VIESMANN VITOVOLT. Tervezési segédlet VITOVOLT 200. Mono- és polikristályos napelemek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VIESMANN VITOVOLT. Tervezési segédlet VITOVOLT 200. Mono- és polikristályos napelemek"

Átírás

1 VIESMANN VITOVOLT Tervezési segédlet VITOVOLT 200 Mono- és polikristályos napelemek 5/2011

2 Tartalomjegyzék Tartalomjegyzék 1. A napelemek alapjai 1.1 Az elektromos áram megvásárlásának lehetőségei Engedélyezés, biztosítás, karbantartás és ellenőrzés... 3 Építési engedély... 3 Biztosítás... 3 Karbantartás és ellenőrzés A napelemes rendszer... 4 Napelem napelem-modul napelemes rendszer... 4 Napsugárzás... 5 A tájolás, dőlés és árnyékoltság hatása... 7 A megtermelt áram hasznosítása... 8 A megtermelt áram betáplálása a közüzemi hálózatba... 8 Villámhárítás Műszaki adatok 2.1 A napelem-modul műszaki adatai Az inverter műszaki adatai Hatásfok Teljesítmény-szabályozás Elektromos csatlakozás Tudnivalók a biztosításhoz Inverterek alkalmazása Az inverter kiválasztása A napelem-modulok szerelési változatai és feltételei 4. Csatlakoztatási példák és kiegészítő tartozékok 3.1 Elhelyezés Elhelyezési lehetőségek A területszükséglet meghatározása Rögzítéstechnika Nyeregtetők tetőre történő szerelés Lapostetők Általános szerelési utasítások Csatlakozási példák Kiegészítő tartozékok Függelék 5.1 Tervezés és kivitelezés A napelemes rendszer kialakításának lépései Tervezési ellenőrzőlista Tervezési példa Szójegyzék VIESMANN VITOVOLT

3 A napelemek alapjai 1.1 Az elektromos áram megvásárlásának lehetőségei A betáplálási térítési díj nagysága a berendezés üzembe helyezésének évéhez igazodik. A térítési díjat az energiaszolgáltató 20 éves futamidőre, plusz az üzembe helyezés évébe eső üzemidőre fizeti a berendezés üzemeltetője számára. Részletes információ a (Támogatások > Szövetségi támogatási program > Megújuló energiáról szóló törvény) címen található. Kedvező kamatozású hitel a megújuló energiák hasznosítására, beleértve a közvetlenül a berendezés használatából eredő, meglévő és új lakóépületeken végzett intézkedéseket, a Kreditanstalt für Wiederaufbau (KfW) pénzintézetnél igényelhetők a CO 2 -csökkentési program keretében. Ennek a programnak a keretében hő- és mechanikai teljesítményt fejlesztő csatolt berendezések (gázmotorok), hőszivattyúk, termikus napenergiával működő rendszerek, biomassza- és biogáz-berendezések, napelemes rendszerek, geotermikus berendezések, hőcserélők és hővisszanyerő berendezések telepítése finanszírozható. Más támogatásokkal összevonható, amennyiben a támogatások összege nem haladja meg a ráfordítások összegét. Címek Információs pont Kreditanstalt für Wiederaufbau (KfW) iz@kfw.de Információs pont Kreditanstalt für Wiederaufbau (KfW) Postfach D Berlin Telefon: 030 / Telefax: 030 / A finanszírozási pályázatok azonban nem adhatók be közvetlenül a KfW-hez, hanem a saját bankon, ill. egy megbízott bankon keresztül nyújthatók be. A Viessmann a Deutsche Umweltbankkal kötött együttműködési szerződés keretében egyszerű és bürokráciamentes folyamatot biztosít a napelemes rendszerek finanszírozására. Információk a címen találhatók. Néhány önkormányzat és energiaszolgáltató kiegészítő támogatást nyújt a napelemes rendszerek létesítéséhez Engedélyezés, biztosítás, karbantartás és ellenőrzés Építési engedély A napelemes rendszerek engedélyezése az általános építési rendeletekhez igazodik. Az önkormányzati előírásokat figyelembe kell venni. A nyeregtetőkre szerelt napelemes rendszerek túlnyomórészt nem engedélykötelesek. A helyi előírások (pl. beépítési tervek) és műemlékvédelmi rendelkezések azonban eltérhetnek ettől. Biztosítás Mivel egy napelemes rendszer aránylag magas befektetést igényel, ajánlott a megfelelő biztosítás megkötése. A biztosítás különösen az idegen finanszírozású berendezéseknél szolgálhat a vagyoni károk elleni védelemként. Felelősség A rendszer létesítése és üzemeltetése által okozott idegen károkért az építtető, ill. az üzemeltető felel. Ez a kockázat felelősségbiztosítással fedezhető. Előnyös, ha az üzemeltető bevonja a felelősségbiztosításába (a biztosítási védelmet vissza kell igazoltatni a biztosítóval). A betáplálási károk tehát azok a károk, amelyek az energiaszolgáltató oldalán keletkeznek rendszerint nincsenek fedezve, és üzemeltetői felelősségbiztosítással egészíthetők ki. Ha a rendszert harmadik személy tetőfelületén kell létesíteni, ügyelni kell rá, hogy a bérleményben okozott károk és a lassan kialakuló fokozatos károk is fedezve legyenek. Karbantartás és ellenőrzés Egyszerű működési elvük és hosszú élettartamú komponenseik miatt a napelemes rendszerek szinte semmiféle karbantartást nem igényelnek. Erre vonatkozó felvilágosítással az illetékes építésügyi hatóság szolgálhat. Rendszer- és jövedelemkiesési biztosítás A rendszerben pl. időjárás hatására, lopásból, vandalizmusból vagy kezelési hibából eredő károk biztosíthatók. Amennyiben a napelemes rendszert bevonják a meglévő tűz- és lakóépület-biztosításba, akkor a biztosítási védelem jelentősen kedvezőbben valósítható meg, ha a rendszer üzemeltetője egyben a ház tulajdonosa is. Egyértelműen definiálni kell a biztosítási dokumentumok tartalmát, mivel itt gyakran csak a tűz, közvetlen villámcsapás, legalább 8-as szélerősségű vihar, jégeső és vezetékes víz okozta károk kockázatai vannak biztosítva. Annak érdekében, hogy az üzemzavarok idejekorán felismerhetők és követhetők legyenek, a szabályszerű működés felügyeletét és a havi energiahozam rögzítését javasoljuk. A korábbi évekkel való összevetés segít megállapítani a berendezés szabályszerű üzemét. Erre a célra a kiegészítő tartozékként is kapható, adatrögzítő készülékek is alkalmazhatók. VITOVOLT VIESMANN 3

4 A napelemek alapjai (folytatás) 1.3 A napelemes rendszer 1 Napelem napelem-modul napelemes rendszer A napelem B napelem-modul C napelemes rendszer Napelem A mechanikus pl. kerékpárdinamó segítségével történő áramfejlesztéssel ellentétben a napelemben nincs mechanikusan mozgó alkatrész, ezáltal élettartama elméletileg korlátlan. Napelem-modul A napelem metszete A negatív elektróda B határréteg C n-szennyeződésű szilícium D p-szennyeződésű szilícium E pozitív elektróda A napelem a napelemes rendszer legkisebb építőeleme. Nagyszámú napelemet egy modulba kapcsolnak össze. A több modulból összeálló rendszert napelemes rendszernek nevezzük. A nagy tisztaságú szilíciumot a napelemek gyártásakor célzottan bórral szennyezik (p-szennyeződésű elektronhiány). A napfény felé fordított oldalra foszforatomokat visznek fel (n-szennyeződésű elektronfelesleg). A határrétegben (pn-átmenet) elektromos mező keletkezik, amelynek a negatív pólusa a p-szennyeződésű, pozitív pólusa az n-szennyeződésű területen van. Így az elektronok a szilíciumatomokról való leválás után a p-szennyezés irányába áramlanak. Az ezáltal keletkező hiány (lyuk) ellentétes irányba vándorol. Így a pn-átmenet a nap felé fordított oldal elektronfölöslege és a hátoldal elektronhiánya által elektromos feszültségről gondoskodik. Ha a pólusokra fogyasztót kötnek, áram folyik. A fotonok által felszabadított elektronok a negatív pólusról a pozitív pólus felé vándorolnak, ilyenkor a pozitív pólus felől a negatív pólus felé folyó áramról beszélünk. A eloxált alumínium keret B vasszegény üveglap C beágyazás EVA-fóliába EVA: Etil-Vinil-Acetát D kristályos szilíciumelem E alsó EVA-fólia F hátoldali fólia A standard kristályos napelemes modul több napelemből áll, amelyeket külön ágakká kapcsolnak össze. Soros kapcsolásnál az elem elülső érintkezőjét (negatív pólus) mindig a következő elem hátoldali érintkezőjével (pozitív pólus) forrasztják össze. Ez növeli a modul feszültségét. Párhuzamos kapcsolásnál az áramerősség nő. Az elülső oldalon több ágat együttesen üveglappal, a hátoldalon Tedlar fóliával vákuumban EVA-fóliává laminálnak. A modul így legalább 20 évre védett a mechanikai igénybevételekkel szemben. 4 VIESMANN VITOVOLT

5 A napelemek alapjai (folytatás) Minden ágat saját bypass-dióda biztosít, hogy az egy elemre eső árnyékok esetén elkerüljék a túlmelegedésből (hot spot) eredő károkat. Ezáltal a modul minimális teljesítményét is korlátozzák. A modulok csatlakoztatása a telepítést biztonságossá és egyszerűvé tevő érintés- és polaritásvédett csatlakozódugókkal történik. A legtöbb modult a könnyű telepítés érdekében a stabilitási követelményektől függően alumínium kerettel látják el, ami max Pa nyomó és húzó igénybevételt tesz lehetővé a modulon. Az erőbevezetés sokféleségének köszönhetően a szerelés során nagyobb szabadság áll fenn, és az üveg feszültség általi törése közel kizárt. A keret nélküli modulok rendkívül esztétikusak, mivel egyenletes felületet tesznek lehetővé. Mivel itt nincs keret az üveg körül, nincsenek szennyeződési vonalak. Emiatt ezek a modulok különösen alkalmasak kis dőlésszögű tetőkre. Leromlás (degradáció) A félvezető elektromos paramétereinek jelen esetben a hatásfok öregedésből eredő változását leromlásnak (degradáció) nevezzük. A napelemek esetében a vizsgált időszak max. 25 év, amely idő alatt a korszerű standard modul teljesítményvesztesége mintegy % ( 0,5 %/év). E hanyatlásért lényegében a fotoreakció által kiváltott rekombinációs effektusok felelősek, amelyek során a bór elveszti pozitív töltésű lyukát és negatív töltésű ionná alakul. Ezáltal oxigént vonz, amely kötést létesít a bórral és a szilíciummal. A leromlás (degradáció) azonban nem azonos a teljesítményveszteséggel. Ennek többnyire egyszerűbb okai vannak: elszennyeződött fedőüveg, elemek leárnyékolása lerakódások és mohaképződés által, különösen a peremterületeken, részleges leárnyékolás a növényzet növekedése miatt vagy barnulás (a beágyazásra szolgáló polimer sárgulása). 1 Napsugárzás Napenergiából nyert áram Magyarországon a primer energiafelhasználás mintegy egyharmada kerül az áramellátásba. Ebből mintegy kétharmad az áramfejlesztéskor a központi erőművekben és a villamoshálózaton keresztüli elosztáskor elvész. Az elektromos energia rendelkezésre bocsátása rendszerint nagy környezetterheléssel jár. Tehát különösen megéri az áramot megújuló energiával, nap, szél, víz vagy biomassza segítségével fejleszteni és az elektromos energiát a fogyasztóhoz közel, decentralizáltan előállítani. Napenergiára vonatkozó kiinduló adatok Magyarország területére évente a teljes energiafogyasztás mintegy 80-szorosának megfelelő energiamennyiség jut. Ennek csaknem a fele éri a talaj felszínét közvetlen napsugárzásként, a másik fele szórt fényként. A napelem tehát az elektromos áram előállítása közvetlenül napenergiából elegáns és megbízható lehetőség. A napelemes rendszerek nappal biztosítanak energiát, tehát pontosan akkor, amikor nagy a kereslet. Annak érdekében, hogy megtermeljék körülbelül azt az árammennyiséget, amely egy állampolgár átlagos éves fogyasztásának felel meg, kb. 10 m 2 napelemfelület szükséges. Így minden évben összesen mintegy kwh/m 2 éri a vízszintes felületeket. A napelemes rendszerek ebből több mint 10 %-ot alakítanak elektromos energiává, amelynek során az energia kétharmada nyáron és egyharmada télen realizálódik. Így a nap egész évben nem csupán kimeríthetetlen, hanem egyben környezetbarát energiaforrásként is szolgál. VITOVOLT VIESMANN 5

