8. Előadás tartalma. Funkcionális függőségek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "8. Előadás tartalma. Funkcionális függőségek"

Átírás

1 8. Előadás tartalma Funkcionális függőségek 8.1 Funkcionális függőségek és kulcsok 8.2 Relációk felbontása 1

2 Funkcionális függőségek Definíció: A funkcionális függőség egy n attribútumú R reláción a következő állítás: ha R két sora megegyezik az A 1, A 2,.. A m attribútumokon, akkor meg kell egyezniük egy másik attribútumon, a B-n is Ekvivalens definíció: Az R relációnak NINCS 2 sora, amelyik megegyezne az A 1, A 2,.. A m attribútumok mindegyikén A 1, A 2,...A m B Vagyis A 1, A 2,..., A m funkcionálisan meghatározza B-t 2

3 filmcím év Hossz műfaj stúdiónév színésznév Csillagok háborúja sci-fi Fox Carrie Fisher Csillagok háborúja sci-fi Fox Mark Hamill Csillagok háborúja sci-fi Fox Harrison Ford Elfújta a szél dráma MGM Vivien Leigh Wayne világa vígjáték Paramount Dana Carvez Wayne világa vígjáték Paramount Mike Meyers cím, év hossz cím, év műfaj cím, év stúdiónév cím, év hossz, műfaj, stúdiónév cím, év színésznév HAMIS állítás NEM ÉRVÉNYES funkcionális függőség 3

4 Relációk kulcsai R reláció {A 1, A 2,..., A m } attribútumai az R KULCSA, ha: 1) Ezen attribútumok funkcionálisan meghatározzák a reláció minden más attribútumát, vagyis NINCS az R-ben két olyan KÜLÖNBÖZŐ sor, amely mindegyik A 1, A 2,... A m attribútumon megegyezne. 2) Nincs olyan valódi részhalmaza {A 1, A 2, A m }-nek, amely funkcionálisan meghatározná az R összes többi attribútumát, azaz a kulcs MINIMÁLIS Függvény: ebben az esetben NINCS olyan művelet, hogy ha megadjuk a Csillagok Háborúja, 1977 párost, s KISZÁMÍTHATÓ a film hossza Ebben az esetben a függvény kiszámolása a relációból való VISSZAKERESÉST jelenti 4

5 Szuperkulcsok Definíció: Azon attribútumhalmazokat, amelyek tartalmaznak kulcsot szuperkulcsoknak nevezzük {cím, év, színésznév} kulcs {cím, év, színésznév, műfaj} szuperkulcs Relációk kulcsainak megtalálása Egyedhalmaz reláció kulcsa, egyedhalmaz kulcsa Kapcsolatok BINÁRIS kapcsolatokból keletkezett reláció kulcsa n:m kapcsolat, a kapcsolódó egyedhalmazok ÖSSZES kulcsattribútumai kulcsok lesznek 1:1 kapcsolat, Bármely összekapcsolt egyedhalmaz kulcsattribútumai lehetnek R attribútumai 1:n kapcsolat, akkor az n felén levő egyedhalmaz attribútumai a kulcsok 5

6 Szereplő(FilmCím, gyártév, SzínészNév) Gyártó(FilmCím, gyártév, stúdiónév) cím év név lakcím Filmek Szereplők Színészek hossz műfaj név cím Gyártó Stúdiók 6

7 feladat. Tekintsünk egy zárt konténerben található molekulák jelenlegi helyzetét leíró relációt. Az attribútumok a molekulaazonosító, a molekulák x, y és z koordinátái, és a sebességek az x, y és z irányokban. Milyen funkcionális függőségekre várhatjuk, hogy érvényesek? Melyek a kulcsok? MolekulaAktuálisHelyzet(molekulaAzonosító, x, y, z, v x, v y, v z ) molekulaazonosító x, y, z, v x, v y, v z???????? x, y, z molekulaazonosító, v x, v y, v z???????? v x, v y, v z molekulaazonosító, x, y, z???????? 7

8 Funkcionális függőségek típúsai: Teljes függőség: Ha X és Y attribútumok (X lehet attribútum halmaz is) egy relációban és Y funkcionálisan függ X-től, de nem függ funkcionálisan X egy valódi részhalmazától sem Parciális függőség: X és Y attribútum halmazok között parciális függőség áll fenn, ha a funkcionális függőség fennmarad akkor is, ha az X-ből eltávolítunk egy attribútumot Tranzitív függőség: Ha adottak az X, Y, Z attribútumok, vagy attribútum halmazok az R relációra és érvényes a X Y és Y Z, viszont X NEM függ funkcionálisan sem Y sem Z-től, akkor Z tranzitíven függ X-től, az Y-on keresztül. 8

9 Funkcionális függőségekre vonatkozó szabályok Reflexivitás: ha (Y X), akkor X Y, vagyis egy attribútumhalmaz funkcionálisan meghatározza saját magát és saját részhalmazait is. (triviális) Önmeghatározás (triviális): X X Bővítés: ha X Y, akkor XZ YZ Tranzitivitás: X Y és Y Z, akkor X Z Pszeudo-tranzitivitás: X Y és WY Z, akkor WX Z Egyesítés: ha X Y és X Z, akkor X YZ Szétvágás: ha X YZ, akkor X Y és X Z Társítás: Ha X Y és Z W, akkor XZ YW Általános összesítés: Ha X Y és Z W, akkor XU(Z\Y) YW 9

10 Bővítés: ha X Y, akkor XZ YZ Tranzitivitás: X Y és Y Z, akkor X Z Pszeudo-tranzitivitás: X Y és WY Z, akkor WX Z Bizonyítás: X Y, akkor WX WY (bővítés) És mivel WY Z, a tranzitivitás miatt WX Z Egyesítés: ha X Y és X Z, akkor X YZ Szétvágás: ha X YZ, akkor X Y és X Z Társítás: Ha X Y és Z W, akkor XZ YW Bizonyítás: X Y, akkor XZ YZ(bővítés), XZ Z és XZ Y (szétvágás); Z W, akkor XZ XW (bővítés), XZ X és XZ W (szétvágás) Egyesítük a pirossal megadott FF-ket XZ YW (egyesítés) qed. Általános összesítés: Ha X Y és Z W, akkor XU(Z\Y) YW 10

11 Triviális függőségek A 1 A 2...A n B 1 B 2...B m funkcionális függőség Triviális, ha a B-k az A-k egy részhalmazát alkotják cím, év cím Nem triviális, ha a B-k közül legalább egy nincs benne az A- kban. cím, év cím, műfaj Teljesen nem triviális, ha a B-k egyike sem egyezik meg az A-k valamelyikével cím, év hossz, műfaj 11

12 Attribútumhalmazok lezárásának kiszámítása {A1, A2,, An} egy attribútumhalmaz, S a funkcionális függőségek halmaza, ami ugyanarra az attribútumhalmazra érvényes {A1, A2,, An} + az attribútumhalmaz S szerinti lezártja Megengedjük a TRIVIÁLIS függőségeket. Lezárás Kibővítés Kiindulási attribútumhalmaz 12

13 Az attribútumhalmaz lezárásának kiszámítása algoritmus: 1. Legyen X attribútumhalmaz, amely végül maga a lezárt lesz. Legyen először X kezdőértéke {A1, A2,, An} 2. Ismételten keresünk olyan B1B2 Bm C funkcionális függőséget az S-ből, amelyre a teljes B1,B2,...,Bm benne van az X attribútumhalmazban, de a C nincs. Ekkor C-t hozzávesszük az X halmazhoz 3. A 2-es lépést mindaddig ismételjük, ameddig már nem tudunk több attribútumot hozzávenni X-hez. Mivel X csak növekedhet, maximálisan az összes attribútumot kaphatjuk meg. 4. Az az X halmaz, amelyet már nem tudunk tovább bővíteni lesz az {A1, A2,..., An} + -nak a helyes értéke. 13

14 3.28. példa: Legyen egy reláció, amelynek attribútumai R(A,B,C,D,E,F) S funkcionális függőségek halmaza: {(1)AB C, (2)BC AD, (3)D E, (4)CF B} Mi az {A,B} lezártja, azaz az {A,B} + 1. X={A,B} 2. Az 1-es függőségből X={A,B,C} 3. A 2-es függőségből BC D, vagyis X={A,B,C,D} 4. A 3-as függőségből X={A,B,C,D,E} 5. A 4-es függőség bal oldala NINCS benne az X-ben, vagyis tovább nem lehet bővíteni a halmazt {A,B} + ={A,B,C,D,E} 14

15 Tétel: Az A1A2...An B1B2...Bm funkcionális függőség akkor és csak akkor következik az S függőségi halmazból, ha B1,B2...Bm benne van az {A1,A2,...An} + -ban Lezárások és kulcsok Tétel: {A1,A2,...An} + akkor és csak akkor az összes attribútumokból álló halmaz, ha A1,A2,...An a szóban forgó reláció szuperkulcsa. Adott függőségek és levezetett függőségek. Tétel: Függőségek bármely olyan halmazát, amelyből a reláció összes függőségére tudunk következtetni, az adott reláció bázisának nevezzük. Ha a bázisban nem található a függőségek valódi részhalmaza, amelyből a teljes függőségi halmazt le lehetne vezetni, akkor a bázist minimálisnak nevezzük. 15

16 feladat. R(A,B,C,D) és AB C, C D és D A f.f. a)melyek azok a nem triviális függőségek, amelyek az adott függőségekből következnek Tranzitivitás (1 és 2) AB D, (2 és 3) C A b) Melyek az R összes kulcsai {A,B}, {B,C}, {B,D}, {A,B,C}, {A,B,D}, {B,C,D}, {A,B,C,D} c) Melyek az R összes kulcsai, amelyek nem szuperkulcsok {A,B}, {B,C}, {B,D} 16

17 3.28. példa: Legyen egy reláció, amelynek attribútumai R(A,B,C,D,E,F) S funkcionális függőségek halmaza: {(1)AB C, (2)BC AD, (3)D E, (4)CF B} kulcsok {A,B} + ={A,B,C,D,E}, vagyis {A,B,F} az egyik kulcs {B,C} + ={A,B,C,D}, vagyis {B,C,F} egy másik szuperkulcs {C,F} + ={C,F,B}(4)={A,B,C,D,F}(2)={A,B,C,D,E,F}(3) Mivel látjuk, hogy az F NEM szerepel egyik függőség JOBB oldalán sem, ezért minden szuperkulcsban és egyúttal minden kulcsban is benne kell legyen. Tétel: Azon attribútumok, amelyek az eredeti funkcionális függőségek JOBB oldalán NEM szerepelnek, benne kell legyenek a reláció összes kulcsában. 17

