19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:"

Átírás

1 9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés fázis- és amplitúdó-feltételeit! Csoportosítsa felépítés és frekvenciatartomány alapján az oszcillátorokat! Ismertesse egy-egy tipikus kis- és nagyfrekvenciás oszcillátor mőködését! Mutassa be az oszcillátorok gyakorlati alkalmazási lehetıségeit! Hasonlítsa össze elınyei és hátrányai alapján az LC-, az RC- és a kvarcoszcillátorokat! Az oszcillátor Az oszcillátorok olyan elektronikus áramkörök, amelyek egyenáramú tápenergiát felhasználva, vezérlı jel nélkül csillapítatlan periodikus jelek elıállítására alkalmasak. A létrehozott periodikus jel lehet: nem szinuszos, szinuszos idıbeli lefolyású jel. Az oszcillátorok osztályozása A szinuszos jeleket elıállító áramköröket harmonikus, vagy szinuszos oszcillátoroknak nevezzük. A nem szinuszos jeleket elıállító áramköröket szokás relaxációs oszcillátoroknak nevezni. A csillapított rezgés Az oszcillátorok létrehozásánál szükség van egy frekvencia- meghatározó elemre, amely meghatározza a rezgés frekvenciáját. Ha egy feltöltött kondenzátor energiája egy induktív tagon keresztül kisül, akkor csillapított rezgések keletkeznek. Rezonancia frekvencia számítása A csillapított rezgések frekvenciáját a következı jól ismert összefüggés határozza meg: f = 2π L C 0. A csillapítatlan rezgés létrejötte A rezgıkör veszteséges, így energiatartalma csökken. A rezgések fenntartása úgy lehetséges, ha a veszteségeket pótoljuk. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges: negatív ellenállású karakterisztika- szakasszal rendelkezı áramköri elem használata, pozitív visszacsatolással rendelkezı erısítı alkalmazása. A negatív dinamikus ellenállás A negatív dinamikus ellenállás hatása Egyes félvezetı áramköri elemeknél, mint például az alagútdióda vagy az egyátmenető tranzisztor, a negatív ellenállás jelenlétét a karakterisztika mutatja. Alagútdiódás oszcillátor jelleggörbéje Egyátmenető tranzisztoros oszcillátor jelleggörbéje

2 Az egyátmenető tranzisztor jelleggörbéje A negatív ellenállású szakasz felhasználható a rezgıkör veszteségeinek a kiegyenlítésére. A rezgıkör veszteségei kompenzálhatók, ha a vele párhuzamosan vagy sorosan kapcsolunk egy a veszteségi ellenállással megegyezı értékő negatív ellenállást. Az így kiegészített hálózat csillapítatlan rezgéseket képes elıállítani. A párhuzamos rezgıkör elvi felépítése negatív ellenállással A soros rezgıkör elvi felépítése negatív ellenállással A kapcsolási rajz összeállítása és az áramköri elemek szerepe Az egyátmenető tranzisztor esetében a negatív dinamikus ellenállás kis értékő áramváltozás esetén jön létre, amely a jelleggörbébıl is kiolvasható. A keletkezı rezgések amplitudójának a határolása a tranzisztor bemeneti körével sorosan kapcsolt, soros rezgıkörrel valósítható meg. Egyátmenető tranzisztoros oszcillátor Alagútdiódás oszcillátor Alagútdióda alkalmazása Az alagútdióda esetén a negatív dinamikus ellenállást U I kis értékő feszültségváltozás hozza létre. Az alagútdióda csak nagy frekvencián mőködik megfelelıen, ezért a felhasználása a magas frekvenciatartományra esik. A visszacsatolt oszcillátor A visszacsatolt oszcillátor létrehozása Ha egy erısítıt amely egy széles sávban erısít, visszacsatoló négypólussal pozitívan visszacsatolunk, akkor oszcillátort kapunk. A visszacsatolt erısítés A uv Au = β A u A hurokerısítés Ha a hurokerısítés ( ) növekszik., ahol A u az eredeti erısítı erısítése, A uv a visszacsatolt erısítı erısítése. β A u egy értékő, akkor az összefüggés értelmében a visszacsatolt erısítı erısítése végtelenre A visszacsatolt oszcillátor felépítése 2