6 A napelemek alapjai (folytatás) 1 6 VIESMANN VITOVOLT

7 A napelemek alapjai (folytatás) A tájolás, dőlés és árnyékoltság hatása nyugat észak dél kelet -80 Évi Napsugárzás %-ban Hajlásszög 1 : Példa: 30 ; 45 délnyugat; 95% Optimális tájolás és meredekség Déli irányba beállítva és a vízszintestől mért fokos meredekséggel a legmagasabb a napelemes rendszer éves átlagos áramtermelése. Azonban az ettől lényegesen eltérő esetekben is (délnyugattól délkeletig terjedő irányba beállítva, fokos meredekséggel) előnyösnek bizonyul a napenergiával működő áramtermelő rendszerek telepítése. A diagram szemlélteti a termelésveszteséget a napelemes rendszer optimálistól eltérő alkalmazása esetén. A kisebb dőlésszög akkor kedvező, ha a napelemes rendszer nem állítható déli irányba. 30º-os meredekséggel rendelkező, 45º-os délnyugati irányba állított napelemes rendszer az optimális hozam 95 %-át képes nyújtani. Keleti vagy nyugati irányba való beállítás esetén is elérhető az optimális termelés 80 %-a, ha a tető hajlásszöge 25 és 40º közötti. Télen a meredekebb hajlásszög előnyösebb volna ugyan, a berendezés azonban a termelés kétharmadát a nyári félévben nyújtja. 25 és 40º közötti tetőhajlásszög és a déli iránytól mért max. 45º-os eltérés esetén a hozamcsökkenés elhanyagolhatóan kicsi. Kerülje el azonban a 20º-nál kisebb állásszöget, mert azáltal fokozódik a napelemes rendszer elszennyeződése. Mivel a napelemes rendszerekhez viszonylag nagy tetőfelületre van szükség, a generátorfelület felosztható különböző tetőfelületekre. Amennyiben ezeknek a felületeknek eltérő az iránya és a dőlésszöge, akkor minden napelemes rendszert saját hálózati betápláló készülékkel (inverterrel) vagy úgynevezett multistringgel kell üzemeltetni, hogy optimális illesztést és ezáltal optimális hozamot érjenek el. Az energiahozam csökkenése árnyék következtében A napelemes rendszert úgy helyezze el és méretezze, hogy a szomszédos épületek, fák, áramvezetékek ne vessenek rá árnyékot. Ennek során vegye figyelembe, hogy a szomszédos telkeket beépíthetik, ill. beültethetik. A felület és a kémények vagy a tető más árnyékolófelületei között tartson nagy távolságot. Az antennákat és hasonló mozgó akadályokat lehetőség szerint más tetőrészre szerelje fel. Hot spot effektus A napelem B bypass-dióda Amennyiben a napelem-modul összes elemét sorba kapcsolják és egy elemre árnyék esik, akkor ez az elem ohmos ellenállásként viselkedik, azaz áramfogyasztóként. Úgynevezett hot spot effektus lép fel. A teljes mező csak annyi áramot tud adni, amennyi átfolyik a leárnyékolt elemen, amely eközben felmelegszik. A hot spot effektust mindenképp el kell kerülni, mert: csökkenti a berendezés teljesítményét, a túlmelegedés következtében károsítja a leárnyékolt elemeket. VITOVOLT VIESMANN 7

8 A napelemek alapjai (folytatás) 1 A Viessmann napelem-modulok bypass-diódákkal vannak felszerelve. Ha egy napelemsort leárnyékolnak, akkor a bypass-dióda vezeti az áramot és az elkerüli azt az elemsort. A megtermelt áram hasznosítása Az inverter funkciója A napelem-modulok egyenáramot adnak. A hálózati betápláláshoz azonban váltakozó áram szükséges. Az inverter fő feladata ezért az egyenáram hálózatképes váltakozó árammá alakítása; a lehető legnagyobb hatásfokkal. Ezen túlmenően az inverter állandóan utánszabályozza a berendezés optimális munkapontját (MPP maximum power point), és így hozzáilleszti a rendszert a dinamikusan változó időjárási és besugárzási viszonyokhoz. Az inverter további funkciója, hogy a napelemes rendszert hálózatkimaradás vagy a hálózaton történő munkavégzés esetén biztonságosan leválasztja a hálózatról. Ha a közüzemi villamoshálózatot, pl. karbantartási munkák céljából lekapcsolják, akkor az inverternek le kell választania a napelemes rendszert a hálózatról. Máskülönben a napelemes rendszer áramot táplál be a hálózatba, ami veszélyezteti a karbantartó személyzetet. Az inverter lekapcsolási kritériumainak betartását a megfelelő irányelvekkel és szabályzattal ellenőrzik. Ezen túlmenően az inverter által betáplált áram nem lépheti túl az EN szabványban meghatározott felharmonikus-hányadot. Egyfázisú HBK max. 4,6 kva (maximális aszimmetrikus fázisterhelési) értékig megengedett. Nagyobb rendszerekhez a generátor teljesítményét (max. 30 kva-ig) 3 fázisra kell felosztani. Az inverternek eleget kell tennie a villamos gyártmányok elektromágneses összeférhetőségére vonatkozó európai irányelv követelményeinek. A Viessmann által alkalmazott inverterek kielégítik az EN szabvány és az elektromágneses összeférhetőség követelményeit, valamint hálózatkimaradás esetén megszakítják a betáplálást. A megtermelt áram betáplálása a közüzemi hálózatba A napelem-modulok B inverter C betáplálásmérő Az európai alkalmazásokat megvizsgálva leggyakrabban a hálózatra kötött berendezéseket telepítenek. Az áramot ekkor teljes mértékben a közüzemi villamoshálózatba táplálják be. A házi áramellátáshoz szükséges áramot plombával lezárt, főbiztosítékokkal ellátott mérőn keresztül teljes mértékben a közüzemi hálózatból vételezik. A csatlakozódoboz után található a mérőszekrény, amelybe a vételezési árammérőt szerelik. A napelemmel fejlesztett áram betáplálása közvetlenül a vételezési mérő előtt történik. A betáplált áram számlázásához betáplálási mérő szükséges, amelynek biztosítani kell egy szabad mérőhelyet. A mérők rendszerint az áramszolgáltató tulajdonát képezik, aki a betáplálási mérőért általában bérleti vagy rendszerhasználati díjat számít fel. A napelemes rendszereknek a villamos hálózatra történő csatlakoztatását csak felhatalmazott villamossági szakember végezheti. Rendszerint a helyi áramszolgáltatóval szerződéses jogviszonyban áll. 8 VIESMANN VITOVOLT

9 A napelemek alapjai (folytatás) Villámhárítás Villámhárítók esetében meg kell különböztetni a közvetlen és a közvetett villámcsapás elleni védelemre szolgáló berendezéseket. Külső villámhárító közvetlen becsapás esetén Villámhárító berendezést a napelemes rendszer telepítését követően csak néhány kivételes esetben kell létesíteni, pl. villámcsapásnak különösen kitett helyeken. Amennyiben az épületen van villámhárító berendezés, akkor a felfogó berendezés DIN VDE szerinti szükséges leválasztási távolságait be kell tartani. Ellenkező esetben a rögzítőszerkezetet rövid úton földelővezetékkel alkalmas, elektromosan vezetőképes részekre kell kötni. Ezeket a részeket ismét csak földelő vezetékhez kell kapcsolni. Vegye figyelembe a DIN VDE 0190 előírásait. Leválasztott rögzítőszerkezet esetén gondoskodni kell a potenciálkiegyenlítésről, és ügyelni kell az elektromos ellátás meglévő tetőállványaitól mért elegendő távolságra. Mivel a tetőállványokat tilos bevonni a földelésbe, mindkét rész érintését meg kell akadályozni. A villámhárító nélküli épületek esetében azt ajánljuk, hogy a napelemes rendszerhez se létesítsenek villámhárítót, mivel a villámvédett és földelt napelemes rendszer káros túlfeszültséget indukálhat. Amennyiben a napelemes rendszer, pl. lapostetők esetében jelentősen túlnyúlik a tetőfelületen, akkor a villámhárító létesítését szakemberrel ellenőriztesse. Belső, túlfeszültség elleni villámhárító Az inverter túlfeszültség-levezetései megóvják a modulokat és az elektronikát a káros túlfeszültségtől. A túlfeszültség-levezetések hatásossága megnő, ha az invertert a lehető legközelebb telepítik a napelemes rendszerhez, adott esetben a hozzáférhetőség rovására is. Felszereléskor a levegő be- és kivezetőnyílásait úgy kell elhelyezni, hogy a modulok hűtését ne zavarjuk. 2 Műszaki adatok 2.1 A napelem-modul műszaki adatai Napelemes rendszer árama [A] Napelemes rendszer feszültsége [V] MPP MPP MPP Az ábra egy napelem-modul három jelleggörbéjének példáját mutatja különböző üzemi feltételek között. Azon a helyen, ahol a jelleggörbék metszik az y tengelyt (napelemes rendszer árama), a legnagyobb az áramerősség és nulla a feszültség. Ezt a maximális áramerősséget rövidzárlati áramnak nevezzük. Ez erősen függ a napsugárzástól. Azon a helyen, ahol a jelleggörbe metszi az x tengelyt (napelemes rendszer feszültsége), a legnagyobb a feszültség, de nulla az áramerősség. Ezt a pontot üresjárati feszültségnek nevezzük. A napelem-modul által leadott teljesítmény a pillanatnyi áram és feszültség számtani szorzata. Ezek az elektromos jellemzők üzem közben nem állandóak, hanem a napsugárzás erősségétől és a napelemek hőmérsékletétől függően változnak, ez felismerhető a módosuló jelleggörbéről. A hálózati betápláló készülék MPP-vezérlése mindig azt a munkapontot keresi a jelleggörbén, ahol a feszültség és az áramerősség optimális értéket ér el, tehát ahol a teljesítmény a legnagyobb (MPP = Maximum Power Point). áramsűrűség [ma] I MPP U MPP A rövidzárlat (I SC ) B I-U jelleggörbe C teljesítmény D MPP E üresjárati feszültség, U OC U feszültség [V] Két munkaponton, az üresjárati feszültségnél és a rövidzárlati áramnál nincs teljesítmény. Mivel az elektromos teljesítmény a leírtak szerint közvetlenül a napsugárzás intenzitásától függ, a laboratóriumban szabványosított tesztkörülmények (STC = Standard Test Conditions) között egy úgynevezett villanó (flasher) alatt minden modulnak meghatározzák a csúcsteljesítményét (kwp kilowatt peak). Standardként ilyenkor az 1000 W/m 2 napsugárzást, a 25 C napelem-hőmérsékletet és az AM 1,5 értéket (AM = Air Mass = levegőmennyiség; ez írja le a beesési szöget és a napsugárzás útját) definiálják. Annak érdekében, hogy egy napelemes rendszerből nagyobb áramot vételezhessenek, gyakran párhuzamosan kapcsolják a modulokat/ ágakat. Amennyiben mindként ág azonos sugárzást kap, az áramok összeadódnak. Az egyik ág leárnyékolása esetén a két ágon különböző feszültség lép fel, ami aztán a leárnyékolt áramon ellenáramhoz vezet. A modul maximális ellenáram-terhelése adja meg, mennyi áram folyhat így a modulon, anélkül, hogy az károsodna. Sok inverternél lehetőség van biztosíték beépítésére, hogy elkerüljék az ellenáramok általi károsodást. VITOVOLT VIESMANN 9