18 A funkcionális függőségek grafikus megjelenítései Grafikus diagram a funkcionális függőségek megjelenítésére: Az attribútumokat téglalapokban tároljuk, nyilakkal adjuk meg a függőségeket. A1 A2 A3 A4 A5 A6 A1,A2 A4 A1,A2 A5 A2 A3 A4 A6 A5 A6 Az elsődleges kulcs által alkotott függőségeket a téglalapok FELSŐ részére írjuk. Csak a bázist írtuk fel, a levezetett függőségeket NEM. 18

19 A funkcionális függőségek gráfszerű ábrázolása A4 A1 A2 A5 A3 Az előző bázis-ábrázolás gráfra átalakítva. Létezhetnek csomópontok a gráfban, amelyek minimálisan 2 kimenettel kell rendelkezzenek A6 19

20 Funkcionális függőségek minimális mátrixa A2 A4 A5 A1,A A1 1 A2 2 A3 3 1 A4 4 1 A5 5 1 A A1,A2 7 20

21 Relációs adatbázissémák tervezése Problémák akkor merülnek fel, amikor túl sok információt próbálunk egyetlen relációba tömöríteni. Ezt anomáliának nevezzük. 1. Redundancia. Az információk feleslegesen ismétlődhetnek több sorban. Az alábbi ábrán a filmek hossza és a műfaj jó példa erre. A többi információ vagy kulcs, vagy idegen kulcs vagy saját attribútum. filmcím év Hossz műfaj stúdiónév színésznév Csillagok háborúja sci-fi Fox Carrie Fisher Csillagok háborúja sci-fi Fox Mark Hamill Csillagok háborúja sci-fi Fox Harrison Ford Elfújta a szél dráma MGM Vivien Leigh Wayne világa vígjáték Paramount Dana Carvez Wayne világa vígjáték Paramount Mike Meyers 21

22 2. Módosítási problémák. Lehet, hogy megváltoztatjuk az egyik sorban tárolt információt, miközben ugyanaz az információ változatlan marad egy másik sorban. Példa: Csillagok háborúja 125 perces 3. Törlési problémák. Ha az értékek halmaza üres halmazzá válik, akkor ennek mellékhatásaként más információt is elveszthetünk. Péda: Színészek közül kitöröljük Vivien Leight, akkor az Elfújta a szél filmről levő összes információ törlődik 22

23 Relációk felbontása. Az anomáliák megszüntetésének az elfogadott útja a relációk felbontása (dekompozíciója). R felbontása egyrészt azt jelenti, hogy R attribútumait szétosztjuk úgy, hogy ezáltal két új reláció sémáját alakítjuk ki belőle. R sorait vetítjük. R reláció sémája {A1,A2, An}. R-et felbonthatjuk S és T két relációra, amelyek sémái {B1,B2,...Bm} és {C1,C2,...Ck} úgy, hogy: 1. {A1,A2, An}={B1,B2, Bm}U{C1,C2, Ck} 2. Az S reláció sorai az R-ben szereplő összes sornak a {B1,B2, Bm}-re vett vetületei 3. Hasonlóan a T reláció sorai az R aktuális előfordulásában szereplő sorok {C1,C2,...,Ck} attribútumok halmazára vett projekciói 23

24 filmcím év Hossz műfaj stúdiónév színésznév Csillagok háborúja sci-fi Fox Carrie Fisher Csillagok háborúja sci-fi Fox Mark Hamill Csillagok háborúja sci-fi Fox Harrison Ford Elfújta a szél dráma MGM Vivien Leigh Wayne világa vígjáték Paramount Dana Carvez Wayne világa vígjáték Paramount Mike Meyers cím, év hossz cím, év műfaj cím, év stúdiónév cím, év hossz, műfaj, stúdiónév cím, év színésznév HAMIS állítás NEM ÉRVÉNYES funkcionális függőség 24

25 Felbontjuk a Film relációt: Film1(cím, év, hossz, műfaj, stúdiónév) Film2(cím, év, színésznév) filmcím év Hossz műfaj stúdiónév Csillagok háborúja sci-fi Fox Elfújta a szél dráma MGM Wayne világa vígjáték Paramount filmcím év színésznév Csillagok háborúja 1977 Carrie Fisher Csillagok háborúja 1977 Mark Hamill Csillagok háborúja 1977 Harrison Ford Elfújta a szél 1939 Vivien Leigh Wayne világa 1992 Dana Carvez Wayne világa 1992 Mike Meyers 25

26 Cím Év Hossz műfaj stúdiónév stúdiócím Csillagok háborúja sci-fi Fox Hollywood Kutyahideg dráma Disney Buena Vista Wayne világa vígjáték Paramount Hollywod Cím év stúdiónév stúdiónév stúdiócím Tranzitivitás miatt következik Cím év stúdiócím 26

27 stúdiónév Fox Disney Paramount stúdiócím Hollywood Buena Vista Hollywood Cím Év Hossz műfaj stúdiónév Csillagok háborúja sci-fi Fox Kutyahideg dráma Disney Wayne világa vígjáték Paramount 27

28 Színészek Filmek színész stúdiója Szerződik gyártó stúdió gyárt Stúdiók A szerződik reláció kulcsát keressük. Szerzodik(szineszNev, gyartostud, szineszstud, filmcim, gyartev) Fennáll a következő funkcionális függőség: filmcim, gyartev gyartostud 28

29 Összefoglaló kérdések 1. Funkcionális függőségek. Definíciók. 2. A relációk kulcsai 3. Szuperkulcsok 4. Funkcionális függőségek tipúsai 5. Szabályok 6. Attribútumhalmazok lezártjának kiszámítási algoritmusa példa 8. Lezárások és kulcsok 9. Grafikus diagram. Gráf diagram. Mátrix diagram 10. Milyen anomáliák vannak, s ezek hogyan nyilvánulnak meg 29

Függőségek felismerése és attribútum halmazok lezártja

Függőségek felismerése és attribútum halmazok lezártja Függőségek felismerése és attribútum halmazok lezártja Elméleti összefoglaló Függőségek: mezők közötti érték kapcsolatok leírása. A Funkcionális függőség (FD=Functional Dependency): Ha R két sora megegyezik

Részletesebben

ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben

ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) ABR ( Adatbázisrendszerek) 1. Előadás : Műveletek a relációs medellben 1.0 Bevezetés. A relációs adatmodell. 1.1 Relációs algebra 1.2 Műveletek a relációs

Részletesebben

6. Gyakorlat. Relációs adatbázis normalizálása

6. Gyakorlat. Relációs adatbázis normalizálása 6. Gyakorlat Relációs adatbázis normalizálása Redundancia: Az E-K diagramok felírásánál vagy az átalakításnál elképzelhető, hogy nem az optimális megoldást írjuk fel. Ekkor az adat redundáns lehet. Példa:

Részletesebben

7. Előadás tartalma A relációs adatmodell

7. Előadás tartalma A relációs adatmodell 7. Előadás tartalma A relációs adatmodell 7.1 A relációs adatmodell 7.2 Relációs adatbázisséma meghatározása 7.3 E/K diagram átírása relációs modellé 7.4 Osztályhierarchia reprezentálása 1 7.1 A relációs

Részletesebben

Sapientia - Erdélyi Magyar Tudományegyetem (EMTE) Csíkszereda

Sapientia - Erdélyi Magyar Tudományegyetem (EMTE) Csíkszereda Sapientia - Erdélyi Magyar Tudományegyetem (EMTE) Csíkszereda 9. Előadás tartalma Függőségek vetítése. Normalizálás Normálformák. A relációs adatmodellt először E. F. Codd határozta (Codd 1970). Ő vezette

Részletesebben

Tervezés: Funkcionális függıségek

Tervezés: Funkcionális függıségek Tervezés: Funkcionális függıségek Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 3.1. Funkcionális függőségek, relációk (szuper)kulcsai 3.2. Funkcionális

Részletesebben

Magas szintű adatmodellek Egyed/kapcsolat modell I.

Magas szintű adatmodellek Egyed/kapcsolat modell I. Magas szintű adatmodellek Egyed/kapcsolat modell I. Ullman-Widom: Adatbázisrendszerek. Alapvetés. 4.fejezet Magas szintű adatmodellek (4.1-4.3.fej.) (köv.héten folyt.köv. 4.4-4.6.fej.) Az adatbázis modellezés

Részletesebben

Normalizálási feladatok megoldása

Normalizálási feladatok megoldása Normalizálási feladatok megoldása SZÍNHÁZ(színháznév, megye, település, író, cím, műfaj, dátum, időpont) {színháznév} {megye, település} {település} {megye} {író, cím} {műfaj} {színháznév, dátum, időpont}

Részletesebben

Relációs adatbázisok tervezése 2.rész (dekompozíció)

Relációs adatbázisok tervezése 2.rész (dekompozíció) Relációs adatbázisok tervezése 2.rész (dekompozíció) Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 3.3. Relációs adatbázissémák tervezése, relációk felbontása

Részletesebben

0. Ha valahol még nem szerepelt a relációs algebrai osztás, akkor azt kell először venni:

0. Ha valahol még nem szerepelt a relációs algebrai osztás, akkor azt kell először venni: Funkcionális függések, kulcskeresés, Armstrong axiómák A kékkel írt dolgokat tudniuk kell már, nem kell újra elmondani 0. Ha valahol még nem szerepelt a relációs algebrai osztás, akkor azt kell először

Részletesebben

RELÁCIÓS ADATBÁZISSÉMÁK. Egyed-kapcsolat modellről átírás

RELÁCIÓS ADATBÁZISSÉMÁK. Egyed-kapcsolat modellről átírás RELÁCIÓS ADATBÁZISSÉMÁK Egyed-kapcsolat modellről átírás A RELÁCIÓS ADATMODELL Az adatokat egyszerűen reprezentálja: kétdimenziós adattáblákban Minden sor azonos számú oszlopból áll; egy sor egy rekord,

Részletesebben

Példa 2012.05.11. Többértékű függőségek, 4NF, 5NF

Példa 2012.05.11. Többértékű függőségek, 4NF, 5NF Többértékű függőségek, 4NF, 5NF Szendrői Etelka datbázisok I szendroi@pmmk.pte.hu harmadik normálformáig mindenképpen érdemes normalizálni a relációkat. Legtöbbször elegendő is az első három normálformának

Részletesebben

8. előadás. normálformák. Többértékű függés, kapcsolásfüggés, 4NF, 5NF. Adatbázisrendszerek előadás november 10.

8. előadás. normálformák. Többértékű függés, kapcsolásfüggés, 4NF, 5NF. Adatbázisrendszerek előadás november 10. 8. előadás 4NF, 5NF Adatbázisrendszerek előadás 2008. november 10. ek és Debreceni Egyetem Informatikai Kar 8.1 (multivalued dependency, MVD) Informálisan, valahányszor két független 1 : N számosságú A

Részletesebben

Adatbázis-kezelés. alapfogalmak

Adatbázis-kezelés. alapfogalmak Adatbázis-kezelés alapfogalmak Témakörök Alapfogalmak Adatmodellek Relációalgebra Normalizálás VÉGE Adatbázis-kezelő rendszer Database Management System - DBMS Integrált programcsomag, melynek funkciói:

Részletesebben

NORMALIZÁLÁS. Funkcionális függés Redundancia 1NF, 2NF, 3NF

NORMALIZÁLÁS. Funkcionális függés Redundancia 1NF, 2NF, 3NF NORMALIZÁLÁS Funkcionális függés Redundancia 1NF, 2NF, 3NF FUNKCIONÁLIS FÜGGŐSÉG Legyen adott R(A 1,, A n ) relációséma, valamint P, Q {A 1,, A n } (magyarán P és Q a séma attribútumainak részhalmazai)

Részletesebben

Adatbázisok gyakorlat

Adatbázisok gyakorlat Adatbázisok gyakorlat 5. gyakorlat Adatmodellezés III/IV Funkcionális függés, redundancia. Normalizálás Szegedi Tudományegyetem Természettudományi és Informatikai Kar Antal Gábor 1 Funkcionális függés

Részletesebben

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF. Adatbázisrendszerek előadás november 3.

7. előadás. Karbantartási anomáliák, 1NF, 2NF, 3NF, BCNF. Adatbázisrendszerek előadás november 3. 7. előadás,,,, Adatbázisrendszerek előadás 2008. november 3. és Debreceni Egyetem Informatikai Kar 7.1 relációs adatbázisokhoz Mit jelent a relációs adatbázis-tervezés? Az csoportosítását, hogy jó relációsémákat

Részletesebben

Adatbázis rendszerek. 4. előadás Redundancia, normalizálás

Adatbázis rendszerek. 4. előadás Redundancia, normalizálás Adatbázis rendszerek 4. előadás Redundancia, normalizálás Molnár Bence Szerkesztette: Koppányi Zoltán HF tapasztalatok HF tapasztalatok [ABR] az email címbe! Ne emailbe küldjük a házikat, töltsétek fel

Részletesebben

ABR ( Adatbázisrendszerek) 2. Előadás : Műveletek a relációs modellben

ABR ( Adatbázisrendszerek) 2. Előadás : Műveletek a relációs modellben ABR ( Adatbázisrendszerek) 2. Előadás : Műveletek a relációs modellben 2.2 Műveletek a relációs modellben 2.2.1 Relációra vonatkozó megszorítások 2.2.2 Multihalmazon értelmezett műveletek 2.2.3 A relációs

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 2. Adatbáziskezelés eszközei Adatbáziskezelés feladata Adatmodell típusai Relációs adatmodell

Részletesebben

11. Gyakorlat Adatbázis-tervezés, normalizálás. Redundancia: egyes adatelemek feleslegesen többször is le vannak tárolva

11. Gyakorlat Adatbázis-tervezés, normalizálás. Redundancia: egyes adatelemek feleslegesen többször is le vannak tárolva 11. Gyakorlat Adatbázis-tervezés, normalizálás Redundancia: egyes adatelemek feleslegesen többször is le vannak tárolva Problémák: helypazarlás konzisztencia-őrzés nehéz Következmény -> Anomáliák: Beszúrási:

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF

ADATBÁZIS-KEZELÉS. Relációalgebra, 5NF ADATBÁZIS-KEZELÉS Relációalgebra, 5NF ABSZTRAKT LEKÉRDEZŐ NYELVEK relációalgebra relációkalkulus rekord alapú tartomány alapú Relációalgebra a matematikai halmazelméleten alapuló lekérdező nyelv a lekérdezés

Részletesebben

5. Előadás tartalma Magas szintű adatbázismodellek Adatmodellezés

5. Előadás tartalma Magas szintű adatbázismodellek Adatmodellezés Sapientia - Erdelyi Magyar TudományEgyetem (EMTE) Csíkszereda 5. Előadás tartalma Magas szintű adatbázismodellek Adatmodellezés Az Egyed-kapcsolat (E/K) diagramok C.J. Date szerinti kapcsolatok Varjúláb

Részletesebben

Adatbázisok elmélete 6. előadás

Adatbázisok elmélete 6. előadás Adatbázisok elmélete 6. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2004 ADATBÁZISOK ELMÉLETE

Részletesebben

ADATBÁZIS-KEZELÉS. Relációs modell

ADATBÁZIS-KEZELÉS. Relációs modell ADATBÁZIS-KEZELÉS Relációs modell Relációséma neve attribútumok ORSZÁGOK Azon Ország Terület Lakosság Főváros Földrész 131 Magyarország 93036 10041000 Budapest Európa 3 Algéria 2381740 33769669 Algír Afrika

Részletesebben

ADATBÁZIS-KEZELÉS Demetrovics Katalin

ADATBÁZIS-KEZELÉS Demetrovics Katalin ADATBÁZIS-KEZELÉS Demetrovics Katalin 1. Alapfogalmak...1 1.1. Adat... 1 1.2. Információ... 1 1.3. Egyed, Tulajdonság, Kapcsolat... 1 1.4. Adatmodellek... 2 1.5. Adatbázis (DATABASE, DB)... 3 2. A relációs

Részletesebben

Adatmodellezés. 1. Fogalmi modell

Adatmodellezés. 1. Fogalmi modell Adatmodellezés MODELL: a bonyolult (és időben változó) valóság leegyszerűsített mása, egy adott vizsgálat céljából. A modellben többnyire a vizsgálat szempontjából releváns jellemzőket (tulajdonságokat)

Részletesebben

A relációs adatmodell

A relációs adatmodell A relációs adatmodell E. Codd vezette be: 1970 A Relational Model of Data for Large Shared Data Banks. Communications of ACM, 13(6). 377-387. 1982 Relational Databases: A Practical Foundation for Productivity.

Részletesebben

Adatbázis rendszerek Ea: A rendes állapot. Normalizálás

Adatbázis rendszerek Ea: A rendes állapot. Normalizálás Adatbázis rendszerek 1. 3. Ea: A rendes állapot Normalizálás 19/1 B ITv: MAN 2015.09.08 Normalizálás A normalizálás az adatbázis belső szerkezetének ellenőrzése, lépésenkénti átalakítása oly módon, hogy

Részletesebben

Adatbázisok 1 2013-14 tavaszi félév Vizsgatételsor

Adatbázisok 1 2013-14 tavaszi félév Vizsgatételsor Adatbázisok 1 2013-14 tavaszi félév Vizsgatételsor 1. Relációs adatmodell alapjai Adatmodell: Az adatmodell egy jelölésmód egy adatbázis adatszerkezetének a leírására, beleértve az adatra vonatkozó megszorításokat

Részletesebben

Az egyed-kapcsolat modell (E/K)

Az egyed-kapcsolat modell (E/K) Az egyed-kapcsolat modell (E/K) Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 4.1. Az egyed-kapcsolat (E/K) modell 4.2. Tervezési alapelvek 4.3. Megszorítások

Részletesebben

Adatbázisok gyakorlat

Adatbázisok gyakorlat Adatbázisok gyakorlat 4. gyakorlat Adatmodellezés II Relációs adatbázisséma készítése E-K modellből Szegedi Tudományegyetem Természettudományi és Informatikai Kar Antal Gábor 1 Közérdekű Honlap: http://antalgabor.hu

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

Adatbázisok. 1. gyakorlat. Adatmodellezés október október 1. Adatbázisok 1 / 42

Adatbázisok. 1. gyakorlat. Adatmodellezés október október 1. Adatbázisok 1 / 42 Adatbázisok 1. gyakorlat Adatmodellezés 2016. október 1. 2016. október 1. Adatbázisok 1 / 42 Elérhet ség Web: http://www.inf.u szeged.hu/~mkatona E-mail: mkatona@inf.u-szeged.hu Fogadóóra: Kedd 15 16 Árpád

Részletesebben

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére.

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Mveletek a relációs modellben A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Megfogalmaz egy kérést, amelyben leírja, milyen adatokra van szüksége,

Részletesebben

Adatbázisok elmélete 6. előadás

Adatbázisok elmélete 6. előadás Adatbázisok elmélete 6. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

Az adatbázis-kezelés alapjai

Az adatbázis-kezelés alapjai ADATBÁZIS-KEZELÉS Ajánlott irodalom: Békési Geda Holovács Perge : Adatbázis kezelés Főiskolai jegyzet (Eger, Líceum kiadó) Bódy Bence: Az SQL példákon keresztül Jedlik Oktatási Stúdió Joe Celko: SQL fejtörők

Részletesebben

ADATMODELLEZÉS. Az egyed-kapcsolat modell

ADATMODELLEZÉS. Az egyed-kapcsolat modell ADATMODELLEZÉS Az egyed-kapcsolat modell AZ ADATMODELLEZÉSRŐL Amikor egy adatbázist hozunk létre, a valóság valamilyen szeletéről szeretnénk eltárolni adatokat Elengedhetetlen, hogy valamilyen modellalkotási

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Adatbázisok I. Jánosi-Rancz Katalin Tünde tsuto@ms.sapientia.ro 327A 1-1

Adatbázisok I. Jánosi-Rancz Katalin Tünde tsuto@ms.sapientia.ro 327A 1-1 Adatbázisok I. 3 Jánosi-Rancz Katalin Tünde tsuto@ms.sapientia.ro 327A 1-1 A relációs adatmodell 1970 E. Codd vezette be Adott n halmaz D 1,D 2, D n, amelyekből képzett Descartes-szorzat egy részhalmaza

Részletesebben

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza.

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza. Logikai függvények osztályai A függvényosztály a függvények egy halmaza. A logikai fügvények egy osztálya logikai függvények valamely halmaza. Megadható felsorolással, vagy a tulajdonságainak leírásával.

Részletesebben

Nézetek és indexek. 8. fejezet Nézettáblák

Nézetek és indexek. 8. fejezet Nézettáblák 1 ~... lk 8. fejezet Nézetek és indexek Ezt a fejezetet a nézettáblák ismertetésével kezdjük. A nézettábla olyan reláció, melyet más relációkra vonatkozó lekérdezésekkel definiálunk. A nézettáblák az adatbázisban

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Adatbázis tervezés normál formák segítségével

Adatbázis tervezés normál formák segítségével Adatbázis tervezés normál formák segítségével A normál formák - egzakt módszer a redundancia mentes adatbázis létrehozására A normál formák egymásra épülnek Funkcionális függőségek és a kulcsok ismeretére

Részletesebben

Adatbázis használat I. 1. gyakorlat

Adatbázis használat I. 1. gyakorlat Adatbázis használat I. 1. gyakorlat Tudnivalók Nagy Gabriella nagy.gabriella@nik.uni-obuda.hu BA. 306. szoba www.orakulum.com => Adatbázis-kezelés => AKT (Adatbázis-Kezelés Technológiája) 2011. 02. 08.

Részletesebben

Adatbázis alapú rendszerek

Adatbázis alapú rendszerek Adatbázis alapú rendszerek BookIt projekt dokumentáció Kotosz Tibor, Krajcsovszki Gergely, Seres Regina 2011 Tartalomjegyzék Jelenlegi rendszer... 2 Jelenlegi rendszer fizikai AFD-je... 2 Jelenlegi rendszer

Részletesebben

Gazdasági informatika vizsga kérdések

Gazdasági informatika vizsga kérdések Gazdasági informatika vizsga kérdések 1. Mi az adatbázis? Adatbázisnak a valós világ egy részhalmazának leírásához használt adatok összefüggı, rendezett halmazát nevezzük. 2. Mit az adatbázis-kezelı rendszer?

Részletesebben

TAJ. foglalkozás. gyógyszer

TAJ. foglalkozás. gyógyszer Feladat I. Orvosi adatbázist készítünk. Minden embernél számontartjuk a nevét, korát, TAJ számát. Ezen utóbbi alapján egyértelmően azonosítani lehet bárkit. Az orvosoknál tároljuk ezeken kívül még a tudományos

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Adatbázisok. 3. gyakorlat. Adatmodellezés: E-K modellb l relációs adatbázisséma. Kötelez programok kiválasztása szeptember 21.

Adatbázisok. 3. gyakorlat. Adatmodellezés: E-K modellb l relációs adatbázisséma. Kötelez programok kiválasztása szeptember 21. Adatbázisok 3. gyakorlat Adatmodellezés: E-K modellb l relációs adatbázisséma. Kötelez programok kiválasztása 2016. szeptember 21. 2016. szeptember 21. Adatbázisok 1 / 24 Az adatbázisok szolgáltatásai

Részletesebben

ADATBÁZIS-KEZELÉS. 1. Alapfogalmak

ADATBÁZIS-KEZELÉS. 1. Alapfogalmak ADATBÁZIS-KEZELÉS 1. Alapfogalmak... 1 1.1. Adat... 1 1.2. Információ... 1 1.3. Egyed, Tulajdonság, Kapcsolat... 2 1.4. Adatmodellek... 2 1.5. Adatbázis (DATABASE, DB)... 3 2. A relációs adatmodell...

Részletesebben

Adatbáziskezelés 1 / 12

Adatbáziskezelés 1 / 12 Adatbáziskezelés Demeter István-Hunor Adatbáziskezelés Adatbáziskezelés... 1 Alapfogalmak... 2 Adatmodellek... 3 Relációs adatmodell... 3 Attribútumok közötti függőségek... 5 Normál formák... 5 Feladat...

Részletesebben

Normálformák Normalizálás ADATBÁZISKEZELÉS ÉS KÖNYVTÁRI RENDSZERSZERVEZÉS 1 / 2

Normálformák Normalizálás ADATBÁZISKEZELÉS ÉS KÖNYVTÁRI RENDSZERSZERVEZÉS 1 / 2 Normálformák Normalizálás ADATBÁZISKEZELÉS ÉS KÖNYVTÁRI RENDSZERSZERVEZÉS 1 / 2 Normálformák Normálforma: az egyed szerkezeti állapota NÉV SZAKKÉPZETTSÉG SZÜLETÉSI DÁTUM Nagy Zsolt Gépészmérnök közgazdász

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Adatbázisok az iskolában 2012 Adatmodellezés. Dr. Balázs Péter

Adatbázisok az iskolában 2012 Adatmodellezés. Dr. Balázs Péter Adatbázisok az iskolában 2012 Adatmodellezés Dr. Balázs Péter Adatmodell Nem a konkrét adatokkal, azok előfordulásával, hanem azok típusaival illetve a köztük lévő kapcsolatokkal foglalkozik. Egy adatbázis-kezelő

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Marosvásárhely. ABR ( Adatbázisrendszerek) 12. Előadás:

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Marosvásárhely. ABR ( Adatbázisrendszerek) 12. Előadás: Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Marosvásárhely ABR ( Adatbázisrendszerek) 12. Előadás: 0. Egyes érdekesebb lekérdezésekről 1. NULL értékek használata alkérdésekben 2. Számlanyilvántartási

Részletesebben

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi

Részletesebben

Fuzzy halmazok jellemzői

Fuzzy halmazok jellemzői A Fuzzy rendszerek, számítási intelligencia gyakorló feladatok megoldása Fuzzy halmazok jellemzői A fuzzy halmaz tartója az alaphalmaz azon elemeket tartalmazó részhalmaza, melyek tagsági értéke 0-nál

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Adatbázisok. 3. gyakorlat. Adatmodellezés: E-K modell szeptember szeptember 17. Adatbázisok 1 / 11

Adatbázisok. 3. gyakorlat. Adatmodellezés: E-K modell szeptember szeptember 17. Adatbázisok 1 / 11 Adatbázisok 3. gyakorlat Adatmodellezés: E-K modell 2014. szeptember 17. 2014. szeptember 17. Adatbázisok 1 / 11 Adatmodellezés Az adatbázis-alapú rendszerek tervezésének alapvet része Az adatmodellezés

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

ADATBÁZISOK. Normalizálás

ADATBÁZISOK. Normalizálás ADATBÁZISOK Normalizálás Első normálforma (1NF) Csak atomi attribútumok fordulnak elő Összetett és többértékű attribútumok leképezésével Második normálforma (2NF) 1NF + A másodlagos (azaz nem kulcsbeli)

Részletesebben

Adatbázis rendszerek 2. előadás. Relációs algebra

Adatbázis rendszerek 2. előadás. Relációs algebra Adatbázis rendszerek. előadás Relációs algebra Molnár Bence Szerkesztette: Koppányi Zoltán Bevezetés Relációs algebra általában A relációs algebra néhány tulajdonsága: Matematikailag jól definiált Halmazelméletből

Részletesebben

Adatbázis rendszerek 2. előadás. Relációs algebra

Adatbázis rendszerek 2. előadás. Relációs algebra Adatbázis rendszerek 2. előadás Relációs algebra Molnár Bence Szerkesztette: Koppányi Zoltán Bevezetés Relációs algebra általában A relációs algebra néhány tulajdonsága: Matematikailag jól definiált Halmazelméletből

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

7. fejezet. 7.1. Kulcsok és idegen kulcsok

7. fejezet. 7.1. Kulcsok és idegen kulcsok 7. fejezet Megszorítások és triggerek Ebben a fejezetben az SQL-nek azokat a sajátosságait tekintjük át, amelyek az aktív elemek létrehozásával kapcsolatosak. Egy aktív elem olyan kifejezés vagy utasítás,

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Bevezetés. Párhuzamos vetítés és tulajdonságai

Bevezetés. Párhuzamos vetítés és tulajdonságai Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való

Részletesebben

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán Adatbázis rendszerek 5. előadás Adatbázis tervezés Koppányi Zoltán koppanyi.zoltan@epito.bme.hu Előző óra Redundancia, Anomáliák: beszúrás, törlés, módosítás Funkcionális Normalizálás Normál Táblák konzisztencia

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Adatmodellek komponensei

Adatmodellek komponensei Adatbázisok I Szemantikai adatmodellek Adatmodellek komponensei Adatmodell: matematikai formalizmus, mely a valóság adatorientált leírására alkalmas Komponensei: strukturális rész: a valóságban megtalálható

Részletesebben

BGF. 4. Mi tartozik az adatmodellek szerkezeti elemei

BGF. 4. Mi tartozik az adatmodellek szerkezeti elemei 1. Mi az elsődleges következménye a gyenge logikai redundanciának? inkonzisztencia veszélye felesleges tárfoglalás feltételes függés 2. Az olyan tulajdonság az egyeden belül, amelynek bármely előfordulása

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán

Adatbázis rendszerek. 5. előadás Adatbázis tervezés. Koppányi Zoltán Adatbázis rendszerek 5. előadás Adatbázis tervezés Koppányi Zoltán zoltan.koppanyi@gmail.com koppanyi.zoltan@epito.bme.hu Előző óra Redundancia, konzisztencia Anomáliák: beszúrás, törlés, módosítás Funkcionális

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Adatbázis tartalmának módosítása

Adatbázis tartalmának módosítása Adatbázis tartalmának módosítása Tankönyv 6.5. Változtatások az adatbázisban A módosító utasítások nem adnak vissza eredményt, mint a lekérdezések, hanem az adatbázis tartalmát változtatják meg. 3-féle

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

Informatika szigorlat 9-es tétel: Az adatbázis-kezelő rendszerek fogalmai

Informatika szigorlat 9-es tétel: Az adatbázis-kezelő rendszerek fogalmai Informatika szigorlat 9-es tétel: Az adatbázis-kezelő rendszerek fogalmai Adatbázis: egymással valamilyen kapcsolatban lévő adatok jól szervezett halmaza, ahol az adatok számítógépen vannak tárolva úgy,

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben