MŰVELETI ERŐSÍTŐK MÉRÉSE

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MŰVELETI ERŐSÍTŐK MÉRÉSE"

Átírás

1 MISKOLCI EYETEM ILLMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKI- ELEKTRONIKI TNSZÉK DR. KOÁCS ERNŐ MŰELETI ERŐSÍTŐK MÉRÉSE FŐISKOLI SZINTŰ, LEELEZŐ TOZTOS ILLMOSMÉRNÖK HLLTÓKNK MÉRÉSI UTSÍTÁS 2003.

2 MŰELETI ERŐSÍTŐS KPCSOLÁSOK MÉRÉSE mérések célja: megismerni a leggyakoribb alap- ill. származtatott műveleti erősítős kapcsolások jellemző tulajdonságait. mérések elméleti hátterét az előadások anyaga és a kiadott előadás jegyzet (Elektronika III.) tartalmazza. mérési ismertető csak az elvégzendő mérési feladatok leírására korlátozódik. mérési feladatokat az előre elkészített mérő-paneleken kell elvégezni, amelynek vázlatos képe a mérési leírásban megtalálható. mérendő kapcsolásokat önállóan kell összeállítani a mérőpanel tápfeszültségének kikapcsolása után (szerviz-panelen található két kapcsoló kikapcsolásával). Bekapcsolni mérést csak az összeállított mérési kapcsolás leellenőrzése után szabad. tápellátáshoz szükséges ±15-os és alkalmanként ±5-os tápfeszültséget a laborasztalba beépített tápegységekből nyerjük. műveleti erősítők ofszet kiegyenlítésére minden olyan mérés előtt szükség lehet, amelynek során a műveleti erősítő lineáris üzemben dolgozik. z ofszet kiegyenlítéshez kössük a kapcsolás bemeneteit a tápfeszültség földpontjára és előbb a durva, majd a finombeállító potenciométerekkel a kimeneti feszültséget állítsuk nullára. z ofszet kiegyenlítés után a bemeneti kapcsokat a megfelelő műszerekhez kell csatlakoztatni. szerviz panelen (mérődoboz jobb szélső sáv) található egy kis áram-terhelhetőségű (max.15 m-es) tartományban állítható belső stabilizált tápegység, amely a mérések során egyenfeszültség-forrásként felhasználható. mérések gyorsabb elvégzése érdekében a szerviz panel tartalmaz két db banándugó-bnc csatlakozó átalakítót is (az oszcilloszkóphoz és a jelgenerátorhoz történő egyszerűbb csatlakoztatás érdekében), ahol a BNC csatlakozó háza földpotenciálra van belül bekötve. További felhasználásra egy mindhárom pontján kivezetett potenciométer(10 kω ) is rendelkezésre áll a szervizpanelen. mérések során rendelkezésre álló műszerek: 1 db kétsugaras oszcilloszkóp 1 db funkciógenerátor (jelalak generátor) 1 db asztali digitális multiméter 1 db kézi digitális multiméter mérésekről jegyzőkönyvet kell készíteni, amelynek tartalmaznia kell: a) mérés helyét és idejét, b) mérést végzők nevét, tankörszámát c) mérésben felhasznált mérőeszközök azonosítóit (típus, gyáriszám) d) mérési pontok rövid leírását és a kapott eredményeket e) kapott eredmények kiértékelését, összevetését az elméleti eredményekkel Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 2.

3 1. lapmérések z alapmérések célja összefoglalni azokat az ismereteket, amelyek minden elektronikus kapcsolás mérésekor közösek. mérések leírása konkrét kapcsolásoktól elvonatkoztatott és követi azt a rajzolási konvenciót, hogy a mérési kapcsolások bemenete a baloldalon, kimenete a jobboldalon van. 1.1 Kivezérelhetőség mérése u be O M 1 M 2 M x O függvénygenerátor mérendő áramkör voltmérők oszcilloszkóp mérés leírása z áramkör frekvencia-független átvitelének tartományában a közepes frekvencián végezzük a mérést (a mérési leírásokban megadott frekvencián). 1. ddig növeljük a bemeneti jelet, amíg a kimenetre csatlakoztatott oszcilloszkópon a jel érzékelhetően torzulni nem kezd (akár nemlinearítás, akár vágás miatt). 2. Megmérjük a bemeneti (U bemax ) és a kimeneti (U kimax ) jelet. mérések során az <U kimax tartományban mérhetünk csak. Megjegyzés: a kivezérelhetőség mértéke kapcsolásonként eltérő lehet! Különösen ügyelni kell a kivezérelhetőségre, ha az áramkör erősítése a frekvenciával változik, mert így változatlan bemeneti feszültség esetén is túlvezérlődhet az áramkör! 1.2. Bemeneti ellenállás meghatározása méréssel I 2 U 1 R m U 2 M 1 M 2 M x R m függvénygenerátor a mérendő áramkör voltmérők ismert nagyságú ellenállás (a mérés során adott) Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 3.

4 mérés leírása 1. Bemenetre feszültséget kapcsolunk és mérjük az U 1 és az U 2 feszültségeket. Ügyeljünk arra, hogy a kimeneti jel a maximális kivezérelhetőség értekének 1/3..2/3 tartományában legyen! 2. bemeneti ellenállás meghatározása számítással (tisztán hatásos bemeneti ellenállású áramkör esetén) u2 u2 Rbe = = R m i u u 1.3 Kimeneti ellenállás meghatározása méréssel U kio U kit a) M b) M R t M R t függvénygenerátor a mérendő áramkör voltmérő ismert nagyságú terhelő-ellenállás (a mérésleírásban adott) Mérés leírása 1. bemeneti feszültség változtatása nélkül mérjük meg terhelés nélkül (a kapcsolás) és terhelés esetén is (b kapcsolás) a kimeneti feszültségeket. Ügyeljünk arra, hogy a kimeneti jel a maximális kivezérelhetőség értekének 1/3..2/3 tartományában legyen terheletlen esetben is! 2. kimeneti ellenállás számítása (hatásos kimeneti ellenállás esetén) u ki0 R = 1 ki Rt ukit 1.4. Erősítés mérése u be O M 1 M 2 B Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 4.

5 M x O függvénygenerátor a mérendő áramkör voltmérők oszcilloszkóp Mérés leírása z áramkör frekvencia-független átvitelének tartományában a közepes frekvencián végezzük a mérést (ált. a mérésleírásban a konkrét frekvencia adott). 1. Mérjük meg egyidejűleg a kimeneti és a bemeneti jeleket. kimeneti jelnek a maximális kivezérelhetőség értékének 1/3..2/3 rész tartományában kell lennie. 2. z erősítés számolása u ki a) = u 20 * lg [db] (logaritmikus egységben) ube u ki b) = ± u (abszolútértékben) z előjelet a ki- és a bemenet közötti fázishelyzet ube alapján tudjuk meghatározni (pl. oszcilloszkóppal)! 1.5. mplitúdó-átviteli karakterisztika mérése u be O M 1 M 2 B M x O függvénygenerátor a mérendő áramkör voltmérők oszcilloszkóp Mérés leírása bemenetre kapcsolt jelgenerátor frekvenciáját változtatva több frekvencián (ált. 1,2,5*10 n Hz, n=1..4 ) egyidejűleg megmérjük a kimeneti és a bemeneti feszültségeket. mérés során a bemeneti feszültség nagyságát nem változtatjuk. bemenetre csak akkora feszültséget szabad kapcsolni, hogy a mérés során a teljes frekvencia-tartományban az áramkör ne vezérlődjön túl. Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 5.

6 z amplitúdó -karakterisztika számolása és ábrázolása Példa a táblázatos leírásra ( f ) u ki = 20 * lg [db] u be f [khz] [] u be [] u (f) [db] Megjegyzés: célszerűen a fenti frekvenciákon végezzük a mérést, mert így az ábrázolás egyszerűsödik. z adott frekvenciák a logaritmikus skálán közel lineárisan helyezkednek el (a közöttük levő távolság dekádban közel azonos). Példa az ábrázolásra: Lehetséges közvetlenül db-ben meghatározni az amplitúdó-karakterisztikát (mennyiben a rendelkezésre álló műszerek alkalmasak db skála szerinti mérésre) kimeneti feszültséget mérő műszer által mutatott érték (ha a db 600 Ω-os impedanciára vonatkozik): M ki =20 lg( /0.7746) [dbm] bemeneti feszültséget mérő műszer által mutatott érték (bár a bemeneti feszültséget a mérés során változatlanul tartjuk, a függvénygenerátor hibájából következően a bemeneti feszültség kis mértékben változhat): M be=20 lg(u be /0.7746) [dbm] z erősítés abszolút-értékben db-ben (f)=m ki -M be [db] Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 6.

7 Megjegyzés: lehetőség van az amplitúdó-karakterisztikát (csak jellegét) illetve a határfrekvenciákat meghatározni relatív frekvencia-karakterisztika méréssel is. Ebben az esetben a közepes frekvencián a kimeneten mért feszültséget 0 db-nek véve (függetlenül annak számszerű értékétől és a továbbiakban a bemeneti feszültséget változatlanul hagyva) változtatva a frekvenciát az ehhez képesti kimeneti jel változást a műszeren db-ben közvetlenül leolvashatjuk. Meghatározások: közepes frekvencia(f 0 ) az átviteli karakterisztika közel lineáris tartományának a közepe. z alsó és a felső határfrekvencia (f a és f b ) a közepes frekvencián mért erősítéstől ±3dB-lel eltérő erősítéshez tartozó frekvenciák. sávszélesség (B) az alsó és a felső határfrekvencia különbsége. 2. Mérőhelyek mérőhelyek tápellátásának be- és kikapcsolása Bekapcsolási sorrend: 1. Helyezzük feszültség alá a mérőhelyet a kulcsos főkapcsolóval. Sikertelen bekapcsolási kísérlet esetén ellenőrizze, hogy az asztalban levő kismegszakító vagy az áramvédő-relé nincs-e leoldva. Egyéb esetekben a mérésvezetőt kell értesíteni. 2. z asztali mérőműszerek a mérőhelyek betáp-sávjaihoz vannak csatlakoztatva. Kapcsolja be a betáp-sávot a billenő kapcsolójával. Kapcsolja be a mérőműszereket. 3. z asztalok két beépített többcsatornás tápegységgel rendelkeznek. z egyik többcsatornás egység egy fix 5/3 és két 0..30/1 változtatható beépített tápegységet tartalmaz. másik egység /amelyben beépített panel-mérők vannak két fix 15/1 tápegységet tartalmaz. zt a tápegységet kapcsoljuk be az előlapon található kapcsolókkal, amelyik a mérés során a mérődobozt táplálja. fix ±15 feszültségű tápegység előlapján található Hálózati kapcsoló feliratú nyomógomb a tápegység belső egységeire kapcsol csak feszültséget, de tápfeszültség a kimenetre nem kerül. kimenetre a tápfeszültség csak a DC kapcsoló bekapcsolása után kerül. 4. mérődoboz előlapján található ±15 és egyes mérések során az ±5 feliratú kapcsoló(k) bekapcsolásával adjunk feszültséget a mérőpanelre. mérőpanel tápellátása elsősorban a mérődobozon keresztül az asztalba beépített fix ±15 -os tápegységről történik. Mérések egyes fajtáinál +5-ra is szükség van, amelyet a másik beépített többcsatornás tápegység szolgáltat. beépített tápegység(ek) kimeneteit csatlakoztassuk a mérődoboz hátulján levő feliratozott csatlakozókhoz banándugós mérővezetékkel. Kikapcsolási sorrend: mérés kikapcsolása az előzőek szerint a bekapcsolással fordított sorrendben történik. Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 7.

8 Mérődoboz elrendezése az alkatrész-értékekkel Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 8.

9 3. MÉRÉSI FELDTOK 3.1. Invertáló erősítő kapcsolás R 3 U 2 U be ½µ747 Mérési feladatok 1. Állítsa össze a kapcsolást az alábbi elemértékkel (R 3 ellenállást a mérés jelenlegi szakaszában nem kell beiktatni)! =270 kω, = 27 kω 2. égezze el az ofszet-kiegyenlítést! 3. Mérje meg az erősítő erősítését! Csatlakoztassa a ±5 tartományban változtatható egyenfeszültség-forrást (szerviz panelen) az erősítő bemenetére. djon kb. 1 feszültséget a bemenetre és mérje a kimeneti feszültséget! 4. Mérje meg a kivezérelhetőség mértékét! 3. mérési pont szerinti összeállításban addig változtassa a bemeneti feszültséget, amíg a kimenet már nem követi lineárisan a bemenet változását. égezze el a mérést ellenkező polaritású bemeneti feszültség esetén is! 5. djon az erősítő bemenetére 0.5 eff értékű 1 khz frekvenciájú szinuszos jelet a funkciógenerátorból. z oszcilloszkóppal határozza meg a fáziskülönbség mértékét! 6. Mérje meg az erősítő kapcsolás bemeneti ellenállását! Csatlakoztasson a bemenet és az egyen-feszültségű jelforrás közé egy 27 kω-os (R 3 ) ellenállást. djon az U 2 bemenetre kb. 2 egyenfeszültséget és egyidejűleg mérje meg az U be feszültséget is. Ube Rbe = R3 U U 3.2. Neminvertáló erősítő kapcsolás 2 be ½µ747 Mérési feladatok u be 1. Állítsa össze a kapcsolást az alábbi elemértékkel! =270 kω, = 27 kω 2. égezze el az ofszet-kiegyenlítést! 3. Mérje meg az erősítő erősítését! Csatlakoztassa a ±5 tartományban változtatható egyenfeszültség-forrást (szerviz panelen) az erősítő bemenetére. djon kb. 0.5 egyenfeszültséget a bemenetre és mérje meg a kimeneti feszültséget! Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 9.

10 4. Mérje meg a kivezérelhetőség mértékét! 3. mérési pont szerinti összeállításban addig változtassa a bemeneti feszültséget, amíg a kimenet már nem követi lineárisan a bemenet változását. égezze el a mérést ellenkező polaritású bemeneti feszültség esetén is! 5. djon az erősítő bemenetére 0.5 eff értékű 1 khz frekvenciájú szinuszos jelet. z oszcilloszkóppal határozza meg a fáziskülönbség mértékét! 3.3. Invertáló bemenet felöl vezérelt összegző erősítő U a R 3 U b ½µ747 Mérési feladatok 1. Állítsa össze a kapcsolást az alábbi elemértékkel: =R 3 =27 kω, = 12 kω! 2. égezze el az ofszet-kiegyenlítést! 3. djon az a bemenetre kb. 3, a b bemenetre kb. -4 egyenfeszültséget. Mérje meg a kimeneti feszültségeket és határozza meg, hogy a kimeneti jelben az a ill. a b bemenet jele mekkora súllyal részesedik! 4. djon a b bemenetre kb. 1 eff, 1 khz-s szinusz alakú jelet, az a bemenetre pedig akkora egyenfeszültséget, hogy a kimenet lüktető egyenfeszültség legyen! Mérje meg, hogy mekkora egyenfeszültséget kellett az a bemenetre adnia ennek az állapotnak az eléréséhez! Indokolja meg az eredményt! Figyelje meg, hogy hogyan változik a kimeneti jel alakja, ha a bemeneti feszültséget az a ponton tartományban változtatja! 3.4. Kivonó erősítő R 3 U a ½µ747 U b R 4 1. Állítsa össze a kapcsolást az alábbi elemértékekkel: R l = =12 kω, R 3 =R 4 = 27 kω! 2. égezze el az ofszet-kiegyenlítést! 3. djon az "a" bemenetre +2 -ot, a "b" bemenetre +3 -ot. Mérje meg a kimeneti feszültséget, számítsa ki az erősítést! 4. Kösse össze a két bemenetet és adjon a közös bemenetre a tartományban egyenfeszültséget 1 -os lépésenként! Mérje meg a kimeneti feszültséget és határozza meg a kapcsolás közösmódusú elnyomási tényezőjét! Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 10.

11 3.5. Integrátor C U be ½µ Állítsa össze a kapcsolást az alábbi elemértékekkel: = 100 kω, =12 kω, C = 10 nf! 2. égezze el az ofszet-kiegyenlítést! 3. djon az integrátor bemenetére 1 eff értékű szinuszosan változó jelet a 20Hz...10kHz tartományban (célszerűen először a 20, 50, 100, 200, 500 Hz, 1, 2, 5, 10 khz frekvenciákon végezze el a mérést, majd ahol eltérést tapasztal az ideális integrátor karakterisztikájától, ott sűrítse a mérési pontokat)! Mérje meg és ábrázolja az amplitúdó-karakterisztikát! Jelölje be azt a tartományt, amelyben a kapcsolás integrátorként használható! karakterisztika alapján határozza meg az integrálási időállandót! kapcsolási rajz alapján számítással ellenőrizze a kapott érték helyességét! 4. djon az integrátor bemenetére négyszögjelet, amelynek lineáris középértéke kb. 0, amplitúdója ±1, frekvenciája 130 Hz; 1.3 khz; 5 khz! Rajzolja le és értelmezze a kimeneti jelalakokat! 5. djon az integrátor bemenetére az integrálási időállandónak megfelelő frekvenciájú szinuszosan változó 1 eff értékű jelet! Mérje meg oszcilloszkóppal a ki- és bemeneti jel közötti fáziseltérést! 3.6. Differenciátor C U be ½µ Állítsa össze a kapcsolást az alábbi elemértékekkel: =12 kω, = 100 kω, C = l.5 nf! 2. djon a bemenetre 10 Hz 20 khz frekvencia-tartományban (10, 20,50, 100, 200, 500 Hz, 1, 2, 5, 10, 20 khz) 1 eff értékű szinuszosan változó jelet! Mérje meg kimeneti jeleket! Ábrázolja az amplitúdó-karakterisztikát! karakterisztika alapján határozza meg a differenciálás időállandóját! Ellenőrizze számítással a mért érték helyességét! 3. djon a kapcsolás bemenetére ±1 amplitúdójú 100 Hz, 1kHz, 10 khz frekvenciájú négyszög alakú jelet! Rajzolja le és értelmezze a kimeneti jelalakokat! Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 11.

12 3.7. PI-alaptag R 3 C u be ½µ Állítsa össze a kapcsolást az alábbi elemértékekkel: =8,2 kω, =12 kω, C=10 nf, R 3 = 270 kω! 2. égezze el az ofszet-kiegyenlítést! 3. djon a bemenetre a 100Hz..20kHz tartományban 0.5 eff értékű szinuszosan változó jelet! Mérje meg a kimeneti jeleket! Ábrázolja az amplitúdó-karakterisztikát! karakterisztika alapján határozza meg az arányos- és az integráló tartományt. 4. djon a bemenetre 100 Hz, 1 és 10 khz frekvenciájú, ±0.5 amplitúdójú négyszög alakú jelet, amelynek egyenkomponense 0! Közelítőleg ábrázolja a jelalakokat és értelmezze azokat! 3.8. Neminvertáló bemenetről vezérelt komparátor ½µ747 u be 1. Állítsa össze a kapcsolást az alábbi elemértékekkel: = 12 kω, = 100 kω! 2. djon a komparátor bemenetére a tartományban egyenfeszültséget 0,5 -os lépésközönként! ( billenési pontok környékén növelje a mérési pontok számát!) Mérje a kimeneti feszültséget! Ábrázolja a komparátor transzfer karakterisztikáját és határozza meg a hiszterézis-tartomány nagyságát! 3.9. Invertáló bemenetről vezérelt komparátor u be ½µ747 Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 12.

13 1. Állítsa össze a kapcsolást az alábbi elemértékekkel = 8,2 kω, = 100 kω! 2. djon a komparátor bemenetére a tartományban egyenfeszültséget 0,5 -os lépésközönként! ( billenési pontok környékén növelje a mérési pontok számát!) Határozza meg a billenési feszültségek értékét! Ábrázolja a komparátor transzfer függvényét és határozza meg a hiszterézis-tartomány nagyságát! stabil multivibrátor (M) ½µ747 R 3 U ki u c C l. Állítsa össze a kapcsolást az alábbi elemértékekkel: =12 kω, =27 kω,r 3 =12 kω, C=68 nf! 2. Oszcilloszkóp segítségével határozza meg az M frekvenciáját! izsgálja meg a kondenzátor feszültségének (u c ) jelalakját! Ábrázolja a kimeneti feszültség és a kondenzátor feszültség jelalakját közös ábrában! Földfüggő terhelésű áramgenerátor R 3 R 5 U a ½µ747 R 6 U b R 4 R t m 1. Állítsa össze a kapcsolást az alábbi elemértékekkel = =12 kω, R 3 =R 4 =27 kω, R 5 =R 6 =1 kω, R t = 0Ω! 2. Kösse az "a" bemenetet földpotenciálra! djon a "b" bemenetre a tartományban 1 -os lépésként egyenfeszültséget és mérje meg a kimeneti áramot! Ábrázolja az átviteli karakterisztikát! Határozza meg a K=dI ki /du be konverziós tényezőt! 3. égezze el a 2. feladatot úgy, hogy a "b" bemenetet kösse földpotenciálra és az "a" bemenet felől vezérelje az áramgenerátort! Ábrázolja közös karakterisztikában a két mérés eredményeit! Dr. Kovács Ernő: Műveleti erősítők mérése levelező tagozatos, főiskolai szintű villamosmérnök hallgatóknak (2003.) 13.

DR. KOVÁCS ERNŐ TRANZISZTOROS KAPCSOLÁSOK MÉRÉSE

DR. KOVÁCS ERNŐ TRANZISZTOROS KAPCSOLÁSOK MÉRÉSE MISKOLCI EYETEM ÉPÉSZMÉRNÖKI ÉS INFORMTIKI KR ELEKTROTECHNIKI- ELEKTRONIKI TNSZÉK DR. KOÁCS ERNŐ TRNZISZTOROS KPCSOLÁSOK MÉRÉSE illamosmérnöki BSc alapszak Nappali tagozat MÉRÉSI UTSÍTÁS 2007. MISKOLCI

Részletesebben

MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)

MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) Miskolci Egyetem Elektrotechnikai- Elektronikai Intézeti Tanszék MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) A mérések célja: megismerni a leggyakoribb alap- és alkalmazott

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre

Részletesebben

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:

Részletesebben

1. ábra A Wien-hidas mérőpanel kapcsolási rajza

1. ábra A Wien-hidas mérőpanel kapcsolási rajza Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Mûveleti erõsítõk I.

Mûveleti erõsítõk I. Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza

Részletesebben

Zh1 - tételsor ELEKTRONIKA_2

Zh1 - tételsor ELEKTRONIKA_2 Zh1 - tételsor ELEKTRONIKA_2 1.a. I1 I2 jelforrás U1 erősítő U2 terhelés 1. ábra Az 1-es ábrán látható erősítő bemeneti jele egy U1= 1V amplitúdójú f=1khz frekvenciájú szinuszos jel. Ennek megfelelően

Részletesebben

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

Egyszerű áramkör megépítése és bemérése

Egyszerű áramkör megépítése és bemérése . mérés Egyszerű áramkör megépítése és bemérése Bevezetés A szokásos mérnöki megközelítések az áramkörtervezésben azon alapulnak, hogy az elméleti ismeretek alapján elsőként az áramkör egy modelljét építik

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. 54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,

Részletesebben

5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA

5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA 5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet

Részletesebben

1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása

1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása Mechatronika, Optika és Gépészeti Informatika Tanszék M7 A mérés célja: A mérés során felhasznált eszközök: A mérés során elvégzendő feladatok: 1. A mérés tárgya: Műveleti erősítők alkalmazása D524 Analóg

Részletesebben

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Tranzisztoros erősítő vizsgálata Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Mi az emitterkövető kapcsolás 3 jellegzetessége a földelt emitterűhöz

Részletesebben

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE MÉŐEŐSÍTŐK MÉŐEŐSÍTŐK EEDŐ FESZÜLTSÉGEŐSÍTÉSE mérőerősítők nagy bemeneti impedanciájú, szimmetrikus bemenetű, változtatható erősítésű egységek, melyek szimmetrikus, kisértékű (általában egyen-) feszültségek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

DTMF Frekvenciák Mérése Mérési Útmutató

DTMF Frekvenciák Mérése Mérési Útmutató ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet DTMF Frekvenciák Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: Bevezető A Proto Board 2. mérőkártya olyan

Részletesebben

Elektronika Oszcillátorok

Elektronika Oszcillátorok 8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja

Részletesebben

sz. mérés (négypólus)

sz. mérés (négypólus) 14 2.4 4. sz. mérés (négypólus) 4.10 Négypólus paraméterek mérése, T kapcsolás (4.10-3 ábrától a 4.10-11 ábráig) 10. ábra A jegyzetben általánosan tárgyaltuk a négypólusokat, a mérend T típusú négypólus

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

* Egyes méréstartományon belül, a megengedett maximális érték túllépését a műszer a 3 legkisebb helyi értékű számjegy eltűnésével jelzi a kijelzőn.

* Egyes méréstartományon belül, a megengedett maximális érték túllépését a műszer a 3 legkisebb helyi értékű számjegy eltűnésével jelzi a kijelzőn. I. Digitális multiméter 1.M 830B Egyenfeszültség 200mV, 2, 20,200, 1000V Egyenáram 200μA, 2, 20, 200mA, 10A *!! Váltófeszültség 200, 750V 200Ω, 2, 20, 200kΩ, 2MΩ Dióda teszter U F [mv] / I F =1.5 ma Tranzisztor

Részletesebben

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak

Részletesebben

1. ábra A Meißner-oszcillátor mérőpanel kapcsolási rajza

1. ábra A Meißner-oszcillátor mérőpanel kapcsolási rajza Ismeretellenőrző kérdések mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével! 1. Mi a Meißner-oszcillátor

Részletesebben

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Modulációk vizsgálata

Modulációk vizsgálata Modulációk vizsgálata Mérés célja: Az ELVIS próbapanel használatának és az ELVIS műszerek, valamint függvénygenerátor használatának elsajátítása, tapasztalatszerzés, ismerkedés a frekvencia modulációs

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Villamos mérések, vizsgálati technológiák

Villamos mérések, vizsgálati technológiák Tordai György Villamos mérések, vizsgálati technológiák A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS

Részletesebben

ANALÓG ÉS DIGITÁLIS TECHNIKA I

ANALÓG ÉS DIGITÁLIS TECHNIKA I ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐADÁS 2010/2011 tanév 2. félév 1 Aktív szűrőkapcsolások A

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Audio- és vizuáltechnikai műszerész szakma gyakorlati oktatásához OKJ száma: 35 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának

Részletesebben

Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola. GVT-417B AC voltmérő

Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola. GVT-417B AC voltmérő Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola Elektronikus anyag a gyakorlati képzéshez GVT-417B AC voltmérő magyar nyelvű használati útmutatója 2010. Budapest Tartalomjegyzék

Részletesebben

BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató

BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató Aktív Szűrő Mérése - Mérési Útmutató A mérést végezte ( név, neptun kód ): A mérés időpontja: - 1 - A mérés célja, hogy megismerkedjenek a Tina Pro nevű simulációs szoftverrel, és elsajátítsák kezelését.

Részletesebben

E-Laboratórium 5 Közös Emitteres erősítő vizsgálata NI ELVIS-II tesztállomással Mérés menete

E-Laboratórium 5 Közös Emitteres erősítő vizsgálata NI ELVIS-II tesztállomással Mérés menete E-Laboratórium 5 Közös Emitteres erősítő vizsgálata NI ELVIS-II tesztállomással Mérés menete Mérési feladatok: 1. Egyenáramú munkaponti adatok mérése Tápfeszültség beállítása, mérése (UT) Bázisfeszültség

Részletesebben

Tranzisztoros erősítő alapkapcsolások vizsgálata

Tranzisztoros erősítő alapkapcsolások vizsgálata 5. mérés Tranzisztoros erősítő alapkapcsolások vizsgálata Bevezetés Az analóg elektronika, ezen belül is a tranzisztoros alapkapcsolások egy tipikus példáját jelentik azon villamosmérnöki ismereteknek,

Részletesebben

2. MÉRÉS. Poto Board 4. mérőkártya. (Rádiós és optikai jelátvitel vizsgálata)

2. MÉRÉS. Poto Board 4. mérőkártya. (Rádiós és optikai jelátvitel vizsgálata) 2. MÉRÉS Poto Board 4. mérőkártya (Rádiós és optikai jelátvitel vizsgálata) COM 3 LAB BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Tartalom Bevezető.

Részletesebben

Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról

Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról A mérés helyszíne: A mérés időpontja: A mérést végezték: A mérést vezető oktató neve: A jegyzőkönyvet tartalmazó

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

1. ábra A PWM-áramkör mérőpanel kapcsolási rajza

1. ábra A PWM-áramkör mérőpanel kapcsolási rajza 1. ábra A PWM-áramkör mérőpanel kapcsolási rajza 2. ábra A PWM-áramkör mérőpanel beültetési rajza SZINUSZOS OSZCILLÁTOROK: SZINTETIZÁLT SZINUSZOS ÁRAMKÖRÖK MÉRÉSI UTASÍTÁS 1/6 Nyomókapcsolók balról jobbra:

Részletesebben

O s z c i l l á t o r o k

O s z c i l l á t o r o k O s z c i l l á t o r o k Az oszcillátorok periodikus jelet előállító jelforrások, generátorok, azaz olyan áramkörök, amelyeknek nincs bemenete, csak kimenete. A jelgenerálás alapja a pozitív visszacsatolás.

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1 1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK 1. feladat Maximális pontszám: 25 pont Elektrotechnika feladat RC tag számítása Egy C = 300 nf kapacitású kondenzátort egy R = 10 kω-os

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Különleges analóg kapcsolások. Elmélet Közönséges és precíz egyenirányítók-, mûszer-erõsítõk-, audio erõsítõk, analóg szorzók-, modulátorok és demodulátorok-,

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

Sokcsatornás DSP alapú, komplex elektromos impedancia mérő rendszer fejlesztése

Sokcsatornás DSP alapú, komplex elektromos impedancia mérő rendszer fejlesztése Sokcsatornás DSP alapú, komplex elektromos impedancia mérő rendszer fejlesztése Karotázs Tudományos, Műszaki és Kereskedelmi Kft. Audiotechnika Kft. Projektbemutató előadás Elektromos Impedancia Mérésére

Részletesebben

Digitális multiméterek

Digitális multiméterek PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)

Részletesebben

Műveleti erősítők alapkapcsolásai A Miller-effektus

Műveleti erősítők alapkapcsolásai A Miller-effektus Műveleti erősítők alapkapcsolásai A Miller-effektus Berta Miklós 1. Elméleti összefoglaló A műveleti erősítő (1. ábra) olyan áramkör, amelynek a kimeneti feszültsége a következőképpen függ a bemenetére

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 2. rész 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások Losonczi Lajos: Analóg Áramkörök

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

Elektronika 2. TFBE5302

Elektronika 2. TFBE5302 Elektronika 2. TFBE5302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Impulzustechnikai áramkörök elemzése

Impulzustechnikai áramkörök elemzése 2. mérés Impulzustechnikai áramkörök elemzése Az impulzustechnikai áramkörökben a tranzisztorok kapcsoló üzemmódban működnek. A kapcsoló megszakított állapotát a lezárt üzemmódú tranzisztor valósítja meg,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Nagyfrekvenciás rendszerek elektronikája házi feladat

Nagyfrekvenciás rendszerek elektronikája házi feladat Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja

Részletesebben

4. Mérés. Tápegységek, lineáris szabályozók

4. Mérés. Tápegységek, lineáris szabályozók 4. Mérés Tápegységek, lineáris szabályozók 0.04.07. A régi időkben az elektronika szó hallatán mindenki a világításra és a villanymotorokra asszociált egyből, hiszen ebből állt valaha az elektronika. Később

Részletesebben

Házi Feladat. Méréstechnika 1-3.

Házi Feladat. Méréstechnika 1-3. Házi Feladat Méréstechnika 1-3. Tantárgy: Méréstechnika Tanár neve: Tényi V. Gusztáv Készítette: Fazekas István AKYBRR 45. csoport 2010-09-18 1/1. Ismertesse a villamos jelek felosztását, és az egyes csoportokban

Részletesebben

Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata

Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből álló hálózatok

Részletesebben

ÍRÁSBELI FELADAT MEGOLDÁSA

ÍRÁSBELI FELADAT MEGOLDÁSA 54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Elektronika 1. (BMEVIHIA205)

Elektronika 1. (BMEVIHIA205) Elektronika. (BMEVHA05) 5. Előadás (06..8.) Differenciál erősítő, műveleti erősítő Dr. Gaál József BME Hálózati endszerek és SzolgáltatásokTanszék gaal@hit.bme.h Differenciál erősítő, nagyjelű analízis

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő

PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő GW Instek PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő Új termék bejelentése A precízen elvégzett mérések nem hibáznak GW Instek kibocsátja az új PCS-1000I szigetelt kimenetű nagypontosságú

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Elektromechanikai rendszerek szimulációja

Elektromechanikai rendszerek szimulációja Kandó Polytechnic of Technology Institute of Informatics Kóré László Elektromechanikai rendszerek szimulációja I Budapest 1997 Tartalom 1.MINTAPÉLDÁK...2 1.1 IDEÁLIS EGYENÁRAMÚ MOTOR FESZÜLTSÉG-SZÖGSEBESSÉG

Részletesebben

1. ábra a függvénygenerátorok általános blokkvázlata

1. ábra a függvénygenerátorok általános blokkvázlata A függvénygenerátorok nemszinuszos jelekből állítanak elő kváziszinuszos jelet. Nemszinuszos jel lehet pl. a négyszögjel, a háromszögjel és a fűrészjel is. Ilyen típusú jeleket az úgynevezett relaxációs

Részletesebben

Elektronikus műszerek Analóg oszcilloszkóp működés

Elektronikus műszerek Analóg oszcilloszkóp működés 1 1. Az analóg oszcilloszkópok általános jellemzői Az oszcilloszkóp egy speciális feszültségmérő. Nagy a bemeneti impedanciája, ezért a voltmérőhöz hasonlóan a mérendővel mindig párhuzamosan kell kötni.

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

Teljesítmény-erősítők. Elektronika 2.

Teljesítmény-erősítők. Elektronika 2. Teljesítmény-erősítők Elektronika 2. Az erősítés elve Erősítés: vezérelt energia-átalakítás Vezérlő teljesítmény: Fogyasztó teljesítmény-igénye: Tápforrásból felvett teljesítmény: Disszipálódott teljesítmény:

Részletesebben

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok

Részletesebben