10 Műszaki adatok (folytatás) A napelem, ill. napelem-modul felmelegedése miatt közvetlenül megváltoznak az elektromos tulajdonságok és csökken a teljesítmény. A kristályos moduloknál a teljesítmény egy Kelvin foknak megfelelő hőmérséklet-emelkedéskor kb. 0,5 %-kal csökken (vékonyrétegű moduloknál kb. 0,2 %-kal). Ez azt jelenti, hogy a modul 45 C elemhőmérséklet esetén 10 %-kal kisebb névleges teljesítménnyel rendelkezik mint az STC körülmények között. Ezeket a hőmérsékleteket nyáron rendszeresen elérik, részben akár 70 C-ra is emelkedhet a hőmérséklet. A rossz hátsó szellőztetésű moduloknál a hozamcsökkenés még kb. 5 %-kal nagyobb. A napelem-modulokról további műszaki adatok a megfelelő adatlapon találhatók Az inverter műszaki adatai Hatásfok Az inverter a napsugárzás intenzitásától függően különböző teljesítmény-tartományokban üzemel. Emiatt a teljesítőképesség megítéléséhez egyedül a maximális hatásfok megadása nem elegendő. Ezért definiálták az európai hatásfokot, amelyhez a súlyozott európai napsugárzási eloszlást vették alapul, és amely ezáltal alapul szolgálhat a különböző inverterek összehasonlításához. A normál üzemi tartományok -20 és +80 C közé esnek. Az invertert általában erős felmelegedéstől védve kell felszerelni. A konvekciós hűtésű készülékek gyorsabban felmelegszenek, mint a (gyakran hőmérsékletvezérelt) ventilátorral támogatott készülékek. Felszereléskor a levegő be- és kivezetőnyílásait úgy kell elhelyezni, hogy a hűtést ne zavarjuk. A transzformátor nélküli inverterek lényegesen könnyebb kialakításúak és a transzformátoros készülékekhez képest többnyire kedvezőbb árúak. A váltakozó áramú oldal hiányzó galvanikus leválasztása miatt azonban személyvédelmi célból összáramra érzékeny hibaáram-védőkapcsolót (FI) kell felszerelni (DIN VDE 0126). A vékonyrétegű modulok alkalmazását a gyártók többnyire a transzformátoros készülékekre korlátozzák. Hatásfok a kimenő teljesítmény függvényében hatásfok [%] kimenő teljesítmény / névleges teljesítmény [%] A max. hatásfok (kb. 95 %) a névleges teljesítmény 50 %-ánál Az európai súlyozott hatásfok 93,6 %. Teljesítmény-szabályozás Az időjárástól függően a max. teljesítmény MPP munkapontja eltolódik. Elektromos csatlakozás 4,6 kva napgenerátoros teljesítményig az inverter csatlakoztatása lehet egyfázisú. 4,6 kva-től a csatlakoztatást több fázisra kell felosztani, hogy elkerüljék a fázisaszimmetriát. Az inverter állandó utánszabályozással mindig az MPP-t keresi, hogy a lehető legnagyobb energianyereséget érje el. A HBK-funkcióra vonatkozó hálózati csatlakoztatási feltételek betartása érdekében azt ajánljuk, hogy az impedancia értéke az inverteren 1 Ω-nál kisebb legyen. 10 VIESMANN VITOVOLT

11 Műszaki adatok (folytatás) Az impedancia értéke az épületcsatlakozás hálózati impedanciájából és az inverterig útbaeső összes további vezeték és kötéspont minden ellenállásértékéből adódik össze. Tudnivalók a biztosításhoz Áramköri biztosításként (vezetékvédő elemként) a Lindner cég 16 A- es NEOKIT olvadóbiztosítékát ajánljuk, vagy egy D vagy K karakterisztikájú biztosító automatát. Erre az áramkörre tilos fogyasztót csatlakoztatni. Inverterek alkalmazása Az inverterek különböző érintésvédelmi osztályai a telepítés helyéhez igazodnak. Az IP védettség megadása minden rendeltetési helyhez segít megtalálni a megfelelő invertert. Az első számjegy az érintésvédelmet és az idegen testek elleni védelmet (0 = nincs védelem... 6 = pormentes ), a második számjegy a víz elleni védelmet jelzi (0 = nincs védelem... 8 = védelem tartós vízbe merítés esetén ). Olyan épületekbe, amelyek nem esnek a tűzveszélyes helyiség vagy a párás helyiség meghatározása alá, IP 21 védettségi fokozatú inverter elegendő. A lakásokat vagy mellékhelyiségeket tartalmazó épületekbe alacsonyabb védettségi fokozatú inverter tervezhető, mint pl. IP 44. A normál használatnak kitett (pl. mezőgazdasági üzemegységekben felszerelt) villamos gyártmányok legalább IP 44 védettségi fokozatúak legyenek. Az egyebek mellett a szelektivitást érintő vonatkozó előírásokat a helyi feltételek függvényében be kell tartani. A hálózati vezetékbe további FI-védőkapcsoló építhető be. A következő területeken tilos invertert alkalmazni: erős porképződéssel járó terület, pl. szénaraktár gyúlékony anyagokat tartalmazó terület területek ammóniatartalmú környezettel, pl. istállók Az inverter kiválasztása A napelem-modulok kiválasztott darabszámának megfelelően kiválasztható a szükséges inverter és a megfelelő mennyiségű egyenáramú leválasztó kapcsoló (ha nincs beépítve). Az inverter méretezésekor ügyelni kell a modulok maximális megengedett rendszerfeszültségére. Ez adja meg, hány modul kapcsolható sorba anélkül, hogy károsodna a rendszer. Több mezőből álló rendszereknél ügyelni kell arra, hogy az ágakat mindig azonos számú modullal alakítsák ki. Kivételt jelentenek ez alól a többágas rendszerekhez is alkalmas inverterek. Fontos tudnivaló! Az indukált túlfeszültség elleni fontos óvintézkedés a vezetékek helyes fektetése. A pozitív és negatív vezetéket egymáshoz a lehető legközelebb kell fektetni, hogy az áramkört képező felület, és ezáltal a becsatolt túlfeszültség kicsi maradjon. Ezt a szempontot a vezetékek fektetésekor gyakran figyelmen kívül hagyják vagy elhanyagolják, mert következetes figyelembe vétele többnyire hosszabb vezetéket és valamivel nagyobb szerelési ráfordítást igényel. Azonban a túlfeszültség elleni hatékonyabb védelem érdekében figyelembe kell venni. A napelem-modulok szerelési változatai és feltételei 3.1 Elhelyezés Elhelyezési lehetőségek C lapostető, állványos, vízszintes felerősítés D szabadon álló szerelés, állványos, vízszintes felerősítés A nyeregtető, függőleges felerősítés B nyeregtető, vízszintes felerősítés VITOVOLT VIESMANN 11

12 A napelem-modulok szerelési változatai és feltételei (folytatás) A területszükséglet meghatározása Függőleges szerelés Vízszintes szerelés 3 a modulszélesség b modulhossz l = n a + (n 1) 25 mm *1 h = n b + (n 1) 25 mm *2 n = modulok darabszáma a modulszélesség b modulhossz l = n b + (n 1) 25 mm *2 h = n a + (n 1) 25 mm *1 n = modulok darabszáma 3.2 Rögzítéstechnika A Viessmann a rögzítéshez a berendezés kívánt teljesítményéhez megfelelő egyedi összeállításra méretezett univerzális rendszereket kínál. A rögzítőrendszerek szinte minden tető- és tetőszerkezeti fajtához alkalmasak. Lapostetőkön történő szereléshez is kínálunk szerelőkészleteket. Nyeregtetők tetőre történő szerelés A tetőszarura kell felszerelni a tetőfedéshez illően kiválasztott tetőhorgokat a megfelelő szerelősínekkel. A villamos bekötéshez csatlakozóvezetékek, csatlakozódugók és aljzatok, valamint szerviztáska rendelhető. Fontos tudnivaló! A tetőhorgok nélküli, pl. bádogtetőre történő szerelés esetén a szerelősíneket közvetlenül a rögzítő szögvasakkal csavarozza a helyszínen meglévő alapszerkezetre. A Viessmann a Vitovolt 200 segítségével kialakított nagy napelemes rendszerekhez is kínál speciális rögzítési tartozékokat: Szarufás szerkezetű tetők és hullámcserép-fedés szarufahorgony szerelősínek csavarok és anyák Szelemenszerkezetű és hullámlemez borítású tetők tőcsavarok szerelőidomok szerelősínek csavarok és anyák tetőhorog hullámcserép-fedéshez tetőhorog palafedéshez *1 A modulok közötti távolság. *2 Min. távolság az egymás mellett, ill. fölött elhelyezett modulok között (a hullámcseréptől függően). 12 VIESMANN VITOVOLT

13 A napelem-modulok szerelési változatai és feltételei (folytatás) tetőhorog hódfarkú cserépfedéshez szerelősín, tetőhorog hullámlemez-fedéshez szerelősín, rögzítő szögvas bádogtetőhöz 3 szarufahorgony szerelősín, szerelőlemez tőcsavar Tetőhoroggal történő függőleges szerelés F A B C D E A napelem-modul B szerelősín C végkapocs D tetőhorog E szerelőléc (csak hullámcserép-fedés esetén) F szerelőlemez VITOVOLT VIESMANN 13

14 A napelem-modulok szerelési változatai és feltételei (folytatás) Vízszintes szerelés A napelem-modul B szerelősín C középső kapocs D támasz (modultípustól függően) E tetőhorog F végkapocs G szerelőléc (csak hullámcserép-fedés esetén) 3 Szarufa-rögzítéssel történő függőleges szerelés A napelem-modul B szerelősín C szerelőlemez D végkapocs E rögzítő szögvas F szarufahorgony Lapostetők Lapostetős szereléskor a napelem-modulokat fektetve szerelik fel. Az egy sorban lévő 1 6 modulhoz összekötő támaszok szükségesek. A rögzített felállítási szög mellett létezik dőlésszögű állítható is. 14 VIESMANN VITOVOLT

15 A napelem-modulok szerelési változatai és feltételei (folytatás) z Alapszerkezetre történő szerelés A alapszerkezet z méret a számítást lásd a 16. oldalon VITOVOLT VIESMANN 15

16 A napelem-modulok szerelési változatai és feltételei (folytatás) z Szerelés alátétlapra A alátétek z méret a számítást lásd a 16. oldalon Alátét tömege a DIN 1055 szerint 35º-os hajlásszög esetén Ha a napelem-modulokat megcsúszás ellen biztosítják, akkor csak a megemelkedés elleni statikus ráterhelést kell figyelembe venni. Fontos tudnivaló! Statikai számításokat, pl. a helyszínen szerelendő alapszerkezetekre vonatkozólag, külön kérésre a következő cég végez: Ingenieurbüro für Baustatik Dipl.-Ing. Gerhard Nolte Auf der Heide 1 D Frankenberg Csúszás elleni biztosítás Megemelkedés elleni biztosítás Terep feletti szerelési magasság m max max Alátét tömege támaszonként kg A modulok közötti sortávolság meghatározása Napfelkeltekor és napnyugtakor (amikor a nap igen alacsonyan áll) elkerülhetetlen, hogy az egymás mögött felállított napelem-modulok eltakarják egymást. A hozamcsökkenés elfogadható szinten tartása érdekében a VDI irányelve értelmében adott sortávolságokat (z méret) kell betartani. Ennek értelmében az év legrövidebb napján (dec. 21.) a hátsó sorok árnyékmentesek legyenek, amikor a nap a legmagasabban áll. A sortávolság kiszámításához szükség van a β nap (déli) állásszögének értékére december 21-én. Németországban ez a szög a szélességi kör függvényében 11,5 (Flensburg) és 19,5 (Konstanz) között mozog. 16 VIESMANN VITOVOLT

17 A napelem-modulok szerelési változatai és feltételei (folytatás) h h Példa: Würzburg kb. az északi szélesség 50 -ánál fekszik. Az északi féltekén ezt az értéket a 66,5 -os fix szögből le kell vonni: β = 66,5º 50º = 16,5º h = 992 mm (modultípustól függően) α = 35º β = 16,5º α z β α h sin (180 (α+β)) z = sin β 992 mm sin (180 51,5 ) z = sin 16,5 z sin (180 (α + β)) h = sinβ z = 2733 mm z modulsorok távolsága h modulmagasság α modul hajlásszöge β a nap állásának szöge Általános szerelési utasítások Helyszínen szerelendő alapszerkezet esetében vegye figyelembe a maximális lehetséges terhelést és a tető szélétől mért távolságot a DIN 1055 szerint. Műanyag lapostetőkön a támasztóelemeket csak közbetéttel (épületvédő gyapot) szabad felállítani. A csatlakozóvezetékeket védeni kell a madarak és a kisállatok által okozott károk ellen. Az ellenőrző és karbantartási munkálatok megkönnyítésére biztosítson tetőfeljárót a napelem-modulok közelében. A csatlakozóvezetékeket megfelelő tetőátvezetésen (szellőző cserép) kell átvezetni Cseréptípus A szellőző keresztmetszete cm 2 Frankfurti cserép 32 Dupla-S 30 Taunus-cserép 27 Harzi cserép 27 VITOVOLT VIESMANN 17

18 Csatlakoztatási példák és kiegészítő tartozékok 4.1 Csatlakozási példák A napelem-modulok B csatlakozóvezetékek C egyenáramú leválasztó kapcsoló (amennyiben szükséges) D inverter Példa egyágas rendszerre (modulok soros kapcsolásban) A napelem-modulok B csatlakozóvezetékek C egyenáramú leválasztó kapcsoló (amennyiben szükséges) D inverter Példa kétágas rendszerre (modulok soros kapcsolásban) Kiegészítő tartozékok A modulok közötti összekötővezeték (nagyobb modultávolságok esetén meghosszabbítható a 3 m hosszú, 4 mm 2 -es hosszabbítókábellel) B csatlakozóvezeték / hosszabbító kábel a modulok és az inverter összekötésére, 15 m hosszú, 4 mm 2 C egyenáramú leválasztó kapcsoló (ha nincs az inverterbe építve) D inverter E adatkábel (másik lehetőség: rádiófrekvenciás kapcsolat) F kommunikációs interfész az adatkommunikációs rendszerbe történő bekötéshez G adattároló (szoftverrel) az adatok kezelését és tárolását végző kommunikációs központ H adatkábel számítógéppel való összekötéshez K PC (helyszínen) L mérő (helyszínen) 18 VIESMANN VITOVOLT

19 Csatlakoztatási példák és kiegészítő tartozékok (folytatás) M épületbekötés doboza N kijelző a berendezés adatainak kijelzésére különböző méretekben és kivitelekben, egyedi kialakítási lehetőséggel Függelék 5.1 Tervezés és kivitelezés Hálózatra kapcsolt napelemes rendszer létesítésekor a szisztematikus eljárás leegyszerűsíti a tervezést. A gondos előkészítéssel időt takarít meg a szerelés és telepítés során. A napelemes rendszer kialakításának lépései 1. Információ és tanácsadás 2. A berendezés tervezése és méretezése 3. Az engedélyeztetési kötelezettség ellenőrzése. A napelemes rendszerek többnyire nem engedélykötelesek, ha nyeregtetőre szerelik vagy a tetőfelületbe integrálják őket. A helyi előírások (beépítési terv) és a műemlékvédelmi rendelkezések eltérhetnek ettől. Egyértelmű felvilágosítást az illetékes építési hivatalt megkérdezve kaphat. 4. Ajánlat készítése és a finanszírozás, valamint a támogatási lehetőségek tisztázása. 5. A rendszer szerelése és hálózati csatlakoztatása. 6. Üzembe helyezés és az üzemeltető betanítása. 7. Üzemeltetés és hozamellenőrzés, adóügyi kezelés. 8. Bejelentés a helyi áramszolgáltatónál. Tervezési ellenőrzőlista A hálózatra kapcsolt napelemes rendszer tervezése és létesítése előtt a következő kérdéseket kell tisztázni: Hová kívánják szerelni a modulokat (nyeregtető, lapostető, homlokzat, szabad terület)? Milyen aljzatra rögzítik a modulokat (tetőfedő anyag)? A modulfelület dőlésszögének és beállításának meghatározása (dőlésszög fokban, ill. eltérés a déli iránytól) Mekkora berendezést szeretnének (rendelkezésre álló felület, befektetés keretösszege)? Tervezési példa Előfordulhat-e a modulok leárnyékolása (antennák, erkélyek, kémények, fák, szomszédos épületek)? Hogyan vezethetők be a vezetékek az épületbe (használaton kívüli kémény, szerelvényakna, meglévő, üres elektromos cső, kábelcsatorna az épület külső falán pl. az esőcsatorna mentén)? Hová kívánják telepíteni az invertert (szabadba, padlásfödémre, pincébe)? Rendelkezésre áll szabad mérőhely? Ki a villamos hálózat illetékes üzemeltetője? Az itt bemutatott tervezési lépéseket nem feltétlenül kell kézzel végrehajtani. Már rendelkezésre állnak különféle méretező szoftverek. Ezenkívül ügyfélszolgálatunk is örömmel segít Önnek A rendelkezésre álló felületre lerakható modulok darabszámának meghatározása (a peremtávolságok figyelembe vételével): Mélység l = 8 m Magasság h = 5 m Modulszélesség a = 0,81 m Modulmagasság b = 1,62 m Rögzítőkapocs szélessége = 0,025 m Egy sorban lévő modulok száma l : (a + 0,025 m) = 8 m :(0,81 m + 0,025 m) = 9 Egymás feletti sorok száma = h : (b + 0,025 m) = 5 m : (1,62 m + 0,025 m) = 3 2. A modulok darabszámának és teljesítményének meghatározása: 3 sor egyenként 9 modullal az összesen 27 modul. Ha a modulok névleges teljesítménye 165 Wp, akkor ebből P = 4,45 kwp generátorteljesítmény adódik. VITOVOLT VIESMANN 19

20 Függelék (folytatás) 3. A modulfeszültség meghatározása: Szabványosított tesztkörülmények (STC): Hőmérsékleti bázispont = 25 C Air Mass = 1,5 Napsugárzás = 1000 Wh/m 2 Moduladatok (25 C esetén): U MPP = 33,80 V I MPP = 4,88 A U OC = 43,10 V = 5,32 A I SC A napelemek hőmérsékleti együtthatója: T k (P névl ) = -0,47 %/K T k (U OC ) = -163 mv/k T k (I SC ) = 5,3 ma/k A feszültség számítása -15 C (STC - 40 K) és +70 C (STC + 45 K) esetén. Az értékek a helyi adottságoktól függenek. U OC (-15 C esetén) = 43,10 V + (-40 K -0,163 V/K) = 48,81 V U MPP (-15 C esetén) = 33,80 V + (-40 K -0,163 V/K) = 40,32 V U MPP (70 C esetén) = 33,80 V + (45 K -0,163 V/K) = 26,47 V 4. Az inverter kiválasztása: A modulok teljesítményadatai a szabványosított tesztkörülményekre vonatkoznak, ami a gyakorlatban ritkán fordul elő. Ezért az inverter többnyire kb %-kal kisebbre (kedvezőtlen beállítás esetén akár még kisebbre) méretezhető. Mindenképpen be kell tartani az inverter maximális feszültség- és áramjellemzőit. P névl (inverter) = 0,90 P névl (napelemes rendszer) = 0,90 4,45 kwp = 4,0 kwp P névl (inverter) = 0,95 P névl (napelemes rendszer) = 0,95 4,45 kwp = 4,2 kwp Az inverter névleges teljesítménye 4 4,2 kwp. 5. A modulok összekapcsolása és a feszültségkorlátok ellenőrzése: 5 Inverteradatok: P DCnévl P napelem max U MPP napelemek alsó U MPP napelemek felső U DCmax I DCmax = 4,0 kwp = 4,2 kwp = 230 V = 500 V = 600 V = 18,3 A A sorba kapcsolt modulok darabszámának számítása: n (modul max ) = U MPP napelemek felső / U MPP (-15 C esetén) = 500 / 40,32 = 12,4 12 n (modul min ) = U MPP napelemek alsó / U MPP (70 C esetén) = 230 / 26,47 = 8,6 9 n (modul max ) = U DCmax / U OC (-15 C esetén) = 600 / 48,81 = 12,3 12 Az inverter MPP-feszültségablakának betartása érdekében legalább 9, legfeljebb 12 modul kapcsolható sorba. A maximális bemeneti feszültség szintén 12 modult tesz lehetővé. 6. Az ágak és a modul darabszámának ellenőrzése és illesztése az inverterhez: Ágak darabszáma = modulok előzetes darabszáma / sorba kapcsolt modulok darabszáma = 27 / 12 = 2 U MPP (70 C esetén) = 26,47 V 12 modul = 318 V > U MPP napelemek alsó = 230 V U MPP (-10 C esetén) = 40,32 V 12 modul = 484 V > U MPP napelemek felső = 500 V U OC (-10 C esetén) = 48,81 V 12 modul = 586 V > U DCmax = 600 V I MPP (25 C esetén) = 4,88 A 2 ág = 9,76 A < I DCmax = 18,3 A A tervezett 27 modul a kiválasztott inverterrel 2 ággal nem érhető el. A tervező feladatköre, hogy a vevő számára optimális megoldást találjon. A tetőfelület jobb kihasználása érdekében pl. megváltoztatható a szerelési mód, a modul vagy az inverter típusa. 5.2 Szójegyzék Amorf napelem Anyagtakarékos módon üvegre vagy nemesacél fóliára gőzölt, nem kristályos (amorf) anyagú, pl. szilícium vékonyfilmes napelem-modulok. Szórt sugárzás A nap nem irányzott fénye, amely a felhőkön, anyagrészecskéken stb. át szóródik. Közvetlen sugárzás Irányított fény, amely szóródás nélkül közvetlenül a földfelszínre ér. Megújuló energiáról szóló német törvény (EEG) A megújuló energiák elsőbbségéről szóló német szövetségi törvény előírja a minimális térítéseket, a csatlakozási feltételeket és a megújuló energiákból származó áramnak a közüzemi villamos hálózatba történő betáplálására vonatkozó további szerződési feltételeket, április 1-én lépett életbe (utolsó módosítás február 1- én). 20 VIESMANN VITOVOLT

VIESMANN VITOVOLT. Tervezési segédlet VITOVOLT 200. Mono- és polikristályos napelem modulok, elektromos áram termeléséhez

VIESMANN VITOVOLT. Tervezési segédlet VITOVOLT 200. Mono- és polikristályos napelem modulok, elektromos áram termeléséhez VIESMANN VITOVOLT Tervezési segédlet VITOVOLT 200 Mono- és polikristályos napelem modulok, elektromos áram termeléséhez 4/2014 Tartalomjegyzék Tartalomjegyzék 1. A napelemes rendszerek alapjai 1.1 Az elektromos

Részletesebben

SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése. 1112 Budapest XI. Gulyás u. 20 Telefon: 2461783 Telefax: 2461783

SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése. 1112 Budapest XI. Gulyás u. 20 Telefon: 2461783 Telefax: 2461783 30 ÉV Napenergiás berendezések tervezése és kivitelezése Több napelem, több energia Csak egyszer kell megvenni, utána a villany ingyen van! 1m 2 jóminőségű napelem egy évben akár 150 kwh villamos energiát

Részletesebben

Háztartási Méretű KisErőművek

Háztartási Méretű KisErőművek Pásztohy Tamás. @hensel.hu Napelemes rendszerek érintés-, villám-, és s túlfeszt lfeszültségvédelme Háztartási Méretű KisErőművek Hálózatra visszatápláló (ON-GRID) rendszerek Napelemek Inverter Elszámolási

Részletesebben

NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME

NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME Dr. Novothny Ferenc ( PhD) Egyetemi docens Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet V. Energetikai konferencia 2010.11.25.

Részletesebben

VIESMANN VITOPEND 100-W VITOPEND 111-W Égéstermék elvezetések

VIESMANN VITOPEND 100-W VITOPEND 111-W Égéstermék elvezetések VIESMANN VITOPEND 00-W VITOPEND -W Égéstermék elvezetések Műszaki adatlap Az árakat lásd az árjegyzékben Égéstermék elvezető rendszerek Vitopend 00-W-hez WHD és Alumíniumból koaxiális AZ-cső Ø 60/00 koaxiális

Részletesebben

ÓBUDAI EGYETEM NAPELEMES RENDSZEREK ÁRAMÜTÉS ELLENI VÉDELME

ÓBUDAI EGYETEM NAPELEMES RENDSZEREK ÁRAMÜTÉS ELLENI VÉDELME ÓBUDAI EGYETEM NAPELEMES RENDSZEREK ÁRAMÜTÉS ELLENI VÉDELME Dr. NOVOTHNY FERENC (PhD) Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai intézet Budapest, Bécsi u. 96/b. H-1034 novothny.ferenc@kvk.uni-obuda.hu

Részletesebben

Napenergia hasznosítás

Napenergia hasznosítás Fókusztéma - üzemeltetőknek Napenergia hasznosítás Szoláris potenciál (éves szoláris hozam) Fa Lignit Földgáz Tüzelőolaj A tájolás és a meredekség hatása az energiahozamra Tájolás (fok) Nyugat Kelet Délnyugat

Részletesebben

VILLAMOS ENERGIA FELHASZNÁLÁS-TERMELÉS IGAZOLÁSA

VILLAMOS ENERGIA FELHASZNÁLÁS-TERMELÉS IGAZOLÁSA VILLAMOS ENERGIA FELHASZNÁLÁS-TERMELÉS IGAZOLÁSA (KEHOP- 5.2.11-16-2017 PÁLYÁZATI ELJÁRÁSHOZ) NAPELEMES ENERGIA TERMELŐ RENDSZER (NEETR) TELEPÍTÉSE ÁLTALÁNOS ADATOK Tervezett telepítés helye: 5700 Gyula,

Részletesebben

Kváziautonóm napelemes demonstrációs áramforrás SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése

Kváziautonóm napelemes demonstrációs áramforrás SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése SOLART-SYSTEM KFT. Napenergiás berendezések tervezése és kivitelezése 1112 Budapest XI. Gulyás u 20. Telefon : 246-1783 Telefax : 246-1783 e-mail: mail@solart-system.hu web: www.solart-system.hu KVÁZIAUTONÓM

Részletesebben

Napelemes Rendszerek a GIENGER-től

Napelemes Rendszerek a GIENGER-től Napelemes Rendszerek a GIENGER-től Előadó: Laszkovszky Csaba 1 Naperőmű kapacitás Világviszonylatban (2011) 2 Naperőmű kapacitás Európai viszonylatban (2011) 3 Kínai Gyártók Prognosztizált Napelem árai

Részletesebben

JÜLLICH GLAS SOLAR Karnyújtásnyira a Naptól Nagyméretű napelemes erőművek

JÜLLICH GLAS SOLAR Karnyújtásnyira a Naptól Nagyméretű napelemes erőművek JÜLLICH GLAS SOLAR Karnyújtásnyira a Naptól Nagyméretű napelemes erőművek A megújuló energiák között a napenergia hasznosítása a legdinamikusabban fejlődő üzletág manapság. A napenergia hasznosításon belül

Részletesebben

Fizika Vetélkedő 8 oszt. 2013

Fizika Vetélkedő 8 oszt. 2013 Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A

Részletesebben

MediSOLAR napelem és napkollektor rendszer

MediSOLAR napelem és napkollektor rendszer MediSOLAR napelem és napkollektor rendszer Érvényes: 2014. február 1-től. A gyártó a műszaki változás jogát fenntartja. A nyomdai hibákból eredő károkért felelősséget nem vállalunk. Miért használjunk NAPENERGIÁT?

Részletesebben

A napenergia alapjai

A napenergia alapjai A napenergia alapjai Magyarország energia mérlege sötét Ahonnan származik Forrás: Kardos labor 3 A légkör felső határára és a Föld felszínére érkező sugárzás spektruma Nem csak az a spektrum tud energiát

Részletesebben

Műszaki leírás Napelemes rendszer telepítése Itt-Hon Nyírparasznyán Egyesület, Közösségi Házába (4822 Nyírparasznya, Rákóczi u. 110. Hrsz.: 245.) épületvillamossági kiviteli tervéhez Előzmények: Megbízó:

Részletesebben

Műszaki leírás. Budapesti Vendéglátóipari és Humán SZC Szamos Mátyás Szakgimnáziuma és Szakközépiskolája Budapest, XXI. kerület, Petőfi tér 1

Műszaki leírás. Budapesti Vendéglátóipari és Humán SZC Szamos Mátyás Szakgimnáziuma és Szakközépiskolája Budapest, XXI. kerület, Petőfi tér 1 Műszaki leírás Budapesti Vendéglátóipari és Humán SZC Szamos Mátyás Szakgimnáziuma és Szakközépiskolája 1212 Budapest, XXI. kerület, Petőfi tér 1 40, 04 kwp teljesítményű háztartási méretű kiserőmű Felhasználó

Részletesebben

NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL. Darvas Katalin

NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL. Darvas Katalin NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL Darvas Katalin AZ ÉLETCIKLUS ELEMZÉS Egy termék, folyamat vagy szolgáltatás környezetre gyakorolt hatásainak vizsgálatára használt

Részletesebben

SANTON. Tűzvédelmi kapcsoló Napelemes rendszerekhez. Használati útmutató

SANTON. Tűzvédelmi kapcsoló Napelemes rendszerekhez. Használati útmutató SANTON Tűzvédelmi kapcsoló Napelemes rendszerekhez Használati útmutató Típusválaszték DFS-1/DFS-14 - Motoros DC megszakító tokozásban - Telepítési útmutató DFS-1-W/DFS-14-W - Motoros DC megszakító tokozásban

Részletesebben

l i CSATLAKOZÓ-KOMBINÁCIÓK

l i CSATLAKOZÓ-KOMBINÁCIÓK r e GANZ KK Kft n ISO 9001 d s z e rb a en t l tá i d u CSATLAKOZÓKOMBINÁCIÓK A ház különlegesen erõs, ütésálló könnyen nyitható, ezáltal komfortos szerelést biztosít tömszelencén át csatlakoztatható 35

Részletesebben

Nominális AC teljesítmény 1200 W 1550 W Max AC teljesítmény 1200 W 1700 W Max kimeneti áramersség 6,1 A 8,6 A Nominális AC feszültség /

Nominális AC teljesítmény 1200 W 1550 W Max AC teljesítmény 1200 W 1700 W Max kimeneti áramersség 6,1 A 8,6 A Nominális AC feszültség / Technikai adatok Bemenet (DC) SB 1200 SB 1700 Max DC teljesítmény 1320 W 1850 W Max DC feszültség 400 V 400 V Max bementi áramersség 12,6 A 12,6 A MPP tracker-ek száma 1 1 Sztrineg maximális száma 2 2

Részletesebben

Trimo EcoSolutions Trimo EcoSolar PV Integrált fotovoltaikus rendszer

Trimo EcoSolutions Trimo EcoSolar PV Integrált fotovoltaikus rendszer Trimo EcoSolutions Trimo EcoSolar PV Integrált fotovoltaikus rendszer Környezetbarát Esztétikus Könnyű Takarékos Időtálló Trimo EcoSolutions Trimo EcoSolar PV Innovatív gondolkodásmód, folyamatos fejlesztés,

Részletesebben

A napelemek környezeti hatásai

A napelemek környezeti hatásai A napelemek környezeti hatásai különös tekintettel az energiatermelő zsindelyekre Készítette: Bathó Vivien Környezettudományi szak Amiről szó lesz Témaválasztás indoklása Magyarország tetőire (400 km 2

Részletesebben

fűtőteljesítmény 10 W ventilátor nélkül névleges üzemi feszültség ( )V AC/DC

fűtőteljesítmény 10 W ventilátor nélkül névleges üzemi feszültség ( )V AC/DC 7H 7H- Kapcsolószekrények fűtőegységei Fűtőteljesítmény (10 550)W Tápfeszültség vagy Légbefúvással vagy anélkül Kettős szigetelésű műanyag készülékház Alacsony felületi hőmérséklet Dinamikus felfűtés a

Részletesebben

K E Z E L É S I Ú T M U T A T Ó

K E Z E L É S I Ú T M U T A T Ó K E Z E L É S I Ú T M U T A T Ó Szinusz-inverter HS 1000 CE 230V AC / 1000VA folyamatos / 2500VA csúcs Tisztelt Felhasználó! Üzembehelyezés elõtt kérjük olvassa el figyelmesen a kezelési útmutatót. FIGYELEM!

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Solar-25 Napelem Modulok Telepítői Útmutató Version: 1.0

Solar-25 Napelem Modulok Telepítői Útmutató Version: 1.0 Version: 1.0 ELŐSZÓ Az útmutató a napelemek beüzemeléséhez szükséges általános használati és biztonsági információkat tartalmazza. Tervezési és méretezési kérdésekkel kapcsolatban hivatalos viszonteladóink

Részletesebben

NAPELEMES RENDSZEREK és ALKALMAZÁSUK TERVEZÉS, KIVITELEZÉS. Herbert Ferenc Budapest, 2012.dec. 6. LG

NAPELEMES RENDSZEREK és ALKALMAZÁSUK TERVEZÉS, KIVITELEZÉS. Herbert Ferenc Budapest, 2012.dec. 6. LG NAPELEMES RENDSZEREK és ALKALMAZÁSUK TERVEZÉS, KIVITELEZÉS Herbert Ferenc Budapest, 2012.dec. 6. LG Családi ház, Németország Fogadó Kis gazdaság, Németország Fogadó 2 LG 10 kw monokristályos napelemmel

Részletesebben

VIESMANN. Fűtési keverőszelep. Műszaki adatlap A rendelési számokat és az árakat lásd az árjegyzékben. Keverőszelep motorok

VIESMANN. Fűtési keverőszelep. Műszaki adatlap A rendelési számokat és az árakat lásd az árjegyzékben. Keverőszelep motorok VIESMANN Fűtési keverőszelepek Műszaki adatlap A rendelési számokat és az árakat lásd az árjegyzékben Fűtési keverőszelep 3 járatú fűtési keverőszelep, DN 20 DN 50 és R ¾ R 1¼ Speciális 3 járatú fűtési

Részletesebben

Szolárrendszerek tűzvédelmi szempontból. Tűzvédelem műszaki irányelvei.

Szolárrendszerek tűzvédelmi szempontból. Tűzvédelem műszaki irányelvei. Szolárrendszerek tűzvédelmi szempontból. Tűzvédelem műszaki irányelvei. Miről szeretnék beszélni! Rendszer Rendszerösszetevők Az egyenáram élettani hatásai Tűzvédelem megvalósítási lehetőségei A rendszer?

Részletesebben

Farkas István és Seres István HÁLÓZATRA KAPCSOLT FOTOVILLAMOS RENDSZER MŐKÖDTETÉSI TAPASZTALATAI FIZIKA ÉS FOLYAMAT- IRÁNYÍTÁSI TANSZÉK

Farkas István és Seres István HÁLÓZATRA KAPCSOLT FOTOVILLAMOS RENDSZER MŐKÖDTETÉSI TAPASZTALATAI FIZIKA ÉS FOLYAMAT- IRÁNYÍTÁSI TANSZÉK Farkas István és Seres István FIZIKA ÉS FOLYAMAT- IRÁNYÍTÁSI TANSZÉK HÁLÓZATRA KAPCSOLT FOTOVILLAMOS RENDSZER MŐKÖDTETÉSI TAPASZTALATAI KÖRNYEZETMÉRNÖKI INTÉZET GÉPÉSZMÉRNÖKI KAR SZENT ISTVÁN EGYETEM 2103,

Részletesebben

LOGITEX MÁRKÁJÚ HIBRID VÍZMELEGÍTŐK

LOGITEX MÁRKÁJÚ HIBRID VÍZMELEGÍTŐK VÍZMELEGÍTÉS FOTOVOLTAIKUS PANELEKKEL SZABADALMAZOTT SZLOVÁK TERMÉK LOGITEX MÁRKÁJÚ HIBRID VÍZMELEGÍTŐK TERMÉKKATALÓGUS A LOGITEX márkájú vízmelegítők egy új műszaki megoldást képviselnek a vízmelegítés

Részletesebben

Kezelési útmutató. Helyiséghőmérsékletszabályozó. 24/10 (4) A~ nyitóval és be/kikapcsolóval 0393..

Kezelési útmutató. Helyiséghőmérsékletszabályozó. 24/10 (4) A~ nyitóval és be/kikapcsolóval 0393.. Kezelési útmutató Helyiséghőmérsékletszabályozó 24/10 (4) A~ nyitóval és be/kikapcsolóval 0393.. Tartalom Kezelési útmutató Helyiséghőmérséklet-szabályozó 24/10 (4) A~ nyitóval és be/kikapcsolóval 2 A

Részletesebben

Kuthi Edvárd Bálint szakértő mérnök Műszaki Szolgáltató Iroda. Napelemek a mindennapjainkban , Budapest, Construma

Kuthi Edvárd Bálint szakértő mérnök Műszaki Szolgáltató Iroda. Napelemek a mindennapjainkban , Budapest, Construma Kuthi Edvárd Bálint szakértő mérnök Műszaki Szolgáltató Iroda Napelemek a mindennapjainkban 2017.04.08., Budapest, Construma I. A napelemes rendszerek alapjai 3 Napelemek és napkollektorok A napenergia

Részletesebben

Elektromosság, áram, feszültség

Elektromosság, áram, feszültség Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok

Részletesebben

Háztartási méretű kiserőművek és Kiserőművek

Háztartási méretű kiserőművek és Kiserőművek Energia Akadémia, Budaörs 2016. május 17. Háztartási méretű kiserőművek és Kiserőművek Pénzes László osztályvezető Energetikai Szolgáltatások Osztály Alapfogalmak, elszámolás A napenergia jelentősége Hálózati

Részletesebben

Szerelési és kezelési útmutató. Asztali állvány DS (2018/10) hu

Szerelési és kezelési útmutató. Asztali állvány DS (2018/10) hu Szerelési és kezelési útmutató Asztali állvány DS-1 6720889403 (2018/10) hu Tartalomjegyzék Tartalomjegyzék 1 Szimbólumok magyarázata és biztonsági tudnivalók....... 2 1 Szimbólum-magyarázatok........................

Részletesebben

NAPELEMES ALKALMAZÁSOK fotovillamos rendszerek Villamos energia előállítása környezetbarát módon

NAPELEMES ALKALMAZÁSOK fotovillamos rendszerek Villamos energia előállítása környezetbarát módon NAPELEMES ALKALMAZÁSOK fotovillamos rendszerek Villamos energia előállítása környezetbarát módon 1.) BEVEZETŐ A fotoelektromos napenergia-technológia fejlődése és terjedése miatt, ma már egyre szélesebb

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Nagy épület villamos betáplálása. Épületinformatika. Nagy épület villamos betáplálása. Nagy épület villamos betáplálása. Eloadás.

Nagy épület villamos betáplálása. Épületinformatika. Nagy épület villamos betáplálása. Nagy épület villamos betáplálása. Eloadás. Nagy épület villamos betáplálása Iváncsy Tamás Villamos Energetika Tanszék Nagyfeszültségu Technika és Berendezések Csoport Nagy épület villamos betáplálása Nagy épület villamos betáplálása M Motor. Nagy

Részletesebben

Megújuló energia, megtérülő befektetés

Megújuló energia, megtérülő befektetés Megújuló energia, megtérülő befektetés A megújuló energiaforrás fogalma Olyan energiaforrás, amely természeti folyamatok során folyamatosan rendelkezésre áll, vagy újratermelődik (napenergia, szélenergia,

Részletesebben

Korszerű túlfeszültség-védelem napelemes rendszerekhez Növelje erőműve hatékonyságát VARITECTOR túlfeszültség-védelemmel Let s connect.

Korszerű túlfeszültség-védelem napelemes rendszerekhez Növelje erőműve hatékonyságát VARITECTOR túlfeszültség-védelemmel Let s connect. Korszerű túlfeszültség-védelem napelemes rendszerekhez Növelje erőműve hatékonyságát VARITECTOR túlfeszültség-védelemmel Let s connect. 2020-ra a világ napenergia-termelése elérheti a 700 GW-ot* (GLOBÁLIS

Részletesebben

csatlakozó-kombinációk

csatlakozó-kombinációk csatlakozó-kombinációk Az ablak 6 modul szélességű (12 db kitörhető lamella) átlátszó csapófedeles lakatolható A ház különlegesen erős, ütésálló könnyen nyitható, ezáltal komfortos szerelést biztosít tömszelencén

Részletesebben

NAPELEMES RENDSZEREK

NAPELEMES RENDSZEREK NAPELEMES RENDSZEREK Napelemes rendszerek A napelemes rendszereknek alapvetően két fajtája van. A hálózatba visszatápláló (On- Grid) és a szigetüzemű (Off-Grid) rendszerek. A hálózatba visszatápláló rendszert

Részletesebben

KÖZÉPÜLETEK ENERGIARÁSEGÍTÉSE NAPELEMEKKEL

KÖZÉPÜLETEK ENERGIARÁSEGÍTÉSE NAPELEMEKKEL Energiatudatos épülettervezés KÖZÉPÜLETEK ENERGIARÁSEGÍTÉSE NAPELEMEKKEL 2015.04.03. Tartalomjegyzék MAGYARORSZÁG NAPENERGIA VISZONYAI A NAP SUGÁRZÁSÁNAK FOLYAMATA A NAP SUGÁRZÁSÁBÓL TERMELHETŐ VILLAMOS

Részletesebben

MPX 3 motorvédő kismegszakítók

MPX 3 motorvédő kismegszakítók MPX 3 motorvédő kismegszakítók műszaki jellemzők MOTORVÉDŐ KISMEGSZAKÍTÓK MPX 3 32S MPX 3 32H Méret 1 2 Típus termikus-mágneses termikus-mágneses Zárlati megszakítóképesség normál kiemelt Kar típusa billenőkaros

Részletesebben

SDT VarioTwin Large. Az SDT Vario Twin egy új rendszer a lapos tetős szerelési megoldások között, amit a német SOLARDIREKT

SDT VarioTwin Large. Az SDT Vario Twin egy új rendszer a lapos tetős szerelési megoldások között, amit a német SOLARDIREKT feszültségi gyors 10 év szélcsatornában vizsgálattal könnyűszerkezetből Német szerelhetőség garancia vizsgált tesztelt készült minőség Adatlap és összeszerelési útmutató: SDT VarioTwin Large gyors telepíthetőség

Részletesebben

E-compact átfolyós vízmelegítő CEX 9

E-compact átfolyós vízmelegítő CEX 9 Felhasználási terület Egy csapolási pont ellátására: > Mosogató > Dupla kézmosó > Mosdó sor Több csapolási pont ellátására: > Zuhanyzó és kézmosó, a betáp víz hómérséklet illetve az elektromos hálózat

Részletesebben

Napelem Modulok Telepítői útmutató Version: 1.0. alarm shop

Napelem Modulok Telepítői útmutató Version: 1.0. alarm shop Napelem Modulok Telepítői útmutató Version: 1.0 1 ELŐSZÓ Az útmutató a napelemek beüzemeléséhez szükséges általános használati és biztonsági információkat tartalmazza. Tervezési és méretezési kérdésekkel

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

FRONIUS IG PLUS TRANSZFORMÁTOROS INVERTER

FRONIUS IG PLUS TRANSZFORMÁTOROS INVERTER / Akkumulátortöltő berendezések / Hegesztéstechnika / Napenergia hasznosító berendezések FRONIUS IG PLUS TRANSZFORMÁTOROS INVERTER A maximális hozambiztonsággal mindenre képes. / Fronius MIX -koncepció

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Villanyszerelő szakma gyakorlati oktatásához OKJ száma: 34 522 04 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók adatai

Részletesebben

Kombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató

Kombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató Kombinált napkollektoros, napelemes, hőszivattyús rendszerek Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató Termikus napenergia hasznosítás napkollektoros rendszerekkel Általában kiegészítő

Részletesebben

PV GUARD Használati - kezelési útmutató PV-DC-AM-01 típusú készülékhez

PV GUARD Használati - kezelési útmutató PV-DC-AM-01 típusú készülékhez P P P enta P ort Mérnöki, Elektronikai és Kereskedelmi Korlátolt Felelősségű Társaság 2440 Százhalombatta, Asztalos u. 5. Tel./Fax.: 23 355-701 e-mail: mail@pentaport.hu PV GUARD Használati - kezelési

Részletesebben

500 kwp magyarországi napelemes erőmű beruházás bemutatása beruházói szemmel

500 kwp magyarországi napelemes erőmű beruházás bemutatása beruházói szemmel 500 kwp magyarországi napelemes erőmű beruházás bemutatása beruházói szemmel Szerző: Michael Debreczeni Dipl.-Ing. (FH) megújuló energiák Greentechnic Hungary Kft A megújuló energiák között a napenergia

Részletesebben

Solar-Pécs. Napelem típusok ismertetése. Monokristályos Polikristályos Vékonyréteg Hibrid

Solar-Pécs. Napelem típusok ismertetése. Monokristályos Polikristályos Vékonyréteg Hibrid Napelem típusok ismertetése Monokristályos Polikristályos Vékonyréteg Hibrid előnyök Monokristályos legjobb hatásfok: 15-18% 20-25 év teljesítmény garancia 30 év élettartam hátrányok árnyékra érzékeny

Részletesebben

Frank-Elektro Kft. BEMUTATKOZÓ ANYAG

Frank-Elektro Kft. BEMUTATKOZÓ ANYAG Frank-Elektro Kft. 5440 Kunszentmárton Zrínyi u. 42. Telefon: 56/560-040, 30/970-5749 frankelektro.kft@gmail.com BEMUTATKOZÓ ANYAG Frank-Elektro Kft. telephely korszerűsítése, építési munkái. A Frank-Elektro

Részletesebben

Napelemre pályázunk -

Napelemre pályázunk - Napelemre pályázunk - Napelemes rendszerek hálózati csatlakozási kérdései Harsányi Zoltán E.ON Műszaki Stratégiai Osztály 1 Erőmű kategóriák Háztartási méretű kiserőmű P

Részletesebben

Kezelési útmutató AS 100 kapuvezérlés

Kezelési útmutató AS 100 kapuvezérlés Bevizsgálva a következő szabvány alapján: EN 12453 1 / 5 oldal 06 javítás Kezelési útmutató Az AS 100 vezérlést Totmann-üzemű, háromfázisú kapunyitó berendezésekkel történő használatra tervezték. A kapu

Részletesebben

ASTRASUN PID Reduktor. Kézikönyv

ASTRASUN PID Reduktor. Kézikönyv ASTRASUN PID Reduktor Kézikönyv A kézikönyv használata Kérem olvassa el és értelmezze a kézikönyvet mielőtt használatba veszi a terméket. Miután elolvasta tartsa kézközelben, hogy a telepítés során bármikor

Részletesebben

C30 Láncos Ablakmozgató motor Telepítési útmutató

C30 Láncos Ablakmozgató motor Telepítési útmutató 1 C30 Láncos Ablakmozgató motor Telepítési útmutató Figyelem! A motorról a működtetés után a hálózati 230V-os feszültséget le kell kapcsolni. A motort vagy visszabillenős kapcsolóról vagy beállítható munkaidejű

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

BRAMAC INDACH PREMIUM NAPELEM. Beépítési útmutató

BRAMAC INDACH PREMIUM NAPELEM. Beépítési útmutató BRAMAC INDACH PREMIUM NAPELEM Beépítési útmutató 1 Műszaki adatok Típus PV InDach Modul Mono 90 Névleges teljesítmény (Pnom) 90W (+/-3%) Modul hatásfok (Pnom) 15,00% MPP feszültség (Umpp) * 11,77 V MPP

Részletesebben

EXLED-001 (HT-F62413A-10)

EXLED-001 (HT-F62413A-10) LED VILÁGÍTÁS Biztonsági előírások és használati utasítás EXLED-001 (HT-F62413A-10) Köszönjük, hogy ezt a terméket választotta. Kérjük, üzembe helyezés előtt figyelmesen olvassa át ezt a használati utasítást

Részletesebben

ELEKTROMOS TERMOVENTILÁTOROK

ELEKTROMOS TERMOVENTILÁTOROK ELEKTROMOS TERMOVENTILÁTOROK TARTALOMJEGYZÉK Alapadatok 3 Felépítés 4 Méretek 5 Műszaki adatok 5 Felszerelés 6 Szabályozás 8 Kapcsolási sémák 9 Légsebesség 9 Keverőelem 10 EL 2 ALAPADATOK EL Fűtőteljesítmény

Részletesebben

CA légrétegződést gátló ventilátorok

CA légrétegződést gátló ventilátorok CA légrétegződést gátló ventilátorok MŰSZAKI INFORMÁCIÓ A SZERELŐ ÉS A FELHASZNÁLÓ SZÁMÁRA 2019.03.20. - 2 - A CA típusjelű ventilátorokat nagy légterű, nagy belmagasságú, ipari, kereskedelmi és szolgáltató

Részletesebben

FÜRDÔSZOBAI FÛTÔVENTILÁTOR AH-1300

FÜRDÔSZOBAI FÛTÔVENTILÁTOR AH-1300 HASZNÁLATI ÚTMUTATÓ HAUSER FÜRDÔSZOBAI FÛTÔVENTILÁTOR AH-1300 Tisztelt Vásárló! Köszönjük bizalmát, hogy HAUSER gyártmányú háztartási készüléket vásárolt. A készülék a legújabb műszaki fejlesztés eredménye,

Részletesebben

Harkány, Bercsényi u. 18. dimatkft@gmail.com +36 (70) 601 0209 www.dimat.hu

Harkány, Bercsényi u. 18. dimatkft@gmail.com +36 (70) 601 0209 www.dimat.hu Harkány, Bercsényi u. 18. dimatkft@gmail.com +36 (70) 601 0209 www.dimat.hu SAS816FHL-0 szoba termosztát egy nem programozható elektromos fűtéshez kifejlesztett, digitális hőmérséklet kijelzővel. Padlóérzékelő

Részletesebben

Egyenáram váltóáram, mire figyeljünk egy napelemes rendszer szerelésekor

Egyenáram váltóáram, mire figyeljünk egy napelemes rendszer szerelésekor Egyenáram váltóáram, mire figyeljünk egy napelemes rendszer szerelésekor Hensel Hungária Villamossági Kft. RENEXPO 2013.09.20. Pásztohy Tamás szolár mérnök Photovoltaik PV-Generator PV-GAK Wechselrichter

Részletesebben

/ A maximális hozambiztonsággal mindenre képes. FRONIUS IG PLUS MŰSZAKI ADATAI (25 V-1, 30 V-1, 35 V-1, 50 V-1, 55 V-1, 60 V-1)

/ A maximális hozambiztonsággal mindenre képes. FRONIUS IG PLUS MŰSZAKI ADATAI (25 V-1, 30 V-1, 35 V-1, 50 V-1, 55 V-1, 60 V-1) / Akkumulátortöltő berendezések / Hegesztéstechnika / Napenergia hasznosító berendezések FRONIUS IG PLUS / A maximális hozambiztonsággal mindenre képes. / Fronius MIX -koncepció átkapcsolás / NYÁK csere

Részletesebben

Megbízhatóság Felhasználóbarát megoldások Környezetbarát kivitel. EL-ngn A fény motorja. P e o p l e I n n o v a t i o n s S o l u t i o n s

Megbízhatóság Felhasználóbarát megoldások Környezetbarát kivitel. EL-ngn A fény motorja. P e o p l e I n n o v a t i o n s S o l u t i o n s Megbízhatóság Felhasználóbarát megoldások Környezetbarát kivitel EL-ngn A fény motorja P e o p l e I n n o v a t i o n s S o l u t i o n s Next GeNeration A világítás energiahatékonyságát célzó piaci elvárások

Részletesebben

H Használati útmutató LED panelek üzembe helyezésére és kezelésére Cikk sz , , , , , ,

H Használati útmutató LED panelek üzembe helyezésére és kezelésére Cikk sz , , , , , , H Használati útmutató LED panelek üzembe helyezésére és kezelésére Cikk sz. 1460476, 1460474, 1436525, 1436526, 1460477, 1460475, 1463527 Ez a használati útmutató kizárólag ezekhez a termékekhez tartozik.

Részletesebben

FRONIUS IG PLUS TRANSZFORMÁTOROS INVERTER

FRONIUS IG PLUS TRANSZFORMÁTOROS INVERTER / Akkumulátortöltő berendezések / Hegesztéstechnika / Napenergia hasznosító berendezések FRONIUS IG PLUS TRANSZFORMÁTOROS INVERTER A maximális hozambiztonsággal mindenre képes. / Fronius MIX -koncepció

Részletesebben

SZELLŐZTETŐ- RENDSZER. A ventilátor 50%-os fordulaton történő működtetése 70%-os energiafelhasználás. csökkenést eredményez. SZELLŐZTETŐ- RENDSZER

SZELLŐZTETŐ- RENDSZER. A ventilátor 50%-os fordulaton történő működtetése 70%-os energiafelhasználás. csökkenést eredményez. SZELLŐZTETŐ- RENDSZER HALK MŰKÖDÉSŰ CSŐVENTILÁTOROK TD-SILENT ECOWATT sorozat TD-SILENT ECOWATT - ÉS 1 KÖZÖTTI TÍPUSOK ENERGIA- HATÉKONY TD-SILENT ECOWATT - 1 ÉS TÍPUSOK ENERGIA- HATÉKONY SZELLŐZTETŐ- RENDSZER SZELLŐZTETŐ-

Részletesebben

ENERGETIKA ÉS MEGÚJULÓ ENERGIÁHOZ KÖTŐDŐ KIÍRÁSOK INFORMÁCIÓS NAPJA. Tábori Péter,Tóth Tamás

ENERGETIKA ÉS MEGÚJULÓ ENERGIÁHOZ KÖTŐDŐ KIÍRÁSOK INFORMÁCIÓS NAPJA. Tábori Péter,Tóth Tamás ENERGETIKA ÉS MEGÚJULÓ ENERGIÁHOZ KÖTŐDŐ KIÍRÁSOK INFORMÁCIÓS NAPJA Tábori Péter,Tóth Tamás -Szélenergia -Vízenergia -Napenergia -Biomassza -Geotermikus energia Megújuló Energiaforrások A földre sugárzott

Részletesebben

Napkollektorok telepítése. Előadó: Kardos Ferenc

Napkollektorok telepítése. Előadó: Kardos Ferenc Napkollektorok telepítése Előadó: Kardos Ferenc Napkollektor felhasználási területek Használati melegvíz-előállítás Fűtés-kiegészítés Medence fűtés Technológiai melegvíz-előállítása Napenergiahozam éves

Részletesebben

Szabályozásra került a háztartási méretű kiserőmű esetében az erőmű nagysága és a csatlakozási módja.

Szabályozásra került a háztartási méretű kiserőmű esetében az erőmű nagysága és a csatlakozási módja. Szabályozásra került a háztartási méretű kiserőmű esetében az erőmű nagysága és a csatlakozási módja. A 2007. évi LXXXVI törvény (VET) alapján saját üzleti kockázatára bárki létesíthet termelői kapacitást.

Részletesebben

Napenergia-hasznosító photovotaikus rendszerek egyes biztonsági kérdései Bottka László okl. villamosmérnök műszaki igazgató Eaton Industries Kft.

Napenergia-hasznosító photovotaikus rendszerek egyes biztonsági kérdései Bottka László okl. villamosmérnök műszaki igazgató Eaton Industries Kft. Napenergia-hasznosító photovotaikus rendszerek egyes biztonsági kérdései Bottka László okl. villamosmérnök műszaki igazgató Eaton Industries Kft. 1 09.2012 Eaton Corporation. All rights reserved. EATON

Részletesebben

CSATLAKOZÁSI DOKUMENTÁCIÓ

CSATLAKOZÁSI DOKUMENTÁCIÓ CSATLAKOZÁSI DOKUMENTÁCIÓ Felhasználó és felhasználási hely adatai magánszemély esetén Partnerszám: Felhasználási hely címe: Szerződésszám: Érintett elszámolási mérő gyári száma: Felhasználó neve: Születési

Részletesebben

Laserliner. lnnováció az eszközök területén. ActivePen multiteszter

Laserliner. lnnováció az eszközök területén. ActivePen multiteszter Laserliner lnnováció az eszközök területén ActivePen multiteszter Olvassa el teljesen ezt a használati útmutatót és tartsa be a benne foglaltakat. Funkciók/alkalmazás Érintés nélküli feszültségvizsgáló

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Elektromos áram, áramkör, kapcsolások

Elektromos áram, áramkör, kapcsolások Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az

Részletesebben

Háztartási méretű kiserőmű hálózatra csatlakoztatása

Háztartási méretű kiserőmű hálózatra csatlakoztatása Háztartási méretű kiserőmű hálózatra csatlakoztatása II. Villanyszerelő Konferencia az intelligens házakról és megújuló energiákról Előadás témája: Az alkalmazás alapja Kiserőművek csatlakoztatásának alapja

Részletesebben

Az 55/2016. (XII. 21.) NFM rendelet a megújuló energiát termelő berendezések és rendszerek műszaki követelményeiről

Az 55/2016. (XII. 21.) NFM rendelet a megújuló energiát termelő berendezések és rendszerek műszaki követelményeiről 55/2016. (XII. 21.) NFM rendelet beszerzéséhez és működtetéséhez nyújtott támogatások igénybevételének A rendeletben előírt műszaki követelményeket azon megújuló energiaforrásból energiát termelő rendszerek

Részletesebben

DK-kábelösszekötő dobozok funkciómegtartással. Termékismertető 02/2009

DK-kábelösszekötő dobozok funkciómegtartással. Termékismertető 02/2009 Termékismertető 02/2009 DK-kábelösszekötő dobozok Szabvány: DIN 4102.12. rész szerint Védettség: IP 65 Kapocstartomány: 0,5-16 mm² -ig Alapanyag: duroplaszt, vagy porszórt acéllemez ISO 9001 Hensel Hungária

Részletesebben

VIESMANN. VITOSOL 200-TM Heatpipe-elven működő vákuumcsöves kollektor a napenergia hasznosítására. Műszaki adatlap. VITOSOL 200-TM Típus: SPEA

VIESMANN. VITOSOL 200-TM Heatpipe-elven működő vákuumcsöves kollektor a napenergia hasznosítására. Műszaki adatlap. VITOSOL 200-TM Típus: SPEA VIESMANN VITOSOL 200-TM Heatpipe-elven működő vákuumcsöves kollektor a napenergia hasznosítására Műszaki adatlap A rendelési számokat és árakat lásd az árjegyzékben VITOSOL 200-TM Típus: SPEA Vákuumcsöves

Részletesebben

Késes biztosítók G/8. Késes biztosítók MSZ EN 60269-1 MSZ EN 60269-2 MSZ HD 60269-2-1

Késes biztosítók G/8. Késes biztosítók MSZ EN 60269-1 MSZ EN 60269-2 MSZ HD 60269-2-1 Késes biztosítók A késes biztosító túlterhelés vagy zárlat esetén - a létrejövő hő hatására történő kiolvadás útján - nyitja az áramkört, ezáltal a mögötte lévő vezetékrészt és fogyasztókészülékeket megóvja.

Részletesebben

VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók

VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók VSF-118 / 128 / 124 / 144 9 1U fejállomási aktív műholdas elosztók A VSF-1xx műholdas KF elosztó család, a műholdvevő LNB-ről érkező SAT KF jelek veszteség nélküli, illetve alacsony beiktatási csillapítással

Részletesebben

JZD-(LiE1)-D(1-3)F-K-LF/FKvM

JZD-(LiE1)-D(1-3)F-K-LF/FKvM Oldal: 1 / 14 Típusazonosító: Megnevezés: JZD-(LiE1)-D(1-3)F-K-LF/FKvM Kültéri tipizált fogyasztásmérő szekrény Műszaki adatlap Műszaki leírás Telepítési utasítás Dokumentáció melléklet Változatszám: JZ

Részletesebben

VILLAMOSENERGIA-RENDSZER

VILLAMOSENERGIA-RENDSZER SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU VILLAMOSENERGIA-RENDSZER 2014/2015 - tavaszi szemeszter További energiatermelési lehetőségek GEOTERMIKUS ENERGIA BIOMASSZA ERŐMŰ További energiatermelési lehetőségek

Részletesebben

- igények feltérképezése kérdések alapján (pl. Milyen célra tervezi

- igények feltérképezése kérdések alapján (pl. Milyen célra tervezi - igények feltérképezése kérdések alapján (pl. Milyen célra tervezi a rendszert? Sziget- vagy hálózatra visszatápláló üzemű lesz? Mekkora a villamos-energia felhasználása? Hol van alkalmas terület ingatlanán

Részletesebben

(PV) Fotovillamos rendszerek Védelmi-és kapcsolási elemek tervezése

(PV) Fotovillamos rendszerek Védelmi-és kapcsolási elemek tervezése (PV) Fotovillamos rendszerek Védelmi-és kapcsolási elemek tervezése M E E 60. Vándorgyűlés és Konferencia A1 Szekció: - Új utakon az energiatermelés Darvas István Kft. 30kWp teljesítményű PV - fotovillamos

Részletesebben

LED-es függőlámpa. Szerelési útmutató 88346HB54XVII

LED-es függőlámpa. Szerelési útmutató 88346HB54XVII LED-es függőlámpa hu Szerelési útmutató 88346HB54XVII 2017-07 Megjegyzések az útmutatóhoz A termék biztonsági megoldásokkal rendelkezik. Ennek ellenére olvassa el figyelmesen a biztonsági előírásokat,

Részletesebben

ADATFELVÉTELI LAP Égéstermék elvezetés MSZ EN 13384-1 alapján történő méretezési eljáráshoz

ADATFELVÉTELI LAP Égéstermék elvezetés MSZ EN 13384-1 alapján történő méretezési eljáráshoz ADATFELVÉTELI LAP Égéstermék elvezetés MSZ EN 13384-1 alapján történő méretezési eljáráshoz LÉTESITMÉNY ADATOK : Megnevezése : Név : Cím : helység utca hsz. Tervező neve _ Tel : Cím : helység utca hsz.

Részletesebben

Bicskei Oroszlán Patika Bt 22076423-2-07

Bicskei Oroszlán Patika Bt 22076423-2-07 MVM Partner - a vállalkozások energiatudatosságáért pályázat 2. rész A pályázó által megvalósított, energiahatékonyságot növelő beruházás és/vagy fejlesztés bemutatása A napelem a Napból érkező sugarak

Részletesebben

VIESMANN VITOTRONIC 100. Műszaki adatlap A rendelési számokat és az árakat lásd az adott fűtőkazán árjegyzékében VITOTRONIC 100

VIESMANN VITOTRONIC 100. Műszaki adatlap A rendelési számokat és az árakat lásd az adott fűtőkazán árjegyzékében VITOTRONIC 100 VIESMANN VITOTRONIC 100 Elektronikus kazánköri szabályozó Műszaki adatlap A rendelési számokat és az árakat lásd az adott fűtőkazán árjegyzékében A dokumentum helye: Vitotec dosszié, 18. fejezet VITOTRONIC

Részletesebben

Napenergia kontra atomenergia

Napenergia kontra atomenergia VI. Napenergia-hasznosítás az épületgépészetben és kiállítás Napenergia kontra atomenergia Egy erőműves szakember gondolatai Varga Attila Budapest 2015 Május 12 Tartalomjegyzék 1. Napelemmel termelhető

Részletesebben

Gazsó András, Kisfeszültségű készülékek és berendezések, Solar bemutató Kisfeszültségű elemek. ABB April 11, 2014 Slide 1

Gazsó András, Kisfeszültségű készülékek és berendezések, Solar bemutató Kisfeszültségű elemek. ABB April 11, 2014 Slide 1 Gazsó András, Kisfeszültségű készülékek és berendezések, 2014.04.11. Solar bemutató Kisfeszültségű elemek April 11, 2014 Slide 1 Szolár erőművek fajtái Lakossági AC elosztó String elosztó Napelemek Inverter

Részletesebben

ADATFELVÉTELI LAP. Égéstermék elvezetés MSZ EN 13384-1 alapján történő méretezési eljáráshoz. Megnevezése: Név:. Cím:.. helység utca hsz.

ADATFELVÉTELI LAP. Égéstermék elvezetés MSZ EN 13384-1 alapján történő méretezési eljáráshoz. Megnevezése: Név:. Cím:.. helység utca hsz. ADATFELVÉTELI LAP Égéstermék elvezetés MSZ EN 13384-1 alapján történő méretezési eljáráshoz LÉTESÍTMÉNY ADATOK: Megnevezése: Név:. Cím:.. helyiség..utca hsz. Tervező neve:...tel.:. Cím:.. helység utca

Részletesebben

E-compact átfolyós vízmelegítő CEX

E-compact átfolyós vízmelegítő CEX Felhasznállási terület Egy csapolási pont ellátására: > Mosogató > Dupla kézmosó > Mosdó sor > Vödör mosók Több csapolási pont ellátására: > Zuhanyzó és kézmosó Termék adatlap 1 / 6 Energetikai besorolás

Részletesebben