3 A hurokerısítés értékének következménye Ez azt jelenti, hogy a visszacsatolt erısítı ilyen esetben vezérlı jel nélkül is szolgáltat kimenı jelet, mivel az Auv=. Ekkor a visszacsatolt erısítı begerjed és saját maga hozza létre a kimenı jelet. Ha a hurokerısítés értéke nem megfelelı, akkor az oszcillátor nem képes begerjedni. A fázisfeltétel és az amplitúdó feltétel A gyakorlatban a hurokerısítést nem lehet pontosan beállítani. Az oszcillátor mőködésének két feltétele van: fázisfeltétel, a visszacsatolt jel a bemenıjellel azonos fázisú legyen, vagyis a fáziseltérés 0 0, vagy legyen, amplitúdó feltétel, a hurokerısítés β Au = értékő legyen. A hurokerısítés Megfelelı hurokerısítés és fázisfeltétel esetén, a keletkezı rezgések frekvenciáját egy frekvencia- meghatározó elem határozza meg, amint azt a fenti ábrán is láthatjuk (LC rezgıkör). A frekvencia- meghatározó elem szerint a szinuszos oszcillátorok lehetnek: LC, RC, és kvarc oszcillátorok. LC oszcillátorok Az LC oszcillátorok rezgıköre Ezen oszcillátorok frekvencia- meghatározó eleme egy rezgıkör. A rezgıkör csillapításának kompenzálását egy erısítı biztosítja. Az LC oszcillátorokat fıleg nagyfrekvenciás tartományban alkalmazzák, mivel kisfrekvenciákon a rezgıkör elemei nagy értékőek lennének, ezért veszteségük is megnıne. A nagy jósági tényezıjő rezgıkörök nagyfrekvencián könnyen megvalósíthatóak. Az LC oszcillátorok többféle kapcsolása ismert. A kapcsolások amelyeket ismertetünk, nevük a feltalálójukra utal. Az LC oszcillátorok típusai: hangolt kollektorkörő Meissner-oszcillátor hangolt báziskörő Meissner-oszcillátor kapacitív hárompont-csatolású Collpits-oszcillátor induktív hárompont-csatolású Hartley-oszcillátor A Meissner-oszcillátor A Meissner- oszcillátor jellemzıje, hogy transzformátoros visszacsatolással mőködik, és a frekvencia- meghatározó elem a transzformátor primer tekercsével párhuzamosan kapcsolt kondenzátor által meghatározott rezgıkör. A rezgıkör viselkedése A következı ábra az oszcillátor kapcsolását mutatja, melyben hangolt kollektorkörös emitterkapcsolású erısítıfokozatot alkalmaznak. A kimeneti feszültség a tranzisztor kollektorán lép fel és fázist fordít. A frekvenciája f = 2π L C 0. A hangolt kollektorkörös Meissner oszcillátor 3

4 A kapcsolási rajz elemzése A pozitív visszacsatolás megvalósítására a kimeneti feszültség egy részét az L tekerccsel lecsatoljuk, és az R, C soros tagon keresztül visszavezetjük a tranzisztor bázisára. A kapcsolásban fontos szerepet játszik az L és L tekercsek menetiránya, hiszen a visszacsatolt jel a tekercsek menetirányának megfelelıen azonos vagy ellentétes fázisban kerül vissza a kollektorkörbıl a bázisra. RC oszcillátorok Az RC oszcillátorokat kisfrekvencián (pl. hangfrekvencián) használjuk. A közös emitteres erısítı kimeneti és bemeneti feszültsége közötti os eltérést RC elemekkel állítjuk helyre (pl. fázistolós oszcillátornál). Az RC oszcillátorok egy részének hangolható a frekvenciája. Ilyen a Wien-hidas oszcillátor. Az LC oszcillátorok típusai: fázistolós oszcillátor (nem hangolható), Wien-hidas oszcillátor ( hangolható), Kettıs T-hidas oszcillátor (nem hangolható). Wien-hidas oszcillátor A híd felépítése A Wien-hidas oszcillátor esetében a visszacsatolatlan erısítıt egy Wien-híddal csatoljuk vissza. A Wien-híd A híd egy frekvenciafüggı és egy frekvenciafüggetlen ágból áll. A híd baloldali ága frekvenciafüggı, jobb oldali ága pedig frekvenciafüggetlen elemekbıl épül fel. A Wien-híd frekvenciafüggı ága A Wien-híd frekvenciafüggı ágának erısítés-frekvencia jelleggörbéje A Wien-híd frekvenciafüggı ágának fázismenete A híd frekvenciafüggı ága és a leosztott feszültség megállapítása A frekvenciafüggı ág egy osztó áramkör, amelyre igaz, hogy: ω = 0 R C körfrekvencián, az ág alsó részén az U p fázisban van az U bemenı feszültséggel, minden más frekvencián fázistolás lép fel. A híd feszültség-átvitele: U p lesz. 4

5 Tehát a frekvenciafüggı ág által szolgáltatott bemenı feszültség fázisban van az erısítı kimenı feszültségével, amplitúdója annak /3-a, a β = /3 lesz a pozitív visszacsatolási tényezı értéke. A fázistolás értékének meghatározása A jelátvitel a körfrekvencia függvényében úgy változik, hogy az ω 0 körfrekvencián maximális az átvitel, értéke éppen /3 és ezen a frekvencián a tag fázistolása nulla fok. Természetesen a körfrekvencia az RC elemek nagyságának megválasztásától függ, illetve azok változtathatóvá tételével az ω 0 is változtatható. A hídhoz megfelelı erısítıfokozat megválasztása Az erısítı erısítése, A u = 3 értékő kell hogy legyen, hiszen így lesz a hurokerısítés egy értékő. Az erısítıt általában meghatározott frekvenciatartomány átvitelére tervezik. A visszacsatoló kört választjuk frekvenciafüggıre, amint azt az ábrákon is láthatjuk. Az erısítı kialakítása Mivel a híd nem fordít fázist, ezért (fázisfeltétel) az erısítıt is úgy kell kialakítani, hogy fázistolása nulla legyen. A Wien-híd frekvenciafüggı ága az erısítı nem invertáló bemenetére kapcsolja a visszacsatolt jelet, így a fázisfeltétel teljesül. Az amplitúdó feltételt a frekvenciafüggetlen ág teljesíti, ha pl. R = R 2 = R és C = C 2 = C teljesül, akkor az R3 R4 erısítés: A u = 3 = + R3 =. Az erısítés pontos beállítása miatt szükséges az R 4 potenciométer. A R4 2 frekvencia hangolását az R és R 2 együttfutó potenciométerek teszik lehetıvé. Jó alkatrész méretezéssel a kapcsolás az egész hangfrekvenciás sávban (20 Hz-20 khz-ig) szolgáltat szinuszos jelet a kimeneten. Kvarcoszcillátorok Az oszcillátorok frekvenciastabilitása Az oszcillátorok esetében fontos követelmény a frekvencia vándorlása, eltolódása. A jó minıségő oszcillátoroknál a frekvenciaváltozásnak minimálisnak kell lennie. A frekvenciát az áramköri elemek és a tranzisztor paraméterei határozzák meg, amelyek a hımérséklettıl, a tápfeszültség változásától és a terheléstıl függıen változnak. A jóság szerepe A frekvencia pontosságát a relatív frekvenciastabilitással jellemezzük: S f =, f 0 ahol, a f a frekvenciaváltozás, az f 0 pedig a viszonyítási frekvencia. A tervezés során a legnagyobb gondot a tranzisztor paraméterei okozzák, mert ezek a kritikus jellemzık. Az elsıdleges frekvencia- meghatározó elemek (L és C, R és C) jó minıségőeknek kell lenniük, hiszen az oszcillátorkapcsolásnak a stabilitása nem lehet jobb, mint az áramköri elemek stabilitása. Fontos, hogy a terheletlen rezgıkör jósági tényezıje nagy legyen, mert a külsı elemek így csak jelentéktelen mértékben befolyásolhatják a rezonanciafrekvenciát. A kvarc szerepe Igen jó frekvenciastabilitás érhetı el rezgıkvarc alkalmazásával. 5

6 A kristály az egymással szemben lévı oldalaira kapcsolt váltakozó feszültség hatására bizonyos frekvencián mechanikai rezgést végez. Ezek a rezgések a két oldalon elektromos rezgéseket eredményeznek. A velük elérhetı frekvenciastabilitás:s= 0 0. A hımérsékletfüggés A kvarcok frekvenciája hımérsékletfüggı, ezért hımérséklet befolyásolja a pontosságot. A frekvenciastabilitás a kristály hımérsékletének állandósításával tovább növelhetı. A kristály hımérsékletét termosztát alkalmazásával lehet állandó értéken tartani. A termosztálásnak több lehetséges megoldása is ismert. A soros és a párhuzamos rezonancia frekvencia A viselkedésüknek a következı ábrán látható egyszerősített helyettesítı kapcsolásban az L s,c s és r s áramköri elemeket tartalmazó soros rezgıkör felel meg. A rezgıkvarcnak soros és párhuzamos rezonanciája is van. A kristály áramköri jelölése A kristály helyettesítı képe A Miller-kapcsolású oszcillátor A fegyverzetek közötti kristálykapacitás C p, amely sokkal nagyobb, mint a C s kapacitás, ezért a kristály rezonanciafrekvenciáját az L s és C s értékek határozzák meg. Ha a kristály jellemzıi: C p = 0pF, C s = 0,0pF, L s = 0,H, r s = 0 Ω, akkor a jósági tényezı: L s 4 Q 0 = = 0. rs Cs A nagy jósági tényezı az oka a kvarckristályokkal épített oszcillátorok nagyon nagy frekvenciastabilitásának. A Miller-kapcsolású oszcillátor Az oszcillátorban a pozitív visszacsatolást a FET C -el jelölt, drain-gate parazita kapacitása biztosítja. Az LC rezgıkört a kristály rezonanciafrekvenciája alá hangolják, ahol induktív jelleget mutat. Sokszor alkalmaznak trimmer kondenzátort, amelyet a kvarccal sorosan párhuzamosan kapcsolnak, melynek segítségével az oszcillációs frekvencia pontosan beállítható. A kvarckristályokkal kb. 00 MHz-ig lehet oszcillátorokat kialakítani. A felharmónikus tartalmat kihasználva lehetıség kínálkozik ettıl jóval nagyobb frekvenciájú kvarcstabilizált oszcillátorok készítésére. 6

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások 3.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások Ismertesse a többfokozatú erısítık csatolási lehetıségeit, a csatolások gyakorlati vonatkozásait és azok alkalmazási korlátait! Rajzolja

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. 3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi felépítését (tömbvázlatát)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Az együttfutásról általában, és konkrétan 2.

Az együttfutásról általában, és konkrétan 2. Az együttfutásról általában, és konkrétan 2. Az első részben áttekintettük azt, hogy milyen számítási eljárás szükséges ahhoz, hogy egy szuperheterodin készülék rezgőköreit optimálisan tudjuk megméretezni.

Részletesebben

20.B 20.B. Annak függvényében, hogy a kimeneti feszültség, vagy a kimeneti áram értékét próbáljuk állandó értéken tartani megkülönböztetünk:

20.B 20.B. Annak függvényében, hogy a kimeneti feszültség, vagy a kimeneti áram értékét próbáljuk állandó értéken tartani megkülönböztetünk: 20.B Alapáramkörök alkalmazásai Stabilizátorok Mutassa be a soros és a párhuzamos stabilizálás elvét! Ismertesse a Zener-diódás elemi stabilizátor kapcsolás felépítését, mőködését, értelmezze jelleggörbéjét

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

6.B 6.B. Zener-diódák

6.B 6.B. Zener-diódák 6.B Félvezetı áramköri elemek Speciális diódák Ismertesse a Zener-, a varicap-, az alagút-, a Schottky-, a tős-dióda és a LED felépítését, jellemzıit és gyakorlati alkalmazási lehetıségeit! Rajzolja fel

Részletesebben

21.B 21.B. Szinteltoló Erısítı Szinteltoló. A mőveleti erısítı tömbvázlata

21.B 21.B. Szinteltoló Erısítı Szinteltoló. A mőveleti erısítı tömbvázlata 2.B lapáramkörök alkalmazásai Mőeleti erısítık Mutassa a mőeleti erısítık felépítését, jellemzıit és jelképi jelöléseit! smertesse a mőeleti erısítık tömbázlatos felépítését! smertesse a differenciálerısítık,

Részletesebben

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS

ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ANALÓG ELEKTRONIKA ELŐADÁS 2011-2012 tanév, II. félév AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ÓRASZÁMOK AUTOMATIZÁLÁS Á ÉS IPARI INFORMATIKA hetente 2 óra előadás, 2 óra labor kéthetente

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok)

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok) 30.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a szekvenciális hálózatok jellemzıit! Mutassa be a két- és többszintő logikai hálózatok realizálásának módszerét! Mutassa be a tároló áramkörök

Részletesebben

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:

Részletesebben

IpP-CsP2. Baromfi jelölı berendezés általános leírás. Típuskód: IpP-CsP2. Copyright: P. S. S. Plussz Kft, 2009

IpP-CsP2. Baromfi jelölı berendezés általános leírás. Típuskód: IpP-CsP2. Copyright: P. S. S. Plussz Kft, 2009 IpP-CsP2 Baromfi jelölı berendezés általános leírás Típuskód: IpP-CsP2 Tartalomjegyzék 1. Készülék felhasználási területe 2. Mőszaki adatok 3. Mőszaki leírás 3.1 Állvány 3.2 Burkolat 3.3 Pneumatikus elemek

Részletesebben

10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások

10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások 10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások "Elektrós"-Zoli 2013. november 3. 1 Tartalomjegyzék 1. Erősítő fokozatok összekapcsolása

Részletesebben

C 1 T. U ki R t R 2 U g R E

C 1 T. U ki R t R 2 U g R E 4.B 4.B 4.B Tranzisztoros alapáramkörök Frekvenciaüggés ok és torzítások Frekvenciaüggés Alsó határrekvencia A közös emitteres erısítı alapkapcsolásban (srekvenciás tartományban) a csatolókondenzátorok

Részletesebben

5.A 5.A. 5.A Egyenáramú hálózatok alaptörvényei Nevezetes hálózatok

5.A 5.A. 5.A Egyenáramú hálózatok alaptörvényei Nevezetes hálózatok 5. 5. 5. Egyenáramú hálózatok alaptörvényei Nevezetes hálózatok Vezesse le az ellenállások soros párhuzamos és vegyes kapcsolásainál az eredı ellenállás kiszámítására vonatkozó összefüggéseket! Definiálja

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

VESZ 5001. Központi vezérlı és szabályzó 001-036 psz.-ig

VESZ 5001. Központi vezérlı és szabályzó 001-036 psz.-ig 1. A T4 szabályzószekrény (fıáramkör) VESZ 5001 Központi vezérlı és szabályzó 001-036 psz.-ig A mozdony fıáramkörének mőködését a beállított alapjelek és a mért ellenırzıjelek alapján a VESZ 5001 vezérlı-

Részletesebben

CSATLAKOZÁSI DOKUMENTÁCIÓ

CSATLAKOZÁSI DOKUMENTÁCIÓ CSATLAKOZÁSI DOKUMENTÁCIÓ Felhasználási hely adatai Partnerszám: --- Felhasználási hely címe: --- Felhasználó/fogyasztó neve: --- Felhasználó/fogyasztó elérhetısége: --- Felhasználási helyen rendelkezésre

Részletesebben

Aktív felharmonikus szűrő fizikai modell vizsgálata

Aktív felharmonikus szűrő fizikai modell vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Villamosművek Tanszék Aktív szűrő fizikai modell vizsgálata Löcher János 2001. szeptember 12. 1. Bevezető Nemlineáris

Részletesebben

ÉPÜLETGÉPÉSZETI ELEKTROMOS ÉS SZABÁLYOZÓ RENDSZEREK

ÉPÜLETGÉPÉSZETI ELEKTROMOS ÉS SZABÁLYOZÓ RENDSZEREK 6203-11 modul ÉPÜLETGÉPÉSZETI ELEKTROMOS ÉS SZABÁLYOZÓ RENDSZEREK I. rész ÉPÜLETGÉPÉSZETI ELEKTROMOS SZERELÉSEK II. RÉSZ VEZÉRLÉS ÉS SZABÁLYOZÁSTECHNIKA TARTALOMJEGYZÉKE Szerkesztette: I. Rész: Tolnai

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

2.1. A zajos jelátvitel modellje

2.1. A zajos jelátvitel modellje Sajnálatos módon a folyamat és főként a környezet nem csak szép arcát mutatja a számítógép felé, hanem rút vonásai is lépten-nyomon kiütköznek. Ezek a rút vonások a zavarjelek. Figyelemreméltó tény, hogy

Részletesebben

HELYI TANTERV ELEKTRONIKAI ALAPISMERETEK Tantárgy

HELYI TANTERV ELEKTRONIKAI ALAPISMERETEK Tantárgy Energetikai Szakközépiskola és Kollégium 7030 Paks, Dózsa Gy. út 95. OM 036396 75/519-300 75/414-282 HELYI TANTERV ELEKTRONIKAI ALAPISMERETEK Tantárgy 0-0 - 2-2 óraszámokra Készítette: Csanádi Zoltán munkaközösség-vezető

Részletesebben

Dr. Strauss S. AXQ Hard - Rock Fuzz +

Dr. Strauss S. AXQ Hard - Rock Fuzz + U1 U2 Dr. Strauss S. AXQ Hard - Rock Fuzz R16 100 9V J1 D3 1N4001 47nF R1 R2 1,5M C3 500p C2 C1 R3 10K 500p C15 2 x OA 1160 Ge C5 R6 1uF R4 2M T1 100p C6 C4 R5 1k D1 D2 R17 T1,T2,T3,T4,T5 - Bc109C,Bc173,Bc239,Bc413,Bc414

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

Energiaminőség- és energiamérés LINETRAXX PEM330/333

Energiaminőség- és energiamérés LINETRAXX PEM330/333 Energiaminőség- és energiamérés LINETRAXX PEM330/333 1/6 Jellemzők Az univerzális mérőkészülék alkalmas villamos hálózat elektromos mennyiségeinek mérésére, megjelenítésére és tárolására. A megjelenített

Részletesebben

VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév)

VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév) 1 VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév) 1. Ismertesse a villamosenergia-hálózat feladatkrk szerinti felosztását a jellegzetes feszültségszinteket és az azokhoz tartozó átvihető teljesítmények

Részletesebben

energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök

energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök Fázisjavítás és energiahatékonys konyság Hunyadi Sándor energiagazdálkodási szakmérnök Hogyan járul j hozzá a fázisjavf zisjavítás s a Virtuális Erőmű Programhoz? Fázisjavítás megközelítései: Tarifális

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ. 5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági

Részletesebben

3.12. Rádió vevőberendezések

3.12. Rádió vevőberendezések 3.12. Rádió vevőberendezések A rádió vevőkészülék feladata az antennában a különböző rádióadók elektromágneses hullámai által indukált feszültségekből a venni kívánt adó jeleinek kiválasztása, megfelelő

Részletesebben

Zhuantie Felhasználó Hozzászólások: Gyakori tünetei indukciós Mert a jelenség a termék meghibásodása javítási módszer 1. Nem indul (nyomja meg a

Zhuantie Felhasználó Hozzászólások: Gyakori tünetei indukciós Mert a jelenség a termék meghibásodása javítási módszer 1. Nem indul (nyomja meg a Zhuantie Felhasználó Hozzászólások: Gyakori tünetei indukciós Mert a jelenség a termék meghibásodása javítási módszer 1. Nem indul (nyomja meg a bekapcsoló gombot, fény nem világít.) (1) gomb rossz (2)

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens Teljesítményelektronika szabályozása Összeállította dr. Blága Csaba egyetemi docens Szakirodalom 1. Ferenczi Ödön, Teljesítményszabályozó áramkörök, Műszaki Könyvkiadó, Budapest, 1981. 2. Ipsits Imre,

Részletesebben

Villamos fogyasztók által keltett felharmonikus áramok és azok hálózati visszahatása. Schulcz Gábor LIGHTRONIC Kft. www.lightronic.

Villamos fogyasztók által keltett felharmonikus áramok és azok hálózati visszahatása. Schulcz Gábor LIGHTRONIC Kft. www.lightronic. Villamos fogyasztók által keltett felharmonikus áramok és azok hálózati visszahatása Schulcz Gábor LIGHTRONIC Kft. www.lightronic.hu Felharmonikus fogalma Felharmonikus áramok keletkezése Felharmonikus

Részletesebben

Elektronikus műszerek Analóg oszcilloszkóp működés

Elektronikus műszerek Analóg oszcilloszkóp működés 1 1. Az analóg oszcilloszkópok általános jellemzői Az oszcilloszkóp egy speciális feszültségmérő. Nagy a bemeneti impedanciája, ezért a voltmérőhöz hasonlóan a mérendővel mindig párhuzamosan kell kötni.

Részletesebben

OKTATÁSI MINISZTÉRIUM SZÓBELI VIZSGATÉTELEK 51 5223 10 Számítástechnikai műszerész A szakmai vizsga szóbeli tantárgyai: Anyagismeret és technológia Digitális számítógépek Munkajogi, munkavédelmi ismeretek

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

ROSSZ TÁPEGYSÉG TRANSZFORMÁTORAINAK ÉS TOROID GYŰRŰINEK ÚJRA FELHASZNÁLÁSI LEHETŐSÉGEI. Molnár László

ROSSZ TÁPEGYSÉG TRANSZFORMÁTORAINAK ÉS TOROID GYŰRŰINEK ÚJRA FELHASZNÁLÁSI LEHETŐSÉGEI. Molnár László ROSSZ TÁPEGYSÉG TRANSZFORMÁTORAINAK ÉS TOROID GYŰRŰINEK ÚJRA FELHASZNÁLÁSI LEHETŐSÉGEI Molnár László Az alábbi áramkör, amit Joule thief -nek is becéznek, egy egyszerű, butított blocking oszcillátor áramkör

Részletesebben

készülékek MSZ EN 50160 szabvány szerint

készülékek MSZ EN 50160 szabvány szerint Villamos hálózat minség vizsgáló készülékek MSZ EN 50160 szabvány szerint Villamos hálózat minség vizsgáló készülékek MSZ EN 50160 szabvány Információt ad a szolgáltatott hálózati feszültség jellemzkrl

Részletesebben

UPS Műszaki Adatlap S-5300X 10 15 20 kva

UPS Műszaki Adatlap S-5300X 10 15 20 kva UPS Műszaki Adatlap S-5300X 10 15 20 kva Statron AG Industrie Nord CH-5506 Maegenwil http//www.statron.com Rev. Description Date Issued Checked Approved Page / of 0 Emission 09-05-11 M.Huser M.Eigenmann

Részletesebben

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására

Részletesebben

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató! Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk

Részletesebben

Kezelési utasítás. Demton. Demton Electronics

Kezelési utasítás. Demton. Demton Electronics DTH-1 TELEFON HIBRID Kezelési utasítás Demton TISZTELT FELHASZNÁLÓ! A többi gyártóhoz hasonlóan mi is nagyon örülünk, hogy a termékünk megvásárlásával megtisztelt bennünket és támogatta a magyar termékek

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

UPS Műszaki Adatlap S-7300X 200 / 250 / 300 kva

UPS Műszaki Adatlap S-7300X 200 / 250 / 300 kva UPS Műszaki Adatlap S-7300X 200 / 250 / 300 kva Statron AG Industrie Nord CH-5506 Maegenwil http//www.statron.com Rev. Description Date Issued Checked Approved Page / of 0 Emission 26.10.2010 M.Huser M.Eigenmann

Részletesebben

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre i napló a 20 /20. tanévre Műszaki informatikus szakma gyakorlati oktatásához OKJ száma: 5 81 05 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók adatai és

Részletesebben

A nyugat-mecseki telefonpótló URH hálózat kialakítása

A nyugat-mecseki telefonpótló URH hálózat kialakítása A nyugat-mecseki telefonpótló URH hálózat kialakítása A feladat A Mecsekérc Környezetvédelmi Rt. a Nyugat-Mecsekben egyszerre több helyen üzemelı geológiai kutatófúrásainak kiszolgálására URH rendszer

Részletesebben

MUNKAANYAG. Miterli Zoltán. Aktív áramkörök mérése. A követelménymodul megnevezése: Távközlési alaptevékenység végzése

MUNKAANYAG. Miterli Zoltán. Aktív áramkörök mérése. A követelménymodul megnevezése: Távközlési alaptevékenység végzése Miterli Zoltán Aktív áramkörök mérése A követelménymodl megnevezése: Távközlési alaptevékenység végzése A követelménymodl száma: 0908-06 A tartalomelem azonosító száma és célcsoportja: SzT-00-50 AKTÍV

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben

Automatikus hálózati átkapcsoló készülék. www.eaton.hu ATS-C. Hálózati átkapcsoló készülék ATS-C 96 és C 144

Automatikus hálózati átkapcsoló készülék. www.eaton.hu ATS-C. Hálózati átkapcsoló készülék ATS-C 96 és C 144 Automatikus hálózati átkapcsoló készülék www.eaton.hu ATS-C Hálózati átkapcsoló készülék ATS-C 96 és C 144 Kisfeszültségű szünetmentes ellátás ATS-C típusú automatikus átkapcsoló készülékek az Eatontól

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Fényemittáló dióda (LED)

Hobbi Elektronika. Bevezetés az elektronikába: Fényemittáló dióda (LED) Hobbi Elektronika Bevezetés az elektronikába: Fényemittáló dióda (LED) 1 Felhasznált irodalom LED Diszkont: Mindent a LED világáról Dr. Veres György: Röviden és tömören a LED-ekről Szabó Géza: Elektrotechnika-Elektronika

Részletesebben

3.A 3.A. 3.A Villamos alapfogalmak Ellenállások a gyakorlatban

3.A 3.A. 3.A Villamos alapfogalmak Ellenállások a gyakorlatban 3.A Villamos alapfogalmak Ellenállások a gyakorlatban Ismertesse szerkezeti felépítés alapján az ellenállások fajtáit és jellemzıit! Ismertesse a gyakorlatban használt legfontosabb ellenállás fajták jellemzı

Részletesebben

Eszközbeszerzés a Szépmővészeti Múzeum mőtárgy- és dokumentációs állományának védelmére címő, NKA 3505/02466 számú pályázat szakmai beszámolója

Eszközbeszerzés a Szépmővészeti Múzeum mőtárgy- és dokumentációs állományának védelmére címő, NKA 3505/02466 számú pályázat szakmai beszámolója Eszközbeszerzés a Szépmővészeti Múzeum mőtárgy- és dokumentációs állományának védelmére címő, NKA 3505/02466 számú pályázat szakmai beszámolója Az NKA a Szépmővészeti Múzeum által benyújtott eszközbeszerzési

Részletesebben

PERMANENT kft. Megújuló energiaforrások hasznosítása háztartási méretekben. Mi azért dolgozunk, hogy Ön kevesebbet fizessen rezsire!

PERMANENT kft. Megújuló energiaforrások hasznosítása háztartási méretekben. Mi azért dolgozunk, hogy Ön kevesebbet fizessen rezsire! PERMANENT kft. Megújuló energiaforrások hasznosítása háztartási méretekben Mi azért dolgozunk, hogy Ön kevesebbet fizessen rezsire! http://webaruhaz.permanent.hu 1 SPARK Hıszivattyú-család fejlesztési

Részletesebben

PVY 22A típusú tűzhely

PVY 22A típusú tűzhely Szerep: hogy megakadályozzák a IGBT vezérlés c feszültség túl nagy, és károsíthatja. Ha az IGBT vezérlő VCE túl nagy a szerepük, ez a kör, nem meghajtó impulzusok küldött a hatalom meghajtó áramkör, IGBT

Részletesebben

( ;. f'.'.(/o Díj. EAICSOLÜSI ELREHDEZÉS SUGARSZEIJIÍYEZEa?TsáQJÍÉ[iÓ KÉSZÜLÉK EATEÍÍÉTER IDŐÁlMBDŐJiÖJAK TRAKZIEíSMEUTES VÁLTÁSÁRA

( ;. f'.'.(/o Díj. EAICSOLÜSI ELREHDEZÉS SUGARSZEIJIÍYEZEa?TsáQJÍÉ[iÓ KÉSZÜLÉK EATEÍÍÉTER IDŐÁlMBDŐJiÖJAK TRAKZIEíSMEUTES VÁLTÁSÁRA H í ( ' J.iÜZ Taj. rr-f Képviselő: DAHUBIA SZABADALMI IRODA Budapest a /f MÜ - ( ;. f'.'.(/o Díj Szolgálati találmány EAICSOLÜSI ELREHDEZÉS SUGARSZEIJIÍYEZEa?TsáQJÍÉ[iÓ KÉSZÜLÉK EATEÍÍÉTER IDŐÁlMBDŐJiÖJAK

Részletesebben

Kisfogyasztású érzékelôk tervezése

Kisfogyasztású érzékelôk tervezése NAGY GERGELY Budapesti Mûszaki és Gazdaságtudományi Egyetem, Elektronikus Eszközök Tanszék gregn@freemail.hu Kulcsszavak: integrált hômérséklet-érzékelôk, kisfogyasztású áramkörök, áramreferencia-áramkör

Részletesebben

Kezelési utasítás. Demton. Demton Electronics

Kezelési utasítás. Demton. Demton Electronics APP-332 AC POWER PACK Kezelési utasítás Demton TISZTELT FELHASZNÁLÓ! A többi gyártóhoz hasonlóan mi is nagyon örülünk, hogy a termékünk megvásárlásával megtisztelt bennünket és támogatta a magyar termékek

Részletesebben

SA 03 HEAD kétmotoros vezérlés

SA 03 HEAD kétmotoros vezérlés SA03 HEAD vezérlőegység oldal: 1 összes: 5 SA 03 HEAD kétmotoros vezérlés Köszönjük, hogy az általunk forgalmazott, Beninca SA03 típusú vezérlőegységet választotta. A Beninca cég kínálatában található

Részletesebben

Pattantyús-Á. Géza Ipari Szakközépiskola és ÁMK. OM azonosító: 030717 HELYI TANTERV 2008. Elektrotechnika-elektronika SZAKMACSOPORT

Pattantyús-Á. Géza Ipari Szakközépiskola és ÁMK. OM azonosító: 030717 HELYI TANTERV 2008. Elektrotechnika-elektronika SZAKMACSOPORT Pattantyús-Á. Géza Ipari Szakközépiskola és ÁMK OM azonosító: 030717 HELYI TANTERV 2008 Elektrotechnika-elektronika SZAKMACSOPORT Elektronikai technikus.. SZAKMA OKJ száma: Érvényesség: 2008.szeptember

Részletesebben

7 SZÍNES KAPUTELEFON RENDSZER HASZNÁLATI ÚTMUTATÓ. Beltéri egység. Kültéri egység. Köszönjük, hogy termékünket választotta!

7 SZÍNES KAPUTELEFON RENDSZER HASZNÁLATI ÚTMUTATÓ. Beltéri egység. Kültéri egység. Köszönjük, hogy termékünket választotta! 7 SZÍNES KAPUTELEFON RENDSZER DVC-VDP712 - Model A: 1 beltéri egység 2 kültéri egységgel DVC- VDP721 - Model B: 2 beltéri egység 1 kültéri egységgel HASZNÁLATI ÚTMUTATÓ Köszönjük, hogy termékünket választotta!

Részletesebben

Unidrive - a vektorszabályozás alappillére

Unidrive - a vektorszabályozás alappillére Unidrive - a vektorszabályozás alappillére A vektorszabályozás jelenleg a váltakozó áramú ipari hajtások széles körben elfogadott és alkalmazott megoldása, amely kiváló szabályozást nyújt a mai szabványokhoz

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

/ w. U^YcXÍV^éxi.^ KAKJSOLÓÜZEMÜ TÁPEGYSÉG TÖBB STABIL TÁPFESZ ÜLTS ÉGlíT IGÉ3Y1Ő BUG ifeszeithyezettségmérö KÉZIMÜSZER SZÁMÁÉ A

/ w. U^YcXÍV^éxi.^ KAKJSOLÓÜZEMÜ TÁPEGYSÉG TÖBB STABIL TÁPFESZ ÜLTS ÉGlíT IGÉ3Y1Ő BUG ifeszeithyezettségmérö KÉZIMÜSZER SZÁMÁÉ A / w Képviselőt BANUBIA BZABADAUfflC IRODA Budapest 2 3 A U^YcXÍV^éxi.^ Szolgálati találmány KAKJSOLÓÜZEMÜ TÁPEGYSÉG TÖBB STABIL TÁPFESZ ÜLTS ÉGlíT IGÉ3Y1Ő BUG ifeszeithyezettségmérö KÉZIMÜSZER SZÁMÁÉ A

Részletesebben

Nyári gyakorlat teljesítésének igazolása Hiányzások

Nyári gyakorlat teljesítésének igazolása Hiányzások Nyári gyakorlat teljesítésének igazolása Hiányzások - - Az összefüggő szakmai gyakorlatról hiányozni nem lehet. Rendkívüli, nem tervezhető esemény esetén az igazgatóhelyettest kell értesíteni. - A tanulók

Részletesebben

DC-DC átalakítók Analóg és digitális rendszerek megvalósítása programozható mikroáramkörökkel eet.bme.hu

DC-DC átalakítók Analóg és digitális rendszerek megvalósítása programozható mikroáramkörökkel eet.bme.hu DC-DC átalakítók Analóg és digitális rendszerek megvalósítása programozható mikroáramkörökkel Gusztáv Hantos 2013. április 24. Tartalom DC-DC átalakítók fajtái buck, boost, buck-boost átalakítók egyéb

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben

Célkitőzéseink: 3. Építı elemek

Célkitőzéseink: 3. Építı elemek TARTALOM JEGYZÉK 1. Elıszó 2. Elızmények 3. Rendszer építı elemei 4. Konfigurációs lehetıséget 5. Mőködési elve 5.1. Táp ellátás 5.2. Védelmi rendszer 5.3. Erısítı modul 6. Telepítési útmutató 7. Mőszaki

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt

Részletesebben

YIG-hangolású mikrohullámú oszcillátorok tervezési problémái

YIG-hangolású mikrohullámú oszcillátorok tervezési problémái YIG-hangolású mikrohullámú oszcillátorok tervezési problémái DR. KASA ISTVÁN Távközlési Kutató Intézet V3* á ÖSSZEFOGLALÁS A cikk ismerteti a széles frekvenciasávban hangolható YIG-hangolású mikrohullámú

Részletesebben

Vállalatgazdaságtan Intézet. Logisztika és ellátási lánc szakirány Komplex vizsga szóbeli tételei 2009. március

Vállalatgazdaságtan Intézet. Logisztika és ellátási lánc szakirány Komplex vizsga szóbeli tételei 2009. március Logisztika és ellátási lánc szakirány Komplex vizsga szóbeli tételei 2009. március A tételek: 1) Hogyan lehet a biztonsági készletet meghatározni adott kiszolgálási szint mellett? Hogyan határozható meg

Részletesebben

A készülék ASM2/B soros interfészen csatlakozhat a CAREL távfelügyeleti rendszeréhez.

A készülék ASM2/B soros interfészen csatlakozhat a CAREL távfelügyeleti rendszeréhez. 1/15 1. Általános ismertetés A CHILLBASE egy vagy kétkompresszoros folyadékhőtı berendezés szabályozására alkalmas mikroprocesszoros szabályozó. Kétkompresszoros folyadékhőtı esetében az ALLBASE hibakezelı

Részletesebben

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

Ezer kísérlet egy dobozban: virtuális méréstechnika a középiskolai kísérletező oktatásban

Ezer kísérlet egy dobozban: virtuális méréstechnika a középiskolai kísérletező oktatásban Ezer kísérlet egy dobozban: virtuális méréstechnika a középiskolai kísérletező oktatásban Dr. Gingl Zoltán SZTE, Kísérleti Fizikai Tanszék Dr. Kántor Zoltán SZTE, Optikai és Kvantumelektronikai Tanszék

Részletesebben

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt. Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:

Részletesebben

Elektromos szelepállító. VVI46, VXI46, VVS46, VXS46 szelepekhez

Elektromos szelepállító. VVI46, VXI46, VVS46, VXS46 szelepekhez 4TT 832TT Elektromos szelepállító VVI46, VXI46, VVS46, VXS46 szelepekhez SUA11 SUA11 AC 115V / 100 V működtető feszültség, 2-pont vezérlőjel AC 230 V működtető feszültség, 2-pont vezérlőjel Rugó visszatérítés

Részletesebben

Alacsonyfrekvenciás RFID alkalmazások az autóiparban

Alacsonyfrekvenciás RFID alkalmazások az autóiparban RFID Alacsonyfrekvenciás RFID alkalmazások az autóiparban CSURGAI PÉTER EPCOS Elektronikai Alkatrész Kft., Szombathely csurgaip@freemail.hu Kulcsszavak: RFID-rendszerek, LF RFID, terhelésmoduláció, autóipar,

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

4-2. ábra. A leggyakoribb jelformáló áramköröket a 4-3. ábra mutatja be. 1.1. A jelformáló áramkörök

4-2. ábra. A leggyakoribb jelformáló áramköröket a 4-3. ábra mutatja be. 1.1. A jelformáló áramkörök Az analóg bementi perifériák az egyenfeszültségű vagy egyenáramú analóg bemeneti jelek fogadására és digitalizálására szolgálnak. A periféria részei (4-2. ábra): a jelformáló áramkörök, a méréspontváltó

Részletesebben

Energia- & teljesítmény mérők

Energia- & teljesítmény mérők Energia- & teljesítmény mérők 1194 Budapest, Mészáros Lőrinc u. 130/b Tel.: 06 (1) 288 0500 Fax: 06 (1) 288 0501 www.lsa.hu ELNet GR/PQ Villamos fogyasztásmérő és hálózat analizátor - pontosság: 0,2% (speciális

Részletesebben

feszültség hullámossága csökken, ugyanakkor a hálózat mind erõsebben torzított árammal terhelõdik.

feszültség hullámossága csökken, ugyanakkor a hálózat mind erõsebben torzított árammal terhelõdik. 2 Alapkapcsolások a teljesítményelektronikában A teljesítményelektronikában használatos átalakító egységek rendszerint egy fajta átalakítást képesek elvégezni az 1.2 fejezetben említett felosztás értelmében.

Részletesebben

Certifikátok a Budapesti Értéktızsdén

Certifikátok a Budapesti Értéktızsdén Certifikátok a Budapesti Értéktızsdén Elméleti Alapok Végh Richárd Budapesti Értéktızsde Zrt. Budapest, 2009.05.26-28. Mirıl lesz szó? Certifikát fogalma és hozzá kapcsolódó alapfogalmak Certifikátok fajtái

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben