ - ionokból áll, ionizáló hatása legnagyobb, áthatoló képessége a legkisebb, levegőben néhány centiméter - béta sugárzás (β részecske) közel fénysebességű elektronokból áll, ionizáló hatása kisebb, áthatoló képessége nagyobb levegőben néhány méter gamma sugárzás (γ) nagy frekvenciájú elektromágneses hullám,ionizáló hatása legkisebb,áthatoló képessége legnagyobb levegőben néhány száz méter 9

10 Alfa bomlás A 222 Rn az 1622 év felezési idejű 226 Ra (rádium) alfa-bomlásából keletkezik, és szintén alfa-részecske kibocsátásával bomlik. az alfa részecske töltése és tömege igen nagy, ezért erősen roncsolja a közeget, amibe belép, ugyanakkor hatótávolsága nagyon kicsi, akár egy vékony papírlap, vagy az emberi bőr is könnyen elnyeli. Levegőben a hatótávolsága néhány mm. Emiatt igazán csak akkor veszélyes, ha valamilyen módon alfa-sugárzó izotópokat tartalmazó anyag jut szervezetünkbe. 10

11 Béta-bomlás gyenge kölcsönhatás elektron 0-1e ( ) pozitron 0 1 e ( ) A BÉTA BOMLÁS FOLYAMATA elektron-bomlás pozitron- bomlás A Z A Z X X A Z 1 A Z 1 X X 0 1 e 0 1 e (elektron-) neutrínó (elektron-) antineutrínó 11

12 Elektronbefogás Mivel az elektron hullámfüggvénye a mag belsejébe is kiterjed, véges valószínűséggel bekövetkezhet, hogy a mag egy protonja egy elektront befog a belső (K) héjból és neutronná alakul. A leánymag az elveszített elektron következtében pozitív ion lesz. ELEKTRONBEFOGÁS e p n A Z X A Z 1 X 12

13 A radioaktív sugárzás típusai A sugárzások áthatolóképessége: α: levegőben néhány centiméter β: levegőben néhány méter γ: levegőben néhány száz méter

14 Radioaktív családok A radioaktivitás a sugárzó atomok belső átalakulásának következménye. α-sugárzáskor a rendszám 2-vel, tömegszám 4-gyel csökken β-sugárzáskor a rendszám 1-gyel nő, tömegszám nem változik A radioaktív elemek családokba sorolhatók, melyben egymást követő bomlások sorozata játszódik le,míg egy stabil izotóp keletkezik.

15 Radioaktivitás észlelése Wilson-féle ködkamra A kamrában alkohol telített gőze van, a sugárforrásból kilépő részecskék ionokat hoznak létre, körülöttük a gőz lecsapódik. Charles Thomson Wilson

16 Radioaktivitás észlelése Geiger-Müller számláló GM-cső anód: W-szál katód:cu-henger Anód-katód közötti feszültség: v Töltőanyag: szerves oldószer gőze, nemesgáz A belépő radioaktív részecskék ionokat hoznak létre a gázokban, ez áramlökést hoz létre. Hans Geiger

17 Radioaktivitás észlelése Szcintillációs detektor Nagy energiájú sugárzás, vagy részecskék hatására fényvillanás következik be. NaI-kristály Tl-mal szennyezve Félvezető detektor Sugárzás hatására a kristály vezetőképessége rövid időre megnő. Szilárdtest-nyomdetektor Sugárzás hatására a kristályszerkezet torzul.

18 A radioaktivitás orvosi alkalmazásai A korszerű orvoslásban a fő felhasználási területek: A rákos daganatok (sejtek) besugárzása Nukleáris medicina radioizotópok felhasználása a diagnózisban az in vivo diagnosztikai módszerek alkalmazásakor a szervezetbe juttatott radioaktív anyagok, az ún. radiofarmakonok (az orvosi diagnosztika és terápia céljaira használt nyílt, radioaktív készítmények) szervezeten belüli sorsának nyomon követése morfológiai és funkcionális jellegű információk, a szervezet fiziológiás, vagy patológiás állapotára lehet következtetni. 18

19 Ionizáló sugárzások humán orvosi alkalmazása röntgenterápia: kis energiájú (300 kev alatti, 10kV 300 kv közötti) testen kívüli sugárforrással (röntgensugárral) történő terápiás besugárzás (a daganatos területre) Sugárterápia - zárt sugárforrás (kapszula) nagyenergiájú- (1 MeV 50 MeV közötti) besugárzó készülékekkel történhet nyitott sugárforrás ( per os, iv. ) nukleáris medicina 19

20 Az izotópok diagnosztikai célú felhasználása Radioaktív jelölés kis mennyiségű sugárzó anyag segítségével belső szerveket jelölünk meg- képalkotó eljárásokkal tesszük láthatóvá Képalkotó technikák - esetünkben PET és SPECT Példa: A pajzsmirigy jódot akkumulál Radioaktív 131 I és 125 I segítségével tanulmányozható a pajzsmirigy jódfelvétele (regionális elosztás, dinamika) Mire használható a diagnózis során? a kivizsgálás elején, de alkalmazható szűrővizsgálatként is, a betegség lefolyásának követésére, ismert diagnózis esetén, a terápiás beavatkozások eredményességének lemérésére 20

21 Az izotópdiagnosztika módszerei Az izotópdiagnosztika módszerei a radionuklidok sugárzásának mérésén alapszanak, és csaknem kizárólag az elektromágneses sugárzást detektálják, amely a β-sugárzás kísérőjeként gamma sugárzásból, K-elektron befogással bomló radionuklid elektronhéjából, pozitronsugárzó radionuklidok esetén a pozitron-elektron egyesüléséből megsemmisülési (annihilizációs) sugárzásként származhat. A diagnosztikában alfa-sugárzó radionuklidot nem alkalmaznak. 21

22 Az in vitro diagnosztikai módszerek biológiai minták (pl. szérum) összetételének vizsgálata radioaktív izotóppal jelölt anyagot tartalmazó kémiai-immunológiai rendszerekben, a radioaktív detektálás érzékenysége több biológiailag aktív, fiziológiás (pl. hormon) és patológiás anyag és gyógyszer (pl. digitálisz) meghatározását teszi lehetővé, igen kis ( g L 1 ) koncentrációban. 22

23 A rák terápiában használatos sugárzásokról Alapja, hogy a nagy energiájú gamma ( γ) sugarak (ill. más ionizáló sugarak) károsítják a biológiai molekulákat A daganatos (gyorsan osztódó) sejtek érzékenyebbek az egyéb sejteknél Pl.: kobalt-terápia estében 60 Co gamma-sugárzásával gyógyítják a daganatokat A terápiás kezelésben a kobaltágyút alkalmazzák, ami a 60 Co izotópot tartalmazó sugárforrás cm távolságból végezve, a hatás megfelel egy egy millió voltos röntgenkészülék teljesítményének A gamma sugarakkal gyógyítható a rák, de a gamma sugarak rákot is okozhatnak 23

24 1959 Berson and Yalow Radioimmunoassay Rosalyn Yalow Nobel-díj 1977 IN VITRO DIAGNOSZTIKA 24

25 In vivo nukleáris medicina Funkció vizsgálata a molekulák szintjén Képi megjelenítés Mennyiségi adatok 25

26 A nukleáris medicinában leggyakrabban használt izotópok Nuklid Energia (kev) Felezési idő Felhasználás Megj. Tc-99m h sokféle generátor Tl-201 (káliumanalógként) h szívizom ciklotron I nap Pajzsmirigy + terápia I h Pajzsmirigy + fehérjék ciklotron Ga , 185, h tumor-keresés+ gyulladás In nap tumor-keresés+ immunszcintigráfia ciklotron ciklotron I nap "in vitro! készletekben F-18 β+ 109 min PET 26

27 A radionuklidok képi megjelenítése Alapötlet Collimator Tomográfia Alapja: Egy adott vegyületet (gyógyszert) radioaktív izotóppal jelölünk meg és a szervezetben bizonyos helyeken dúsul fel. 27

28 SPECT (Single Photon Emission Computed Tomography) Gamma camera Gamma camera Gamma camera Három detektoros készülék sematikus képe. A detektorok (kamerák) a paciens körül forognak- 3 dimenziós kép előállítása is lehetséges 28

29 A radionuklidok képi megjelenítésének alapjai A képalkotás alapja az az élettani vagy kórélettani esemény, amely megváltoztatja valahol a véráramlást metabolikus aktivitást adott területen receptor koncentrációt Feldúsul (daganat miatt) stb. 29

30 67 Ga-citrát egésztest vizsgálatok A daganatos betegségek 67 Ga (gallium) szcintigráfiás vizsgálataiból a limfóma leképezésére bizonyult a leghasznosabbnak, de más tumorokban is felhasználható. A beteg jobb supraclavicularis régiójában a betegség első stádiumára jellemző kóros dúsulás látszik egy nyirokcsomó vetületében. A mediastinalis és hasi (para-aorticus) régióban nem látható kóros eltérés. 30

31 NUKLEÁRIS MEDICINA MÉRŐESZKÖZEI: A GAMMA KAMERA szcintillációs detektorral KOLLIMÁTOR célja a gamma fotonok rávetítése a szcintillációs kristály felületére SZCINTILLÁCIÓS KRISTÁLYOK: 1. a gamma fotont abszorbeálnak, 2. a gammaképet fény-képpé (láthatatlan-látható) alakítják FOTOELEKTRON SOKSZOROZÓ CSÖVEK: fotoelektron-sokszorozó (PM)csövek elsődlegesen a kristályból érkező fényfotonokat elektromos jellé alakítják és azokat felerősítik 31

32 1957 Anger Szcintillációs gamma kamera 2005 Gamma Kamera/CT Az első szcintillációs, kereskedelmi forgalomba került eszköz NUKLEÁRIS MEDICINA MÉRŐESZKÖZEI 32

33 IN VIVO DIAGNOSZTIKA KÉPALKOTÁSSAL Pajzsmirigy anatómia A technécium-99 a leggyakoribb és legkönnyebben elérhető izotóp, az urán-235 egyik fő hasadási terméke. Egy gramm 99 Tc-ben másodpercenként 6, bomlás történik (azaz aktivitása 0,62 GBq/g) A technécium-izotóp felezési ideje hat óra, és huszonnégy óra alatt ürül ki teljesen a szervezetből. Pajzsmirigy szcintigáfia Az in vivo módszer egy funkcionális képalkotó eljárás, amelynek legnagyobb előnye, hogy funkcionális képet ad a pajzsmirigy nagyságáról, és a benne lévő esetleges elváltozások működéséről. A vizsgálat során a beteg vénás injekcióban technécium-izotópot kap, majd percnyi várakozás után felfekszik a vizsgálóasztalra, ahol egy kamera segítségével felvételeket készítenek a vizsgált területről. Az eljárás közben nyelhet, és végig szabadon lélegezhet, de az egyéb mozgásokat kerülnie kell. A vizsgálat körülbelül tíz perc alatt lezajlik. Ép Nem működő struma göb 33 A tec felez és h alatt szer

34 Melyik vese nem működik? A jobb oldali Hogyan lehet megállapítani?

35 Dozimetria (részletesen lsd.: tankönyv old.) Fizikai dózisok Elnyelt (abszorbeált) dózis Tömegegységre vonatkoztatott elnyelt energia Jele:D Mértékegysége: J/kg, Gy (Gray) D E (hogyan mérhető? 6-8 J/kg halálhoz vezet, ugyanakkor nincs felmelegedés- 1 C hőmérséklet emeléshez kj-nyi energia kell!!) Elnyelt dózisteljesítmény Az elnyelt dózis és az idő hányadosa: Mértékegysége: D t m Louis Harold Gray ( ) Gy h 35

36 Dozimetria Besugárzási dózis: röntgen- vagy gamma-sugárzás által keltett levegő ionizáció mértéke egységnyi tömegű, normál állapotú levegőben. ΔQ a Δm tömegű levegőben keltett azonos előjelű ionok töltésösszege Jele: X [X]= 1 C/kg Mértékegysége: 1Gy=29,4mC/kg (Ugyanis a levegőben egy ionpár létrehozásához, azaz 0,16 ac töltés szétválasztásához átlagosan 5,44 aj energia szükséges. 1J energia 29,4 mc töltést választ szét) Régi egysége a röntgen (R) 1R = 2,576*10-8 C/kg X Q m 4. Besugárzási dózisteljesítmény A besugárzási dózis és az idő hányadosa: Mértékegysége: C/kgs X t 36

37 Dozimetria - biológiai dózisok Az ionizáló sugárzások biológiai hatásai bonyolult folyamatok eredményeként alakulnak ki. A testszövetet alkotó anyag és a sugárzás között először fizikai kölcsönhatások jönnek létre, amelyeket azután kémiai, biokémiai elváltozások követnek. A végeredmény a besugárzott élőszervezet biológiai elváltozása Dózisegyenérték (egyenérték dózis) Jele: H T mértékegysége: Sv 1Sv=1J/kg H T =Σw R *D T,R D T,R : a T szövetben az R sugárzásból származó elnyelt dózis H T : a T szervben vagy szövetben az átlagos egyenértékdózis Elnyelt dózis D K A t 2 l K:dózisállandó A:aktivitás l:besugárzott anyag távolsága 37

38 Néhány ionizáló sugárfajta sugárzási faktora Sugárzás W R Testszöveti tényezők Röntgen-, γ-sugarak, β- sugarak Termikus neutronok 2-5 Gyors neutron, protonok α-sugarak, hasadványok (nehéz magok) Bővebben lsd. 187 old II.9. táblázat) 1 20 wt: súlytényező, amely a T testszövetből származó hatásokból eredő károsodás és a test egyenletes besugárzása esetén fellépő hatásokból eredő teljes károsodás aránya. Testszövet vagy szerv gonádok (ivarmirigyek)0,25 w T 0,20 vörös csontvelő 0,12 vastagbél 0,12 tüdő 0,12 gyomor 0,12 emlő 0,05 pajzsmirigy 0,05 csontfelület 0,01 Bővebben lsd. 188 old II.10. táblázat) 38

39 Dozimetria - sugárterhelés hatásai D (msv) Hatások A sugárdózis átlag értéke msv/év(svédország) 200 Küszöbdózis orvosilag kimutatható, tünetmentes Kritikus dózis rosszullét Vérképző szervek zavarai 4000 Félhalálos dózis Az 50%-a orvosi kezelés hiányában meghal 6000 Halálos dózis 39

40 Radioaktív izotópok előállítása 1896 Becquerel Természetes radioaktivitás 1930 Lawrence Ciklotron 1934 F.Joliot-Curie és Irene Curie Mesterséges radioizotópok 1942 Fermi Nukleáris reaktor 1946 AEC Reaktorban termelt izotópok Izotóp generátor 40

41 Lineáris gyorsító linear accelerator (linac) nagyfrekvenciás elektromágneses hullám nagy energiára gyorsít töltött részecskét (pl. e - -t) egy egyenes csőben maga a gyorsított e - felszínes tumorok kezelésére alkalmas ha targetbe ütközik: nagyenergiájú fotonnyaláb: mélyebben fekvő tumorokhoz

42 Iineáris gyorsító a katódsugárcső hosszmetszetének vázlata

43 Lineáris gyorsító

44 A ciklotron születése A ciklotronok feltalálása gyorsan követte a linacokét. A működési elv nagyon hasonló, csak a részecskék közben körpályán mozognak http//schools.web.cern.ch/schools/cas/cas_proceedings.html CERN v 1; P.J. Bryant - A brief history and review of accelerators 44

45 A ciklotron működési elve evb Mv r 2 e m B 45

46 A ciklotron belseje a rezonátorokkal 46

47 A ciklotronok energianövelésének korlátai A ciklotronok működési elve nem-relativisztikus mozgásegyenleten alapul. Amint az ionok sebessége relativisztikussá válik a tömegnövekedés miatt az ionok keringési ideje növekszik, és így kiesnek a gyorsítás fázisából. A tömegnövekedés kompenzálható lenne a mágneses tér sugárirányú növelésével, ez azonban a részecskenyaláb szétfókuszálását jelentené. A ciklotron középvonalának sematikus rajza a gyenge fókuszálás elvének megértéséhez 0 r Bz ( r) r B z 47

48 ORVOSI CIKLOTRON 48

49 PET képalkotás kihívásai radiokémia jobb jelölő anyagok Képalkotó eljárások fejlődése jobb képek mert Jobb detektorok készülnek Jobb a térbeli felbontó képesség Jobb az érzékenység Képalkotás-kép előállítás A fizikai hibák korrekciója Képalkotó algoritmusok Adatfeldolgozás & biológiai modellezés a kapott képek jobban interpretálhatók 49

50 PET képalkotás -áttekintés - a radiojelölő anyag szintézise - A szervezetbe juttatása (injekció) - Az izotópból származó gamma sugárzás detektálása (~20-60 min) - A nyert adatokból (beütésekből) rekonstruált eloszlási kép készítése (nci/cc) 50

51 Pozitron ( + ) bomlás atommag 18 F-FDG neutronok protonok elektronok 51

52 + bomlás Neutron-hiányos izotópok bomlanak pozitron emisszióval pozitron anti-neutrino Egy protonból + neutron anti-neutrino pozitron 52

53 Pozitron megsemmisülés (annihilizáció) Annihilizáció során 2x 511 kev γ foton 180 fokban Egy egyenes mentén (koincidencia detektorok) 511 kev e + A szkenner: foton számláló gamma-sugarak detektálása időablak~ 1 ns e kev 53

54 90 projekció Nyers adatok és a képalkotás 0 sinogram Kép rekonstrukció 0 projekció Erről bővebben későbbi előadáson+ Gyakorlaton!!! 54

55 IN VIVO NUKLEÁRIS MEDICINA KÉPALKOTÁSSAL POZITRON EMISSZIÓS TOMOGRÁFIA- PET Vizsgálható biokémiai és élettani paraméterek: Vérátáramlás és vértérfogat Anyagcsere és transzport oxigén, glükóz, aminosavak, szabad zsírsavak, fluor, Fehérje szintézis Receptor rendszerek dopaminerg, kolinerg, adrenerg, opiát, szerotonin. Enzimaktivitás 55

56 IN VIVO DIAGNOSZTIKA KÉPALKOTÁSSAL AGYI TÖRZSDÚCOK VIZSGÁLATA PARKINZONIZMUSBAN 56

57 IN VIVO DIAGNOSZTIKA SUGÁRTERHELÉS Dózis (msv) Nukleáris medicina pajzsmirigy 0.8 csont 4.8 szív F-FDG-PET 10.0 Radiológia CT koponya 3.8 vese 4.6 vastagbél 7.4 CT egésztest

58 β sugárzók az izotóp terápiában Hatótávolság µm 67 Cu daganatok 131 I pajzsmirigy, daganatok 153 Sm (samarium) csont 186 Re (renium) csont Hatótávolság >1000 um 32 P vérképzés, csont, daganatok 89 Sr (stroncium) csont 90 Y (yttrium) csont, izületek,daganatok 188 Re csont, érbetegségek 58

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai

Részletesebben

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók

Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Orvosi Fizika 2. Az izotópos nyomjelzés alapjai, orvosi alkalmazások szempontjai, sugárzási formák és orvosi alkalmazási területek. Részecskegyorsítók Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Izotópos méréstechnika, alkalmazási lehetőségek

Izotópos méréstechnika, alkalmazási lehetőségek Radioizotópok orvosi, gyógyszerészi alkalmazása Izotópos méréstechnika, alkalmazási lehetőségek Dr. Voszka István Az alkalmazás alapja:- A radioaktív izotóp ugyanúgy viselkedik a szervezetben, mint stabil

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2011.04.17. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>~50keV (6.6 10-15 J), λ< 3 10-11 m) gamma-bomlás (atommag alacsonyabb energiájú állapotba történő átmenetét kísérő

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

2011.11.07. Biofizika és orvostechnika alapjai

2011.11.07. Biofizika és orvostechnika alapjai Áttekintés Biofizika és orvostechnika alapjai Magátalakulások közben keletkező sugárzással alkotunk képet Képalkotás 3 A szervek működéséről, azaz a funkcióról nyújt információt Nukleáris képalkotás Szerkesztette:

Részletesebben

Radioaktív nyomjelzés analitikai kémiai alkalmazásai

Radioaktív nyomjelzés analitikai kémiai alkalmazásai Radioaktív nyomjelzés analitikai kémiai alkalmazásai Nyomjelzés az élő szervezetben In vitro diagnosztika: a vizsgálandó személy nem érintkezik közvetlenül radioaktív anyaggal, hanem a tőle levett (általában

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni.

RADIOAKTIVITÁS. Természetes (spontán) radioaktivitásról beszélünk, ha a természetben megtalálható elemek atommagja képes átalakulni. RADIOAKTIVITÁS Az atommagoknak két csoportja van, a stabil és a radioaktív magok. Ez utóbbiak nagy energiájú sugárzást kibocsátva más atommagokká alakulnak. Ilyen radioaktív elem például a rádium a polónium

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2012.04.16. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>100keV (1.6*10-14 J), λ

Részletesebben

Gamma kamera, SPECT, PET. Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, március 1.

Gamma kamera, SPECT, PET. Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, március 1. Gamma kamera, SPECT, PET Készítette: Szatmári Dávid PTE ÁOK, Biofizikai Intézet, 2010. március 1. Izotópok, bomlás, magsugárzások Izotópok: kémiai részecskék, azonos rendszám de eltérő tömegszám pl.: szén

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései Izotópdiagnosztikai eljárás lépései Izotópok Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése diagnosztikai alkalmazásai A fiziológiás v. patológiás folyamatok

Részletesebben

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α

A sugárzások a rajz síkjára merőleges mágneses téren haladnak át γ α Radioaktivitás, α-, β- és γ-bomlás, radioaktív bomlástörvény, bomlási sorok. röntgen sugárzás (fékezési és karakterisztikus), a Moseley-törvény, az uger folyamat Radioaktivitás: 1896 Becquerel uránérc

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4 99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása

Radioaktív sugárzások az orvosi gyakorlatban. Az ionizáló sugárzások biológiai hatása. A sugárhatás osztályozása. A sugárhatás osztályozása Radioaktív sugárzások az orvosi gyakorlatban Az ionizáló sugárzások biológiai hatása Dr Smeller László Biofizikai és Sugárbiológiai Intézet A sugárhatás osztályozása A sugárhatás osztályozása A károsodás

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS

RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS Az atom felépítése RADIOAKTIVITÁS, SUGÁRZÁSMÉRÉS elektron proton Varga József Debreceni Egyetem Nukleáris Medicina Intézet atommag Atomi részecskék 2 Atomi részecskék mérete Jelmagyarázat: elektron proton

Részletesebben

Radioaktív nyomjelzés analitikai kémiai alkalmazásai

Radioaktív nyomjelzés analitikai kémiai alkalmazásai Radioaktív nyomjelzés analitikai kémiai alkalmazásai Nyomjelzés az élő szervezetben In vitro diagnosztika: a vizsgálandó személy nem érintkezik közvetlenül radioaktív anyaggal, hanem a tőle levett (általában

Részletesebben

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései

Izotópok. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ. Izotópdiagnosztikai eljárás lépései Izotópdiagnosztikai eljárás lépései Izotópok Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése diagnosztikai alkalmazásai A fiziológiás v. patológiás folyamatok

Részletesebben

1. A radioaktív sugárzás hatásai az emberi szervezetre

1. A radioaktív sugárzás hatásai az emberi szervezetre 1. A radioaktív sugárzás hatásai az emberi szervezetre Az ember állandóan ki van téve a különböző természetes, vagy mesterséges eredetű ionizáló sugárzások hatásának. Ez a szervezetet érő sugárterhelés

Részletesebben

Az izotópdiagnosztika fizikai alapjai

Az izotópdiagnosztika fizikai alapjai Bevezetés Az izotópdiagnosztika fizikai alapjai Az izotóp kiválasztásának szempontjai Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Smeller László Izotópdiagnosztikai vizsgálati technikák Izotóp

Részletesebben

Izotópok és radioaktív sugárzások

Izotópok és radioaktív sugárzások Kémia atomok, molekulák közti kölcsönhatások Izotópok és radioaktív sugárzások Kölcsönhatások szubatomi részecskék között Radioaktív sugárzások biológiai hatásai. A sugárterápia alapelvei, megvalósítása

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.)

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) Képalkotó diagnosztika Szerkesztette: Dió Mihály 06 30 2302398 Témák 1. Röntgen

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

minipet labor Klinikai PET-CT

minipet labor Klinikai PET-CT minipet labor Klinikai PET-CT Pozitron Emissziós Tomográfia A Pozitron Emissziós Tomográf (PET) orvosi képalkotó eszköz, mely háromdimenziós funkcionális képet ad. Az eljárás lényege, hogy a szervezetbe

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás

Sugárvédelem kurzus fogorvostanhallgatók számra. Méretek. Az ionizáló sugárzások fajtái. 1. Atomfizika, Radioaktivitás és Röntgensugázás Az ionizáló sugárzások fajtái Sugárvédelem kurzus fogorvostanhallgatók számra Magsugárzások Röntgensugárzás 1. Atomfizika, Radioaktivitás és Röntgensugázás Dr. Smeller László Ionizáció: Az atomból vagy

Részletesebben

Pozitron emittáló izotópok. [18F]FDG előállítása. Általunk használt izotópok. Magreakció: Dual Beam 18F. Felezési idő (min) 109,7

Pozitron emittáló izotópok. [18F]FDG előállítása. Általunk használt izotópok. Magreakció: Dual Beam 18F. Felezési idő (min) 109,7 Pozitron emittáló izotópok [F]FDG előállítása Nuklid Felezési idő (min) 109,7 20,4 10 2,05 F 11C 13 N 15 2 Általunk használt izotópok Izotóp Molekula Mit mutat ki Fontosabb klinikai jelentősége F dezoxiglükóz

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése

LABORATÓRIUMI GYAKORLAT. Alfa-, béta-, gamma-sugárzások mérése LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes,

Részletesebben

Arany-Tóth Attila. Sebészeti röntgenvizit: 8.30. Általános radiológia - előadás

Arany-Tóth Attila. Sebészeti röntgenvizit: 8.30. Általános radiológia - előadás 1 2 Röntgen Osztály 9-15 8.00 10.00 2. illetve 5. csoport 11.00 13.00 1. illetve 4. csoport 13.00 15.00 3. illetve 6. csoport 3 4 Sebészeti röntgenvizit: 8.30 5 6 Honlapok www. univet.hu egységek sebészet

Részletesebben

A sugárzás biológiai hatásai

A sugárzás biológiai hatásai A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

Terápiás ablak. Ionizáló sugárzás. Sugárterápia. Röntgen sugárzás. Radioaktív izotópok

Terápiás ablak. Ionizáló sugárzás. Sugárterápia. Röntgen sugárzás. Radioaktív izotópok Ionizáló sugárzás Sugárterápia Lövey József Országos Onkológiai Intézet SE Radiológiai és Onkoterápiás Klinika Budapest Az elnyelt sugárzás mértékegysége J/kg = Gray 100 % Terápiás ablak T C P N T C P

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

A ciklotron működési elve. Ciklotron. A ciklotron működési elve

A ciklotron működési elve. Ciklotron. A ciklotron működési elve A ciklotron működési elve A részecskéket a Lorentz erő tartja körpályán B qvb Pályamenti sebesség T = 2πr/v Az egyenletből a sebesség a qvb = mv 2 /r v=rqb/mösszefüggéssel kiküszöbölhető így mivel ω=2

Részletesebben

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135

RADIOKÉMIA. László Krisztina, F ép. I. lh., I. emelet, 135 RADIOKÉMIA László Krisztina, F ép. I. lh., I. emelet, 135 klaszlo@mail.bme.hu Nagy Lajos György és LK: Radiokémia és izotóptechnika Műegyetemi Kiadó 1997 Antoine Henri Becquerel (1852-1908) Maria Skłodowska-Curie

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN Germán Endre PA Zrt. Sugárvédelmi Osztály XXXI. Sugárvédelmi Továbbképző Tanfolyam Keszthely, 2006. május 9 11. Környezeti ártalmak és a légzőrendszer

Részletesebben

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján)

(A Scientific American újság 1993. augusztusi számában megjelent cikk alapján) Országos Szilárd Leó Fizikaverseny Döntő 2014. I. kategória Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrendben, feladatonként külön lapon kell megoldani. A megoldáshoz bármilyen

Részletesebben

2346-06 Radiofarmakológiai vizsgálatok követelménymodul szóbeli vizsgafeladatai

2346-06 Radiofarmakológiai vizsgálatok követelménymodul szóbeli vizsgafeladatai 1. feladat: Munkabeosztása szerint hétfőtől Ön a meleglaboratóriumban fog dolgozni. Vegye át a meleglaboratóriumot a munkatársától! Az ellenőrzésnél térjen ki a dokumentációra és a radiofarmakonok leltározására

Részletesebben

STABIL IZOTÓPOK FELHASZNÁLÁSA

STABIL IZOTÓPOK FELHASZNÁLÁSA AZ IZOTÓPOK KÍSÉRLETES ÉS ORVOSI ALKALMAZÁSAI. RÉSZECSKE GYORSÍTÓK, GAMMA KAMERA IZOTÓP: A PERIÓDUSOS RENDSZER AZONOS HELYÉN VAN (izosz, toposz) Szén izotópok: 6 proton + neutronok 5 neutron 11 C radioaktív

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok

1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalmak. 3. A sugárzás mérése (42-47) Prefixumok 1. Az ionizáló sugárzások és az anyag kölcsönhatása (2-34) 2. Fizikai dózisfogalak (35-41) Gondolat, 1976 3. A sugárzás érése (42-47) KAD 2010.09.15 2 levegőben (átlagosan) 1 ionpár keltéséhez 34 ev 5.4

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK MSSZ_V15.1_M2 ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete. Tömeghiány, kötési energia Magerők Magmodellek Az atommag stabilitása

AZ ATOMMAG FIZIKÁJA. Az atommag szerkezete. Tömeghiány, kötési energia Magerők Magmodellek Az atommag stabilitása AZ ATOMMAG FIZIKÁJA Az atommag szerkezete Az atommag komponensei Tömeghiány, kötési energia Magerők Magmodellek Az atommag stabilitása Radioaktivitás A radioaktív bomlás törvényszerűségei, egysége A radioaktív

Részletesebben

2015.02. Általános radiológia - előadás. Arany-Tóth Attila. Radiológia-Aneszteziológia: 6. félév: 3 kredit

2015.02. Általános radiológia - előadás. Arany-Tóth Attila. Radiológia-Aneszteziológia: 6. félév: 3 kredit 1 4 Sebészeti és Szemészeti Tanszék és Klinika Radiológia-Aneszteziológia: 6. félév: 3 kredit KOLLOKVIUM Általános és részletes sebészet I. 7. félév: 2 kredit Részletes sebészet II.: 8. félév: 6 kredit

Részletesebben

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica

RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK. Radiopharmaceutica Radioaktív gyógyszerkészítmények Ph.Hg.VIII. Ph.Eur. 8.0. -1 01/2014:0125 RADIOAKTÍV GYÓGYSZERKÉSZÍTMÉNYEK Radiopharmaceutica DEFINÍCIÓ Radioaktív gyógyszerkészítménynek vagy radiogyógyszereknek nevezünk

Részletesebben

Orvosi aktivitásmérők kalibrációinak tapasztalatai

Orvosi aktivitásmérők kalibrációinak tapasztalatai Orvosi aktivitásmérők kalibrációinak tapasztalatai Szűcs László 1, Nagyné Szilágyi Zsófia 1, Laczkó Balázs 2 1 Magyar Kereskedelmi Engedélyezési Hivatal 1124 Budapest, Németvölgyi út 37-39. 2 A Magyar

Részletesebben

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/5 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az

Részletesebben

Hidrogén: 1 p + + különböző számú neutron

Hidrogén: 1 p + + különböző számú neutron Kémia atomok, molekulák közti kölcsönhatások Kölcsönhatások szubatomi részecskék között atommag proton neutron nukleon A kémiai elemet a protonszám határozza meg. magfizika Összeállnak, nem esnek szét!

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu

A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu A Geiger-Müller számlálócső és alkalmazásai Engárd Ferenc okl.villamosmérnök - blackbox@engard.hu A pár évtizeddel ezelőtti gyakorlattal ellentétben, mérőműszereink gépkönyveiben csak a legritkább esetben

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Röntgendiagnosztika és CT

Röntgendiagnosztika és CT Röntgendiagnosztika és CT 2013.04.09. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Sugárvédelmi mérések és berendezések

Sugárvédelmi mérések és berendezések Sugárvédelmi mérések és berendezések Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/6 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az ember és környezete

Részletesebben

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

rzások a Dr. Fröhlich Georgina ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárz rzások a gyógy gyításban Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest ELTE TTK, Budapest chopin.web.elte.hu Bevezetés 1. A radioaktivitás alapjai (atomszerkezet,

Részletesebben

NUKLEÁRIS MEDICINA DEFINÍCIÓ. Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 RADIOIZOTÓPOK A MEDICINÁBAN HEVESY GYÖRGY

NUKLEÁRIS MEDICINA DEFINÍCIÓ. Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 RADIOIZOTÓPOK A MEDICINÁBAN HEVESY GYÖRGY DEFINÍCIÓ NUKLEÁRIS MEDICINA Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 Nyílt radioaktív izotópokkal végzett diagnosztikai terápiás kutató orvosi tevékenység ( Zárt : brachyterápia)

Részletesebben

Orvosi tomográkus képalkotás/ct technika alapja

Orvosi tomográkus képalkotás/ct technika alapja Orvosi tomográkus képalkotás/ct technika alapja Kis Sándor Attila DEOEC, Nukléáris Medicina Intézet Outline 1 Bevezetés 2 A planáris transzmissziós leképzési technikák esetén a vizsgált objektumról összegképet

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

MAGFIZIKA. a 11.B-nek

MAGFIZIKA. a 11.B-nek MAGFIZIKA a 11.B-nek ATOMMAG Pozitív töltésű, rendkívül kicsi ATOMMAG Töltése Z e, ahol Z a rendszám 10 átmérő Tömege az atom 99,9%-a Sűrűsége: 10 rendkívül nagy! PROTON Jelentése: első (ld. prototípus,

Részletesebben

ATOMFIZIKA, RADIOAKTIVITÁS

ATOMFIZIKA, RADIOAKTIVITÁS ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben