1. tudáskártya. Energiaforrás: szél. EnergiaVáros. Mit kell tudni a szélenergiáról?

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. tudáskártya. Energiaforrás: szél. EnergiaVáros. Mit kell tudni a szélenergiáról?"

Átírás

1 1. tudáskártya Energiaforrás: szél Mit kell tudni a szélenergiáról? A szelet régóta használjuk vitorlás hajók meghajtására és szélmalmok működtetésére. Ma már a szél erejét óriási szélturbinák segítségével áramtermelő generátorok forgatására is használjuk. Szélerőműparknak azokat a létesítményeket nevezzük, ahol sok ilyen turbina épül egy helyen. Magyarországon a szélenergia ígéretesen fejlődő, de egyelőre kevéssé kiaknázott megújuló energiaforrás. A szél ráfúj a turbina lapátjaira, és ezzel forgatni kezdi azokat. Az elektromos energiát a torony belsejében vezetékek juttatják el egy földbe ásott, vastag kábelig. A lapátok egy tengelyre vannak erősítve, amelyhez gyorsan forgó fogaskerekek csatlakoznak. A fogaskerekek egy generátornak nevezett gépet hajtanak meg, amely pedig áramot termel. A szélenergiával történő áramtermelés Előnyök A szél megújuló energiaforrás, így korlátlan ideig rendelkezésre áll. Egyáltalán nem jár a globális felmelegedést fokozó szén-dioxidkibocsátással. A szélerőműparkok építése egyszerű, használatuk pedig biztonságos. Nem tudjuk befolyásolni, mikor fújjon a szél. Nagyon gyenge vagy nagyon erős szélben a turbinák leállnak. Szélerőművek csak olyan területeken építhetők, ahol sokat fúj a szél például dombvidéken. Nem mindenki szereti a szélerőműparkok látványát. A forgó lapátok veszélyt jelentenek a repülő rovarok, madarak számára. A turbinában olyan berendezések vannak, amelyek gondoskodnak róla, hogy mindig a szél irányába nézzen, illetve szélviharban leállítják a forgását. Tények és adatok Magyarországon tíz nagyobb teljesítményű szélerőműpark üzemel. Ezek a következők: Toronyszám Telj./torony Össztelj. (db) (MW) (MW) 1. Kisigmánd MW 2. Ács MW 3. Levél MW 4. Levél MW 5. Böny MW 6. Nagyigmánd MW 7. Ács MW 8. Bábolna MW 9. Sopronkövesd MW 10. Mosonmagyaróvár MW Ezen kívül főleg az ország északnyugati részében találhatóak még szélerőművek ( Mosonszolnok, Szápár, Vép, Csorna, Bakonycsernye, Jánossomorja). A szélenergia az ország áramellátásának 0,76%-át fedezi ben már százhetven szélerőmű működik Magyarországon, ezek együttes kapacitása 329 megawatt.

2 2. tudáskártya Energiaforrás: víz Mit kell tudni a vízenergiáról? A mozgó vízben hatalmas energia rejlik. A vízenergia lényege, hogy a mozgásban lévő víz mozgási energiáját felhasználva elektromos energiát termelünk. Manapság a vízenergiát két módon hasznosítjuk: vagy hatalmas tározókat és gátakat (a víz útjába emelt akadályokat) építünk, amelyek elzárják a vizet és irányítják áramlását; vagy pedig a vizet a magasabb tározóból egy alacsonyabba engedve gépeket hajtunk meg vele. Így működik a vízerőmű 1. A vízerőműveknek sok vízre van szükségük, ezért egy tározó létesítéséhez egy egész völgyet elárasztanak. 5. A turbinák generátorokhoz kapcsolódnak, amelyek áramot termelnek. 2. A völgy alján betonból erős gátat építenek, amely a vizet a tározóban tartja. 4. Amikor a zsilipeket kinyitják, a víz a csöveken keresztül a turbinákhoz áramlik. 3. A gát belsejében nagyméretű csövek találhatók, bennük zsilipekkel, amelyeken a víz keresztüláramolhat. A vízenergia felhasználásával történő áramtermelés Előnyök Egyáltalán nem jár a globális felmelegedést fokozó szén-dioxid-kibocsátással. Megújuló energiaforrás, mivel a tározókat feltöltő esők nem apadnak el. Egyes gátak képesek elraktározni a vizet, így akkor termelhetünk áramot, amikor akarunk. Tények és adatok Ma Magyarországon 37 vízerőmű működik. A vízerőműveket nagyobb folyók vagy vízfolyások, víztározók közelébe építik, illetve olyan helyekre, ahol könnyen el lehet zárni a víz útját. A vízenergia az ország áramellátásának 2%- át fedezi (ez rendkívül alacsony arány!). A tározók létesítése során értékes földterületeket árasztanak el, így lakóterületek és természetes élőhelyek veszhetnek oda. A vízerőművek építésére alkalmas helyszínek például a hegységek sok esetben távol esnek a lakott területektől, ahol az energiára szükség van. A duzzasztógátak ökológiai problémákat okozhatnak.

3 3. tudáskártya Energiaforrás: nap Mit kell tudni a napenergiáról? A napenergia a Napból származik. Napunk rengeteg energiát bocsát ki, amely melegítésre használható, és elektromos energiává alakítható. Kétféle napelempanel létezik: a napkollektort vízmelegítésre használják, míg a fotogalván elemek (napelemek) közvetlenül elektromos energiává alakítják a fény energiáját. A napfényes országokban például Ausztráliában óriási naperőművek működnek. A napenergiát általában kis léptékben hasznosítják. Vannak például olyan lakóházak, amelyek fűtésrendszerét napkollektorokkal egészítették ki. Így működnek a napelemek 1. A Nap fény formájában bocsát ki energiát. 3. Az elektromos energiát vezetékekkel juttatják el oda, ahol szükség van rá. 2. A napelemek olyan anyagból készülnek, amely elnyeli és elektromos energiává alakítja a napfényt. 4. A napelemek igen kicsik és egyenként nagyon kevés elektromos energiát termelnek, ezért a panelek sok összekapcsolt elemet tartalmaznak. Hazánkban a Mátrai Erőmű területén van egy 16 MW kapacitású solarpark. Pécsen pedig egy 10 MW-os naperőmű parkot létesítettek. Ezek mellett sok kisebb ipari üzem, csarnok tetején található már napelem, amivel saját felhasználásra termelnek villamos energiát végén már 110 MW feletti összkapacitással bírtak az országban. A napenergiával történő áramtermelés Előnyök A napelemek szinte bárhol alkalmazhatók, működésük zajtalan. A napenergia egyáltalán nem jár globális felmelegedést okozó szén-dioxid-kibocsátással. A napenergia megújuló forrás, ráadásul a nap hője és fénye ingyen van. A legújabb adatok alapján (Bloomberg New Energy Finance) a napenergia olcsóbb megoldás lett, mint szél. A nagy léptékű telepítésekben a támogatásmentes napenergia elkezdte legyőzni a szenet és földgázt is. Előrejelzései szerint 2025-re már világszinten alacsonyabb lesz az ára, mint a szénerőművekben előállított áramé. A napelemek felhős időben kevésbé hatékonyak, éjjel pedig egyáltalán nem termelnek energiát. A napelemek előállítása költséges, a bennük lévő nehézfémek miatt a gyártás nem környezetbarát. Tények és adatok Magyarországon több ezer helyi, kisebb, napenergiát használó fűtési rendszer üzemel, ugyanakkor csak nagyon kevés házon található napelem ben a bruttó magyar villamosenergia termelés 10,5%-a származott megújuló forrásból, ennek azonban csak 3%-a volt napenergia. Napelemekkel üzemelnek a műholdak és az űrállomások is. A napelempanelek a déli fekvésű tetőkön működnek a leghatékonyabban.

4 4. tudáskártya Energiaforrás: biomassza Mit kell tudni a biomasszáról? A biomassza alatt olyan növényi és állati eredetű anyagokat, illetve élelmiszer-hulladékokat értünk, amelyek égetése során felszabaduló elektromos energia a hő előállítására használható. Az emberiség történetének kezdete óta tüzel fával, ma pedig a faforgácsból és egyéb növényi anyagokból már áramot is előállíthatunk. Így működik a biomassza-erőmű 1. A biomasszát (pl. faforgácsot vagy szalmát) az erőműhöz szállítják. 3. A biomasszát elégetik, hogy vízforralással gőzt nyerjenek. 2. A biomasszát a kazánhoz viszik. Kazán Tüzelőanyagtároló Tüzelőanyagátvevő Gőzturbina és generátor 4. A gőz turbinákat forgat meg, amelyek meghajtják az áramot termelő generátorokat. Áramtermelés biomassza felhasználásával Előnyök A biomassza megújuló energiaforrás az eltüzelt növények helyére újabbak ültethetők. Segíti a mező- és erdőgazdaságból élőket azzal, hogy piacot teremt a terményeiknek. Szénsemleges energiaforrás. Ez azt jelenti, hogy a tüzelőanyag elégetése során pontosan annyi szén-dioxid kerül a levegőbe, amennyit a növények fejlődésük során megkötöttek. A biomassza alapú áramtermelés drága. A biomassza-erőműveket bőséges biomasszaforrások közelében kell megépíteni. Az élelmiszer- és takarmánynövények termesztését (és kereskedelmi árát) hátrányosan befolyásolhatja az energianövények termesztésének erőteljes növelése. Tények és adatok Magyarországon a hazai megújuló energiaforrások kb. 80%-át teszi ki a biomassza. A jelenleg üzemelő vegyes tüzelésű erőművek nagyrészében biomasszát is égetnek. A biomassza az ország áramtermelésének 3,9%-át biztosította 2014-ben. A szennyvíztisztító üzemek rengeteg biomasszát termelnek, és az állati eredetű hulladék is hasznosítható. Egyes hazai iskolák faforgács-tüzelésű kazánnal fűtenek.

5 5/a. tudáskártya Energiaforrás: biogáz Mi a biogáz? A biogáz 50-70% metánt tartalmazó gázelegy, mely szerves anyagok levegőtől elzárt lebontása során keletkezik. A metán mellett tartalmaz szén-dioxidot, kénhidrogént, nitrogént, szén-monoxidot és vizet is. A biogázt szerves anyagokból állandó hőmérsékleten keverés mellett a metanogénbaktériumok bontják le. A biogázt víztelenítés és kéntelenítés után égetik el. Típusa: Megújuló Az eljárás bemutatása A biogáz olyan gázkeverék, mely a szerves anyagok levegőtől elzárt környezetben történő lebontásából keletkezik. Összetétele 50-70% éghető metán, 30-50% széndioxid és kis mennyiségben különböző gázelegy. A biogázüzem (biogáz kiserőmű) lényegében híg- és szilárdanyag-adagolóból, fermentorból, utóerjesztőből, végtárolóból és gázmotorból áll. A biomasszából anaerob kezeléssel nyert, energetikailag hasznosítható biogáz-termeléshez nyersanyag-utánpótlásként energiacélú növényeket, trágyát és különböző hulladékokat használhatunk. A hulladék-alapanyagot szükség esetén szét kell választani, fel kell aprítani és hőkezelésnek kell alávetni. A fermentorban kezdődik, az utóerjesztőkben folytatódik, illetve befejeződik a szubsztrátumok szerves anyagának lebomlása és a biogáz képződés. Ezt követően kerül sor a biogáz gázmotorban történő elégetésére. Milyen alapanyagokból készülhet biogáz? Energiacélú növények (silókukorica, cukorcirok) Különböző hulladékok: Állati trágya Burgonyafeldolgozási hulladék Élelmiszeripari hulladék Gabonafeldolgozási hulladék Halfeldolgozási hulladékok Használt éttermi olajok, zsírok Háztartási biohulladék Szennyvíziszap Szeszipari maradékok Vágóhídi hulladékok Zsírleválasztó maradék

6 5/b. tudáskártya Mire használható a biogáz? Kisebb biogázüzemek környezetében a biogázt közvetlenül istállók, üvegházak fűtésére használhatják. Nagyobb üzemek esetében a biogázt villamos energiává alakítják át, ami rákapcsolható a környék áramszolgáltatójának hálózatára. A technológia mai szintjén a biogázt metánra le lehet tisztítani, ezt cseppfolyósítva a biogáz üzemanyagként is felhasználható, vagy a földgázhálózatba is be lehet táplálni. Előnyök A szerves hulladék helyben környezetbarát módon történő kezelése Szerves anyag körforgásának helyben történő lezárása Helyi, szigetszerű energiatermelés, a saját energiaigény fedezése Megtermelt energiatöbblet értékesítésével extra jövedelemforrás teremtése Megtermelt hő helyben történő hasznosítása Stabilizált szerves trágya és talajjavító anyag előállítása A biogázerőműveket bőséges biogázforrások közelében kell megépíteni A megtermelt hőenergia felhasználásának biztosítása Magas alapanyag költség Magas beruházási költség Állami és/vagy európai uniós támogatás nélkül nem megtérülő beruházás Hány biogázerőmű található Magyarországon? Hazánkban a év végén közel 40 MW beépített teljesítményű biogázerőmű működött. Ezek közül a legnagyobb erőművek: Kaposvár: 4,56 MW Szarvas: kb. 4 MW Nyírbátor: 3,49 MW Tatabánya: 2,02 MW Mekkora a szén-dioxid-kibocsátás? A biogázüzem fosszilis energiahordozó feldolgozását váltja ki és egy zárt széndioxid-rendszer elvén működik, így környezetkímélő megoldást kínál. Mi a biogáz jövője? Magyarországon a biogázüzemi kapacitások bővítésében vannak jelentős tartalékok. A következő 5-10 évben a megfelelő finanszírozási konstrukciókkal a jelenlegi biogázüzemek számát meg lehetne duplázni, legjobb esetben triplázni. Ez 2020-ra biogázüzemet jelentene. Alapanyag oldalról ennél is nagyobbak a lehetőségek, mivel több, mint 200 nagyobb állattartó telep található az országban. A magyarországi biogáz-potenciál MW-ra becsülhető, ezzel évente 3000 millió kwh villamos energia lenne előállítható, és 2,1 millió tonna CO2 levegőbe kerülését akadályoznák meg. Ennek ellenére a magas alapanyagköltségek, illetve bizonytalan ellátás miatt egyes erőművek már leálltak. A jelenlegi KÁT támogatás nélkül csak speciális esetekben vonzó, valamint egyéb források csökkenése miatt finanszírozása nehezebbé válik.

7 6. tudáskártya Energiaforrás: szén Mit kell tudni a szénről? A szén az a tüzelőanyag, amely országunk energiaszükségletének egy részét fedezi. Bányákban termelik ki, többnyire mélyen a föld felszíne alatt. A szén elégetésével fűteni is lehet, és többek között az acélipart is a szén látja el hőenergiával. Azonban Magyarország szénbányái kimerülőben vannak, a kitermelt szén mennyisége csökken és fütőértéke alacsony. Így működik a szénerőmű 1. Amikor a víz felforr, gőz keletkezik. A nagynyomású gőzt csöveken vezetik el. kémény 3. A nagynyomású gőz a turbinák lapátjaira áramlik és forgásba hozza őket. 4. A turbinákat generátorokkal kapcsolják össze, amelyek áramot fejlesztenek. 2. A szenet először porrá őrlik, majd a kazánban elégetik, hogy vizet melegítsenek vele. szénőrlő kazán turbinák generátor meleg víz hideg víz hűtőtorony gőzturbina és generátor 5. A generátorból kilépő vezetékek a nagyfeszültségű országos áramhálózatra csatlakoznak. Áramtermelés szén felhasználásával Előnyök A széntüzelés jelenleg az áramfejlesztés egyik legolcsóbb módja. Szénerőmű szinte mindenhol építhető. A szén elégetése során szén-dioxid keletkezik, ez a gáz pedig megakadályozza, hogy a Nap melege visszajusson a világűrbe. A Föld légköre ezáltal felmelegszik, ami többek között szárazságot okozhat, fokozza a globális felmelegedést. A szén meg nem újuló energiaforrás. A készletek korlátozottak, így előbb-utóbb ki fognak merülni. A szén szállítása nem könnyű feladat. Nehéz, ezért csak teherautóval, vonattal vagy hajóval lehet fuvarozni. Magyarország szénkészlete csekély és gyenge minőségű. Tények és adatok Magyarországon szenet már csak a Mátrai Erőműben égetnek. A Vértesi erőműben 2015-ben leállították a szenes üzemet. A széntüzelés az ország áramellátásának 14%-át fedezi. (2010. évi adat) A széntüzelésű erőművek többnyire szénbányák közelében épültek. A hazai mélységi szénbányák kimerülőben vannak, a külszíni lignitkitermelés jelentős. A hazai széntüzelési erőműveket folyamatosan biomassza-erőművekké alakítják át.

8 7. tudáskártya Energiaforrás: földgáz Mit kell tudni a földgázról? A földgáz a föld vagy a tengerfenék alatt fellelhető tüzelőanyag. Fúrás útján hozható a felszínre, ahol azután fűtésre és villamosenergia-termelésre is használják. A földgázt vezetékeken juttatják el rendeltetési helyére, például azokba az erőművekbe, ahol a földgáz elégetésével állítanak elő elektromos energiát. Így működik a kombinált ciklusú gázturbinás (CCGT) erőmű 2. A turbina egy generátort hajt meg, amely elektromos energiát termel. 1. A gázt egy gázturbinában égetik el. hőhasznosító kazán földgáz elektromos energia gőzturbina hűtőtorony 4. A kazánban előállított gőz egy gőzturbinát hajt meg, amely további áramot termel. Ennek köszönhetően a kombinált ciklusú (CCGT) erőművek nagyon hatékonyak. gőz 3. A turbinából kiáramló forró füstgázzal egy kazánban gőzt állítanak elő. A földgázzal történő áramtermelés nagynyomású gőz tápvíz kondenzátor visszatérő hűtővíz 5. A turbinából kiáramló gőzt először hűtővíz segítségével kondenzálják, mielőtt visszavezetik a kazánba. A hűtővíz visszakerül a hűtőtoronyba, ahol egy része elpárolog. A földgáz könnyű, vezetéken keresztül egyszerűen szállítható. Már egyetlen gáztüzelésű erőmű is rengeteg elektromos energiát képes termelni. A földgáztüzelésű erőművek szinte bárhová telepíthetőek. A földgáz elégetése során szén-dioxid keletkezik, ami megakadályozza, hogy a Nap melege visszajusson a világűrbe. A Föld légköre ettől felmelegszik, ami többek között kánikulát és aszályt okozhat. A földgáz meg nem újuló energiaforrás. Földgázkészleteink végesek, így előbb-utóbb ki fognak merülni. A Magyarországon felhasznált földgáz túlnyomó részét külföldről szerezzük be. Ez azt jelenti, hogy energiaellátásunk jelentősen megdrágulhat, ha a földgáz nagykereskedelmi ára felmegy. Tények és adatok A nagyobb földgáztüzelésű erőművek a Csepeli Erőmű, Budapest Erőmű, Gönyüi Erőmű, Dunamenti Erőmű. A földgáz az ország áramellátásának 29%-át fedezi. (2010-es adat) A legkorszerűbb kombinált ciklusú gázturbinás erőművek alacsony károsanyag-, illetve szén-dioxidkibocsátással üzemelnek.

9 8. tudáskártya Energiaforrás: kőolaj Mit kell tudni a kőolajról? A kőolaj egy föld alatt fellelhető tüzelőanyag. Nagyon értékes, mivel számos hasznos dolog készül belőle, például benzin és különféle műanyagok. Az olajjal időnként lakóépületeket és ipartelepeket fűtenek. Áramtermelésre is használják, de közel sem olyan mennyiségben, mint a többi fosszilis tüzelőanyagot. Magyarországon az előírások szerint a távhőtermelőknek és a nagyobb erőműveknek is kell rendelkezniük bizonyos olajtartalékkal az ellátás biztonsága miatt. Alapvetően olajtüzelésű erőműveket, kazánokat csak akkor vesznek igénybe, ha az a távhőellátás biztonságát vagy a villamosenergia-rendszer biztonságát szolgálja. Így működik a kőolajfűtésű erőmű 3. A nagynyomású gőzt csövekkel a turbinák lapátjaira vezetik, amelyek ettől nagyon gyorsan forognak. 2. Az olajat kazánokban égetik el, hogy vizet forraljanak vele. 1. A föld mélyéről kitermelt kőolajat fűtőolajjá finomítják, majd elszállítják az erőműhöz. kőolaj kazán gőz gőzturbina víz kondenzátor áram generátor 4. A turbinák generátorokat hajtanak meg, amelyek elektromos energiát fejlesztenek. 5. Miután nagyfeszültségre transzformálták, az elektromos energiát az országos hálózatba vezetik. Áramtermelés kőolaj felhasználásával Előnyök A kőolaj mind vezetékeken, mind hajón könnyen szállítható. Olajtüzelésű erőmű bárhol építhető, ahol jó a közlekedés, és elegendő mennyiségű hűtővíz áll rendelkezésre. Az olajtüzelésű erőművekben rövid idő alatt is rengeteg elektromos energiát lehet termelni. Tények és adatok A villamosenergia-rendszer biztonságát szolgáló csak olajtüzelésű erőművek Litéren (120 MW), Lőrincziben (170 MW) és Sajószögeden (120 MW) vannak. A kőolaj elégetése során szén-dioxid keletkezik, ami megakadályozza, hogy a Nap melege visszajusson a világűrbe. A Föld légköre ettől jobban felmelegszik, ami többek közt kánikulát és aszályt okozhat. Emellett több más káros anyag, például kén-dioxid is felszabadul, mely savas esőket okozhat. A kőolaj meg nem újuló energiaforrás. A Föld kőolajkészletei gyorsan fogynak. A kőolaj használata sokkal drágább, mint a széné vagy a földgázé. Magyarország kőolajból behozatalra szorul.

10 9. tudáskártya Energiaforrás: atom Mit kell tudni az atomenergiáról? Az atomenergia egy urán nevű ritka fémes, radioaktív, nagy sűrűségű kémiai anyag. Az atomenergia segítségével vizet melegítenek, amely meleg gőzzé alakul, ezzel azután elektromos energiát fejlesztenek. Nagyobb hajók vagy tengeralattjárók meghajtására is használják, mert kis mennyiségű uránból nagy mennyiségű energia állítható elő. Így működik a kőolajfűtésű erőmű 2. Egy különleges folyamat zajlik le, aminek során rengeteg hő szabadul fel. 3. A hő segítségével nagyon sok vizet melegítenek fel, hogy gőz képződjön. 4. A gőzt csöveken keresztül nagy turbinákhoz vezetik, amelyek ennek hatására nagyon gyorsan forogni kezdenek. 1. Az uránból fűtőelemeket állítanak elő, melyeket egy reaktornak nevezett különleges épületben helyeznek el. védelmi betonfal Áramtermelés atomenergia felhasználásával kazán fűtőelemek víz Előnyök Már kevés nukleáris fűtőanyaggal is rengeteg elektromos energiát lehet termelni. A nukleáris fűtőanyag könnyen hozzáférhető, tárolása pedig egyszerű. Az atomerőművek nem bocsátanak ki szén-dioxidot. Az atomerőművek nem túl népszerűek, mert sokakat aggaszt az üzemeltetés biztonsága. Az atomenergia meg nem újuló energiaforrás. A meglevő készletek kimerülése után az urán nem pótolható. Az atomenergia használata során radioaktív hulladék keletkezik, amit hosszú időre lezárt tárolókba kell temetni. Az atomerőműveket nem lehet könnyen elindítani vagy leállítani. Tények és adatok 5. A turbinák generátorokat hajtanak meg, amelyek elektromos energiát termelnek. Az elektromos energiát távvezetékeken továbbítják. Magyarországon jelenleg 4 atomerőmű üzemel, melyek egy telephelyen találhatók, Pakson. Az atomenergia Magyarország áramellátásának 40%- át fedezi. A Paksi Atomerőmű első blokkja a Duna partján létesült (1982-ben), és a Duna vizét használják a hűtéshez. Tervben van a Paks II. megépítése. Ennek keretében 2 db 1200 MW-os blokkot helyeznek üzembe 2023-ban és ben.

11 10. tudáskártya Elektromosenergia-termelés 1831-ben egy Michael Faraday nevű angol tudós ismerte fel, hogy ha egy tekercs belsejében mágnest mozgatunk, akkor elektromos energia keletkezik. Felfedezte a generátort! A modern generátorok pontosan ugyanígy működnek, csak sokkal nagyobb léptékben. Óriási tekercsek belsejében hatalmas mágneseket mozgatnak igen nagy sebességgel. Egy erőmű generátora voltos (22 kv-os) elektromos energiát is képes létrehozni. Erőművek Azokat az épületeket, ahol nagyban termelnek elektromos energiát, erőműveknek hívjuk. Az erőművek áramfejlesztő generátorainak meghajtásához nagyon sok energia kell. Hogyan termelik a legtöbb elektromos energiát? Meg nem újuló energiahordozók Szén Kőolaj Atomenergia Megújuló energiahordozók Biomassza, pl. szalma, faforgács Megújuló energiaforrások Víz Szél A tüzelőanyaggal hőt termelnek a víz felforralásához. A turbinát gőz hajtja meg. A turbinát szél vagy víz hajtja meg. A turbina egy generátort hajt meg. A generátor elektromos energiát termel. Földgáz (meg nem újuló) Szeméttelepi gáz (megújuló) A gázt egy generátort meghajtó motorban égetik el.

12 10. tudáskártya évi adatok Energiaforrás Részarány [%] Szén 18,63% Kőolajszármazékok 0,25% Földgáz 15,35% Nukleáris 52,36% Hulladék 0,67% Egyéb (Mesterséges -, kohó-, kamragáz) 3,51% Megújulók (szum) 9,23% Biomassza 6,56% Bio-, depónia-, szennyvízgáz 1% Szél 0,76% Víz 0,26% Hulladék 0,5% Nap 0,01% Biológiailag lebomló hulladék 0,64% A különböző energiaforrások részaránya Magyarország elektromos energiatermelésben

13 11. tudáskártya Az elektromos energia Amikor az elektromos energia elhagyja az erőművet, a feszültségét voltra (400 kv) növelik, hogy kisebb veszteséggel lehessen nagy távolságokra szállítani. A Magyarországon működő összes nagy erőmű elektromos energiáját az országos hálózatba, az egész ország területét lefedő elektromos hálózatba táplálják. Az országos hálózat légvezetékek és föld alatti kábelek hatalmas hálózata, amely az egész országot ellátja elektromos energiával. Sok ezer kilométer légvezetékből és föld alatti kábelből áll, amelyek transzformátorállomásokhoz csatlakoznak. A feszültséget a transzformátorállomások több lépésben csökkentik, míg végül a 230 voltos hálózati elektromos energiát a helyi szolgáltatók eljuttatják otthonunkba. Hogyan osztják el az áramot az országos hálózaton keresztül? Termelés Elosztás Átvitel Kulcsszavak Termelés Az elektromos energia előállítását jelenti, főleg erőművekben. Szuperhálózat 400 kv/275 kv Hálózat 132 kv Átvitel Nagyfeszültségű elektromos energia szállítása egy hatalmas vezetékhálózat (az országos hálózat) segítségével az országban bárhová, ahol épp szükség van rá. 230 V Transzformátorállomás 33 kv 11 kv Transzformátorállomás Elosztás Az elektromos energia eljuttatása az otthonokba, üzletekbe és iskolákba az ország különböző városaiban. Ellátás A felhasznált elektromos energia kiszámlázása a háztartásoknak, üzleteknek és iskoláknak. Magyarországon több áramszolgáltató van, ők juttatják el az elektromos energiát az ország különböző pontjaira. Tudod, hogy az általad használt elektromos energiát melyik szolgáltatótól vásároljátok?

14 12. tudáskártya Energia az otthonunkban Szinte minden háztartásban rengeteg olyan berendezés van, amely elektromos energiát használ. Vannak köztük olyanok (pl. a mobiltelefonok, zseblámpák és távirányítók), amelyek az energiát elemből vagy akkumulátorból nyerik. A nagyobb berendezések (pl. a televízió, a mosógép vagy a számítógép) hálózati áramot használnak. A hálózati áramot az adott terület helyi áramszolgáltatója juttatja el az otthonokba. A hálózati áram teljesítménye nagyobb az elemekben lévőnél, mert magasabb a feszültsége. Egy elem vagy akkumulátor 1,5 voltos, a hálózati elektromos energia pedig 230 voltos. Hogyan terjed az elektromos energia házon belül? 2. A vezetékek a fogyasztásmérőhöz csatlakoznak, amely a háztartásban elfogyasztott elektromos energia mennyiségét méri. 3. Az elektromos energia egy biztosítékdobozon (áramkörmegszakítón) is keresztülhalad. Ez a berendezés automatikusan lekapcsolja az elektromos energiát, ha valami meghibásodik. 5. A mennyezetlámpát is drótok kötik össze a kapcsolóval. 1. Az elektromos energia vezetékeken keresztül jut el otthonunkba. 4. A biztosítékdobozból (megszakítóból) kilépő drótok külön áramköröket (körvezetékeket) alkotva behálózzák az egész házat. A villanyóra megmutatja, hogy az egyes háztartások mennyi elektromos energiát használnak. A felhasznált elekromos áram mennyiségét kwh-ban mérik, jelentése kilowattóra. Egy kilowatt 1000 watt. Egy 100 W-os izzó 10 óra alatt 1 kwh elektromos energiát használ el.

15 13. tudáskártya Energia és környezet Fosszilis tüzelőanyagok Magyarország energiafogyasztásának nagy részét (még jelenleg is több mint 55%-át) fosszilis energiahordozókból állítják elő: szénből, földgázból és kőolajból. Ezek a tüzelőanyagok évmilliókkal ezelőtt keletkeztek elhalt növények és állatok maradványaiból. Amikor az erőművekben elégetjük őket, a fosszilis fűtőanyagokból szén-dioxid szabadul fel. Ez a gáz megakadályozza, hogy a Nap melege visszajusson a világűrbe, így a Föld légköre jobban felmelegszik. A megnövekedett felmelegedés sok gondot okozhat, például megemelkedhet a tengerek vízszintje, vagy egyes országok éghajlata melegebbé és szárazabbá válhat, ami megváltoztatja az emberek, növények és állatok életét. Az éghajlatváltozás hatására egyes területek elsivatagosodhatnak, az Északi- és Déli-sark jégsapkája pedig elolvadhat. A hőmérséklet emelkedése még több éhínséget okozhat a forró országokban, és az egész Földön állatfajok pusztulhatnak ki. Ha a sarki jégtakarók megolvadnak, számos part menti várost eláraszt a tenger. A technológia fejlődésének köszönhetően az erőművek ma már kevésbé szennyezik a környezetet, de sokan úgy gondolják, hogy más módját kellene találni az elektromos energiatermelésnek. Sokak szerint az atomenergiát is tovább kellene használni: bár meg nem újuló, nem termel szén-dioxidot. Megújuló energia Jelenleg is keresik az elektromos energiatermelés olyan módjait, amelyek nem termelnek szén-dioxidot. Sokan úgy gondolják, hogy ehhez megújuló energiaforrásokat kellene használni, mert a meg nem újuló fosszilis energiahordozók (pl. a földgáz) fogytán vannak. Megújuló energiaforrás például a napenergia a szélenergia a vízenergia a biomassza

16 14. tudáskártya Biztonság, 1. rész: Házon kívül A nagyfeszültségű elektromos energia mindenhol körülvesz minket, és ha nem megfelelően használjuk, veszélyes lehet. Ha a vezetéket megérintjük, vagy akár csak megközelítjük, akár halálos áramütést is kaphatunk. Légy elővigyázatos, és tartsd be az alábbi szabályokat! Légvezetékek Soha: ne érintsd meg a vezetékeket! ne horgássz vagy eregess sárkányt légvezeték közelében! ne mássz fel vezeték közelében álló fára! ne próbáld meg leszedni a vezetékre akadt játékot vagy léggömböt! Csak a helyi áramszolgáltató vállalat tudja biztonságosan leszedni onnan. ne mássz fel villanypóznára! ne menj villanyvezeték közelébe, különösen, ha az vihar vagy baleset következtében megrongálódott! Szólj egy felnőttnek, hogy értesítse az áramszolgáltatót, ha megrongálódott villanyvezetéket látsz! A telefonszám a telefonkönyvben az áramszolgáltatók szó alatt található. Az utcán Soha: ne próbáld meg leszerelni az utcai lámpák burkolatát: a belsejükben található drótoktól akár halálos áramütés is érhet! ne játssz a világító forgalmi táblákkal, mert a belsejükben elektromos áram van! ne játssz építési területen vagy az utcán ásott gödrökben, mert előfordulhat, hogy elektromos vezetékek vannak ott! Transzformátorállomások A transzformátorállomások a nem szakképzett emberek számára veszélyes helyek. Ezért szerelnek rájuk figyelmeztető jelzéseket. Életveszélyes Soha: ne próbálj labdát vagy bármi mást kihozni egy transzformátorházból! Mindig szólj egy felnőttnek, hogy értesítse az áramszolgáltatót, akik biztonságosan ki tudják onnan hozni! ne játssz transzformátorház közelében! ne dobáld semmivel a transzformátorházakat. Tönkreteheted a bennük működő berendezéseket, amitől még veszélyesebbé válnak. ne lépj be transzformátorállomásba! Ne feledd: a nagyfeszültség érintkezés nélkül is megrázhat!

17 15. tudáskártya Biztonság, 2. rész: Otthon Minden házban vannak vezetékek, amelyekben hálózati elektromos áram van. A hálózati elektromos energia erős, és ha nem megfelelően használják, veszélyes lehet: ha megráz, az sérülést vagy akár halált is okozhat. Legyél elővigyázatos és tartsd be az alábbi szabályokat: 1. A konnektorokat egy vagy két hálózati csatlakozóhoz tervezik. A hosszabbítókba több dugót is be lehet dugni, de soha ne dugj sok berendezést egyetlen aljzatba: nagyon felmelegedhet, ami veszélyes. 2. Minden ház falában több mint 100 méter elektromos vezeték fut. Nem látni őket, de ha lyukat fúrunk a falba, és véletlenül eltalálunk egyet, az halálos áramütést okozhat. 3. A konnektorba csak hálózati csatlakozót szabad dugni, semmi mást. Ha belenyúlsz vagy bármilyen tárgyat beledugsz, az súlyos sérülést okozhat, de rosszabb is történhet. 4. A víz vezeti az elektromos energiát, ezért ha esik, minden elektromos berendezést azonnal be kell hozni. 5. Ha vizes a kezed, mindig szárítsd meg, mielőtt bármilyen elektromos dologhoz (pl. kapcsolóhoz) nyúlsz! 6. Soha ne vigyél rádiót vagy más elektromos berendezést a fürdőszobába, mert a víz vezeti az elektromos áramot! 7. Soha ne dugj fémtárgyakat a kenyérpirítóba! A belsejében elektromos energia folyik, így ez veszélyes lehet. Sok embert rázott már meg az áram, mert valamilyen fémtárgygyal (pl. késsel) nyúltak a kenyérpirítóba. Ha valami beszorul a pirítóba, kapcsold ki és várd meg, amíg kihűl, majd állítsd fejre, vagy szedd ki a benne levő tárgyat fakanállal! 8. Bízd az elektromos dolgok szerelését a szakemberekre! Soha ne szedd szét a berendezéseket, mert áramütés érhet, ami nagyon veszélyes! 9. Az elektromos vezetékek megsérülhetnek. A bennük futó szigeteletlen vezetékek érintése halálos lehet, ezért az olyan berendezéseket, amelyeknek sérült a vezetéke, egyáltalán nem szabad használni: újat kell venni. 10. Amikor kihúzol valamit a konnektorból, soha ne a vezetéket húzd: mindig a dugót fogd meg!

1. tudáskártya. Energiaforrás: szél

1. tudáskártya. Energiaforrás: szél 1. tudáskártya Energiaforrás: szél Mit kell tudni a szélenergiáról? A szelet régóta használjuk vitorlás hajók meghajtására és szélmalmok működtetésére. Ma már a szél erejét óriási szélturbinák segítségével

Részletesebben

1. tudáskártya. Energiaforrás: szél

1. tudáskártya. Energiaforrás: szél 1. tudáskártya Energiaforrás: szél Mit kell tudni a szélenergiáról? A szelet régóta használjuk vitorlás hajók meghajtására és szélmalmok működtetésére. Ma már a szél erejét óriási szélturbinák segítségével

Részletesebben

1. tudáskártya. Mi az energia? Mindenkinek szüksége van energiára! EnergiaOtthon

1. tudáskártya. Mi az energia? Mindenkinek szüksége van energiára! EnergiaOtthon 1. tudáskártya Mi az energia? T E J Az embereknek energiára van szükségük a mozgáshoz és a játékhoz. Ezt az energiát az ételből nyerik. A növekedéshez is energiára Még alvás közben is van szükséged. használsz

Részletesebben

1. tudáskártya. Mi az energia? Mindnyájunknak szüksége van energiára! EnergiaOtthon

1. tudáskártya. Mi az energia? Mindnyájunknak szüksége van energiára! EnergiaOtthon 1. tudáskártya Mi az energia? Az embereknek energiára van szükségük a mozgáshoz és a játékhoz. Ezt az energiát az ételből nyerik. A növekedéshez is energiára van szükséged. Még alvás közben is használsz

Részletesebben

Hagyományos és modern energiaforrások

Hagyományos és modern energiaforrások Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk

Részletesebben

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra Feladatsor a Föld napjára oszt:.. 1. Mi a villamos energia mértékegysége(lakossági szinten)? a MJ (MegaJoule) b kwh (kilówattóra) c kw (kilówatt) 2. Napelem mit állít elő közvetlenül? a Villamos energiát

Részletesebben

Természetismeret. 1. témakör

Természetismeret. 1. témakör Természetismeret 1. témakör Mérés, mértékegységek A mérés során mennyiségi (kvantitatív) megállapításokat tudunk megtenni. A mérés összehasonlítás, ahol a mérendő mennyiséget hasonlítjuk össze a mértékegységgel.

Részletesebben

A megújuló energiahordozók szerepe

A megújuló energiahordozók szerepe Magyar Energia Szimpózium MESZ 2013 Budapest A megújuló energiahordozók szerepe dr Szilágyi Zsombor okl. gázmérnök c. egyetemi docens Az ország energia felhasználása 2008 2009 2010 2011 2012 PJ 1126,4

Részletesebben

Energetikai gazdaságtan. Bevezetés az energetikába

Energetikai gazdaságtan. Bevezetés az energetikába Energetikai gazdaságtan Bevezetés az energetikába Az energetika feladata Biztosítani az energiaigények kielégítését környezetbarát, gazdaságos, biztonságos módon. Egy szóval: fenntarthatóan Mit jelent

Részletesebben

A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13

A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13 A villamos energiát termelő erőművekről EED ÁHO Mérnökiroda 2014.11.13 A villamos energia előállítása Az ember fejlődésével nőtt az energia felhasználás Egyes energiafajták megtestesítői az energiahordozók:

Részletesebben

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!!

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!! Biogáz és Biofinomító Klaszter szakmai tevékenysége Kép!!! Decentralizált bioenergia központok energiaforrásai Nap Szél Növényzet Napelem Napkollektor Szélerőgépek Biomassza Szilárd Erjeszthető Fagáz Tüzelés

Részletesebben

Megnyitó. Markó Csaba. KvVM Környezetgazdasági Főosztály

Megnyitó. Markó Csaba. KvVM Környezetgazdasági Főosztály Megnyitó Markó Csaba KvVM Környezetgazdasági Főosztály Biogáz szerves trágyából és települési szilárd hulladékból IMSYS 2007. szeptember 5. Budapest Biogáz - megújuló energia Mi kell ahhoz, hogy a megújuló

Részletesebben

Energiatakarékossági szemlélet kialakítása

Energiatakarékossági szemlélet kialakítása Energiatakarékossági szemlélet kialakítása Nógrád megye energetikai lehetőségei Megújuló energiák Mottónk: A korlátozott készletekkel való takarékosság a jövő generációja iránti felelősségteljes kötelességünk.

Részletesebben

Megépült a Bogáncs utcai naperőmű

Megépült a Bogáncs utcai naperőmű Megépült a Bogáncs utcai naperőmű Megújuló energiát hazánkban elsősorban a napenergia, a geotermikus energia, a biomassza és a szélenergia felhasználásából nyerhetünk. Magyarország energiafelhasználása

Részletesebben

1. feladatlap. Energia az otthonunkban. Kísérlet. Név: EnergiaVáros

1. feladatlap. Energia az otthonunkban. Kísérlet. Név: EnergiaVáros 1. feladatlap Energia az otthonunkban Minden otthonban számos olyan dolog található, aminek a működéséhez energiára van szükség. Van olyan, amelyik elektromos energiát fogyaszt, mások pedig valamilyen

Részletesebben

A biometán előállítása és betáplálása a földgázhálózatba

A biometán előállítása és betáplálása a földgázhálózatba A biometán előállítása és betáplálása a földgázhálózatba Dr. Kovács Attila - Fuchsz Máté Első Magyar Biogáz Kft. 2011. 1. április 13. XIX. Dunagáz Szakmai Napok, Visegrád Mottó: Amikor kivágjátok az utolsó

Részletesebben

A biomassza rövid története:

A biomassza rövid története: A biomassza A biomassza rövid története: A biomassza volt az emberiség leginkább használt energiaforrása egészen az ipari forradalomig. Még ma sem egyértelmű, hogy a növekvő jólét miatt indult be drámaian

Részletesebben

MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ

MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ 1 1. DEFINÍCIÓK Emissziós faktor: egységnyi elfogyasztott tüzelőanyag, megtermelt villamosenergia, stb. mekkora mennyiségű ÜHG (üvegházhatású gáz) kibocsátással

Részletesebben

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék

Az alternatív energiák fizikai alapjai. Horváth Ákos ELTE Atomfizikai Tanszék Az alternatív energiák fizikai alapjai Horváth Ákos ELTE Atomfizikai Tanszék Az energia felhasználása Hétköznapi energiafelhasználás: autók meghajtása, háztartási eszközök működtetése, fűtés ipari méretű

Részletesebben

Németország környezetvédelme. Készítették: Bede Gréta, Horváth Regina, Mazzone Claudia, Szabó Eszter Szolnoki Fiumei Úti Általános Iskola

Németország környezetvédelme. Készítették: Bede Gréta, Horváth Regina, Mazzone Claudia, Szabó Eszter Szolnoki Fiumei Úti Általános Iskola Németország környezetvédelme Készítették: Bede Gréta, Horváth Regina, Mazzone Claudia, Szabó Eszter Szolnoki Fiumei Úti Általános Iskola Törvényi háttér 2004-ben felváltotta elődjét a megújuló energia

Részletesebben

SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS

SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS MEGÚJULÓ ENERGIAFORRÁSOK Napenergia Vízenergia Szélenergia Biomassza SZÉL TERMÉSZETI ELEM Levegő vízszintes irányú mozgása, áramlása Okai: eltérő mértékű felmelegedés

Részletesebben

VÍZERŐMŰVEK. Vízerőmű

VÍZERŐMŰVEK. Vízerőmű VÍZENERGIA A vízenergia olyan megújuló energiaforrás, amelyet a víz eséséből vagy folyásából nyernek A vízienergia megújuló energia, nem szennyezi a környezetet és nem termel sem szén-dioxidot, sem más,

Részletesebben

BIO-SZIL Természetvédelmi és Környezetgazdálkodási Kht. 4913 Panyola, Mezővég u. 31.

BIO-SZIL Természetvédelmi és Környezetgazdálkodási Kht. 4913 Panyola, Mezővég u. 31. BIO-SZIL Természetvédelmi és Környezetgazdálkodási Kht. 4913 Panyola, Mezővég u. 31. VIZSGATESZT Klímabarát zöldáramok hete Című program Energiaoktatási anyag e-képzési program HU0013/NA/02 2009. május

Részletesebben

Megújuló energiaforrásokra alapozott energiaellátás növelése a fenntartható fejlődés érdekében

Megújuló energiaforrásokra alapozott energiaellátás növelése a fenntartható fejlődés érdekében Megújuló energiaforrásokra alapozott energiaellátás növelése a fenntartható fejlődés érdekében Dr. Csoknyai Istvánné Vezető főtanácsos Környezetvédelmi és Vízügyi Minisztérium Budapest, 2007. november

Részletesebben

Komplex természettudomány 2.

Komplex természettudomány 2. Komplex természettudomány 2. Az anyagok alapvető tulajdonságai Minden, ami körülvesz bennünket anyag: a Föld,az egész világegyetem és a saját testünk is. Azt is mondhatjuk, hogy anyagból épül fel minden

Részletesebben

Energetikai Szakkollégium Egyesület

Energetikai Szakkollégium Egyesület Csetvei Zsuzsa, Hartmann Bálint 1 Általános ismertető Az energiaszektor legdinamikusabban fejlődő iparága Köszönhetően az alábbiaknak: Jelentős állami és uniós támogatások Folyamatosan csökkenő költségek

Részletesebben

I. rész Mi az energia?

I. rész Mi az energia? I. rész Mi az energia? Környezetünkben mindig történik valami. Gondoljátok végig, mi minden zajlik körülöttetek! Reggel felébredsz, kimész a fürdőszobába, felkapcsolod a villanyt, megnyitod a csapot és

Részletesebben

Energiatárolás szerepe a jövő hálózatán

Energiatárolás szerepe a jövő hálózatán Energiatárolás szerepe a jövő hálózatán Horváth Dániel 60. MEE Vándorgyűlés, Mátraháza 1. OLDAL Tartalom 1 2 3 Európai körkép Energiatárolás fontossága Decentralizált energiatárolás az elosztóhálózat oldaláról

Részletesebben

A tanítási óra anyag: A villamos energia termelése és szállítása. Oktatási feladat: Villamos energia termelésének és szállításának lépései

A tanítási óra anyag: A villamos energia termelése és szállítása. Oktatási feladat: Villamos energia termelésének és szállításának lépései ÓRATERVEZET 2 Tanítás helye: Tanítás ideje: Osztály: 8. osztály Tanít: Az óra típusa: Új ismeretet feldolgozó A tanítási óra anyag: A villamos energia termelése és szállítása A következő óra anyag: Fogyasztómérő

Részletesebben

Fenntartható biomassza termelés-biofinomításbiometán

Fenntartható biomassza termelés-biofinomításbiometán CO 2 BIO-FER Biogáz és Fermentációs Termékklaszter Fenntartható biomassza termelés-biofinomításbiometán előállítás Pécsi Tudományegyetem Közgazdaságtudományi Kar Enyingi Tibor Mérnök biológus Klaszterigazgató

Részletesebben

A természetes energia átalakítása elektromos energiáva (leckevázlat)

A természetes energia átalakítása elektromos energiáva (leckevázlat) A természetes energia átalakítása elektromos energiáva (leckevázlat) - Az elektromos energia elınyei: - olcsón szállítható nagy távolságokra - egyszerre többen használhassák - könnyen átalakítható (hıvé,

Részletesebben

Megújuló energia, megtérülő befektetés

Megújuló energia, megtérülő befektetés Megújuló energia, megtérülő befektetés A megújuló energiaforrás fogalma Olyan energiaforrás, amely természeti folyamatok során folyamatosan rendelkezésre áll, vagy újratermelődik (napenergia, szélenergia,

Részletesebben

A nem nukleáris alapú villamosenergia-termelés lehetőségei

A nem nukleáris alapú villamosenergia-termelés lehetőségei A nem nukleáris alapú villamosenergia-termelés lehetőségei Büki Gergely Villamosenergia-ellátás Magyarországon a XXI. században MTA Energiakonferencia, 2014. február 18 Villamosenergia-termelés, 2011 Villamos

Részletesebben

3. Előadás: Az ember tevékenységeinek energia igénye.

3. Előadás: Az ember tevékenységeinek energia igénye. 3. Előadás: Az ember tevékenységeinek energia igénye. 3.1. Az emberi tevékenységek és azok energiában mérve. 3.2. Az elérhető energiaforrások megoszlása, felhasználásuk szerkezete 3.1. Az emberi tevékenységek

Részletesebben

NCST és a NAPENERGIA

NCST és a NAPENERGIA SZIE Egyetemi Klímatanács SZENT ISTVÁN EGYETEM NCST és a NAPENERGIA Tóth László ACRUX http://klimatanacs.szie.hu TARTALOM 1.Napenergia potenciál 2.A lehetséges megoldások 3.Termikus és PV rendszerek 4.Nagyrendszerek,

Részletesebben

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag ? A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag Tartalom MAGYAR KAPCSOLT ENERGIA TÁRSASÁG A biogáz és a fosszilis energiahordozók A biogáz felhasználásának

Részletesebben

Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus

Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus Megújuló energiák szerepe a villamos hálózatok energia összetételének tisztítása érdekében Dr. Tóth László DSc - SZIE professor emeritus 2017. Október 19. 1 NAPJAINK GLOBÁLIS KIHÍVÁSAI: (közel sem a teljeség

Részletesebben

1. feladatlap. Energiaforrások. EnergiaOtthon. Széntüzelésű kandalló. Müzli. Elektromos energia. Autó. Virágok. Szén. Televízió. Nap.

1. feladatlap. Energiaforrások. EnergiaOtthon. Széntüzelésű kandalló. Müzli. Elektromos energia. Autó. Virágok. Szén. Televízió. Nap. 1. feladatlap Energiaforrások Párosítsd a bal oldalon levő dolgokat azokkal a jobb oldali energiaforrásokkal, amelyektől az energiát kapják! Honnan szerzik a működéshez szükséges energiát? Széntüzelésű

Részletesebben

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon (az Európai Parlament és a Tanács 2004/8/EK irányelv 6. cikk (3) bekezdésében

Részletesebben

Napenergia kontra atomenergia

Napenergia kontra atomenergia VI. Napenergia-hasznosítás az épületgépészetben és kiállítás Napenergia kontra atomenergia Egy erőműves szakember gondolatai Varga Attila Budapest 2015 Május 12 Tartalomjegyzék 1. Napelemmel termelhető

Részletesebben

A JÖVŐ OKOS ENERGIAFELHASZNÁLÁSA

A JÖVŐ OKOS ENERGIAFELHASZNÁLÁSA A JÖVŐ OKOS ENERGIAFELHASZNÁLÁSA Dr. NOVOTHNY FERENC (PhD) Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai intézet Budapest, Bécsi u. 96/b. H-1034 novothny.ferenc@kvk.uni-obuda.hu

Részletesebben

ELSŐ SZALMATÜZELÉSŰ ERŐMŰ SZERENCS BHD

ELSŐ SZALMATÜZELÉSŰ ERŐMŰ SZERENCS BHD ELSŐ SZALMATÜZEL ZELÉSŰ ERŐMŰ SZERENCS BHD HőerH erőmű Zrt. http:// //www.bhd.hu info@bhd bhd.hu 1 ELŐZM ZMÉNYEK A fosszilis készletek kimerülése Globális felmelegedés: CO 2, CH 4,... kibocsátás Magyarország

Részletesebben

Biogáz alkalmazása a miskolci távhőszolgáltatásban

Biogáz alkalmazása a miskolci távhőszolgáltatásban Biogáz alkalmazása a miskolci távhőszolgáltatásban Kovács Tamás műszaki csoportvezető 23. Távhő Vándorgyűlés Pécs, 2010. szeptember 13. Előzmények Bongáncs utcai hulladéklerakó 1973-2006 között üzemelt

Részletesebben

Energiapolitika hazánkban - megújulók és atomenergia

Energiapolitika hazánkban - megújulók és atomenergia Energiapolitika hazánkban - megújulók és atomenergia Mi a jövő? Atom vagy zöld? Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet Energetikai Szakkollégium, 2004. november 11.

Részletesebben

SZAKMAI SZIMPÓZIUM BERUHÁZÁSOK A MEGÚJULÓ ENERGIÁK TERÉN

SZAKMAI SZIMPÓZIUM BERUHÁZÁSOK A MEGÚJULÓ ENERGIÁK TERÉN SZAKMAI SZIMPÓZIUM BERUHÁZÁSOK A MEGÚJULÓ ENERGIÁK TERÉN 2012.09.25. Biogáz Németországban (2010) : Működő üzemek: 5.905 (45) Épített kapacitás: 2.291 MW Termelt energia: 14,8 M MWh Összes energiatermelés:

Részletesebben

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök

Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás. Dr. Tóth László egyetemi tanár klímatanács elnök Energiatermelés, erőművek, hatékonyság, károsanyag kibocsátás Dr. Tóth László egyetemi tanár klímatanács elnök TARTALOM Energia hordozók, energia nyerés (rendelkezésre állás, várható trendek) Energia termelés

Részletesebben

A villamosenergia-termelés szerkezete és jövője

A villamosenergia-termelés szerkezete és jövője A villamosenergia-termelés szerkezete és jövője Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai Intézet Energetikáról Másként Budapest, Magyar Energetikusok Kerekasztala,

Részletesebben

A biogáz jelentősége és felhasználási lehetősége

A biogáz jelentősége és felhasználási lehetősége A biogáz jelentősége és felhasználási lehetősége Biogáz Unió Zrt. - a természettel egységben A XXI. század egyik legnagyobb kihívása véleményünk szerint a környezettudatos életmód fontosságának felismertetése,

Részletesebben

K+F lehet bármi szerepe?

K+F lehet bármi szerepe? Olaj kitermelés, millió hordó/nap K+F lehet bármi szerepe? 100 90 80 70 60 50 40 Olajhozam-csúcs szcenáriók 30 20 10 0 2000 2020 Bizonytalanság: Az előrejelzések bizonytalanságának oka az olaj kitermelési

Részletesebben

KI-78-09-820-HU-C. A rejtélyes Nap

KI-78-09-820-HU-C. A rejtélyes Nap KI-78-09-820-HU-C A rejtélyes Nap A rejtélyes Nap Kiadóhivatal ISBN 978-92-79-12500-3 HU Víz- és szélenergia Az erőművekben a gőz forgatja körbe-körbe a turbinát. Mi más lehetne még olyan erős, hogy forgassa

Részletesebben

A fenntartható energetika kérdései

A fenntartható energetika kérdései A fenntartható energetika kérdései Dr. Aszódi Attila igazgató, Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Budapest, MTA, 2011. május 4.

Részletesebben

A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját

A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját A Képes Géza Általános Iskola 7. és 8. osztályos tanulói rendhagyó fizika órán meglátogatták a Paksi Atomerőmű interaktív kamionját Dr. Kemenes László az atomerőmű szakemberének tájékoztatója alapján választ

Részletesebben

Fizika Vetélkedő 8 oszt. 2013

Fizika Vetélkedő 8 oszt. 2013 Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A

Részletesebben

Innovációs leírás. Hulladék-átalakító energiatermelő reaktor

Innovációs leírás. Hulladék-átalakító energiatermelő reaktor Innovációs leírás Hulladék-átalakító energiatermelő reaktor 0 Hulladék-átalakító energiatermelő reaktor Innováció kategóriája Az innováció rövid leírása Elérhető megtakarítás %-ban Technológia költsége

Részletesebben

A villamosenergiarendszer

A villamosenergiarendszer A villamosenergiarendszer jellemzői 1. TÉTEL, VILLANYSZERELŐ SZAKMAI VIZSGA 9/6/2018 2:43 PM GYURE.PETER@MORAVAROSI.HU 1 Fogalmak, feladatok A villamosenergia-ellátás alapfeladata a fogyasztói igények

Részletesebben

2014 (éves) Az adatszolgáltatás a statisztikáról szóló 1993. évi XLVI. törvény 8. (2) bekezdése alapján és a Adatszolgáltatás jogcíme

2014 (éves) Az adatszolgáltatás a statisztikáról szóló 1993. évi XLVI. törvény 8. (2) bekezdése alapján és a Adatszolgáltatás jogcíme Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ Adatszolgáltatás száma OSAP 1335/B Adatszolgáltatás időszaka 2014 (éves) Az adatszolgáltatás a statisztikáról szóló

Részletesebben

NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL. Darvas Katalin

NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL. Darvas Katalin NAPELEMEK KÖRNYEZETI SZEMPONTÚ VIZSGÁLATA AZ ÉLETCIKLUS ELEMZÉS SEGÍTSÉGÉVEL Darvas Katalin AZ ÉLETCIKLUS ELEMZÉS Egy termék, folyamat vagy szolgáltatás környezetre gyakorolt hatásainak vizsgálatára használt

Részletesebben

Kombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató

Kombinált napkollektoros, napelemes, hőszivattyús rendszerek. Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató Kombinált napkollektoros, napelemes, hőszivattyús rendszerek Beleznai Nándor Wagner Solar Hungária Kft. ügyvezető igazgató Termikus napenergia hasznosítás napkollektoros rendszerekkel Általában kiegészítő

Részletesebben

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek? Körny. Fiz. 201. november 28. Név: TTK BSc, AKORN16 1 K-II-2.9. Mik egy fűtőrendszer tagjai? Mi az energetikai hatásfoka? 2 KF-II-6.. Mit nevezünk égésnek és milyen gázok keletkezhetnek? 4 KF-II-6.8. Mit

Részletesebben

Éves energetikai szakreferensi jelentés év

Éves energetikai szakreferensi jelentés év Éves energetikai szakreferensi jelentés 2017. év Tartalomjegyzék Tartalomjegyzék... 1 Vezetői összefoglaló... 2 Energiafelhasználás... 4 Villamosenergia-felhasználás... 4 Gázfelhasználás... 5 Távhőfelhasználás...

Részletesebben

energiaforrása Kőrösi Viktor Energetikai Osztály KUTIK, Summer School, Miskolc, 2007. Augusztus 30.

energiaforrása Kőrösi Viktor Energetikai Osztály KUTIK, Summer School, Miskolc, 2007. Augusztus 30. Biogáz z a jövőj energiaforrása Kőrösi Viktor Energetikai Osztály Biogáz jelentősége Energiatermelés és a hulladékok környezetbarát megsemmisítése (21CH 4 =1CO 2, állati trágya, szennyvíziszap, hulladéklerakók),

Részletesebben

Biogáz konferencia Renexpo

Biogáz konferencia Renexpo Biogáz konferencia Renexpo A nyírbátori biogáz üzem üzemeltetésének tapasztalatai Helyszín: Hungexpo F-G pavilon 1. em. Időpont: 2012.05.10. Előadó: Dr. Petis Mihály Helyzet és célok Hiányos és bizonytalan

Részletesebben

Tehát a 2. lecke tanításához a villamos gépek szerkezetét, működési elvét és jellemzőit ismerni kell.

Tehát a 2. lecke tanításához a villamos gépek szerkezetét, működési elvét és jellemzőit ismerni kell. 4. M. 2.L. 1. Bevezetés 4. M. 2.L. 1.1, A téma szerepe, kapcsolódási pontjai Az emberiség nagy kihívása, hogy hogyan tud megküzdeni a növekvő energiaigény kielégítésével és a környezeti károk csökkentésével.

Részletesebben

ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka

ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe ENERGIAFELHASZNÁLÁSI BESZÁMOLÓ (Közlekedési szektor) Adatszolgáltatás száma OSAP 1335/C Adatszolgáltatás időszaka 2014. Év Az adatszolgáltatás

Részletesebben

Megújuló energiák hasznosítása MTA tanulmány elvei

Megújuló energiák hasznosítása MTA tanulmány elvei Megújuló energiák hasznosítása MTA tanulmány elvei Büki Gergely A MTA Földtudományi Osztálya és a Környezettudományi Elnöki Bizottság Energetika és Környezet Albizottsága tudományos ülése Budapest, 2011.

Részletesebben

B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS

B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS Dr. Petis Mihály : MezDgazdasági melléktermékekre épüld biogáz termelés technológiai bemutatása Nyíregyházi FDiskola 2007. szeptember

Részletesebben

A Mátrai Erőmű működése és környezeti hatásai, fejlesztési lehetőségei

A Mátrai Erőmű működése és környezeti hatásai, fejlesztési lehetőségei A Mátrai Erőmű működése és környezeti hatásai, fejlesztési lehetőségei Készítette: Nagy Gábor Környezettan Alapszakos Hallgató Témavezető: Dr. Kiss Ádám Professzor Téziseim Bemutatni az erőmű és bányák

Részletesebben

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon. 2009. Március 16. Rajnai Attila Ügyvezetı igazgató

A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon. 2009. Március 16. Rajnai Attila Ügyvezetı igazgató A napenergia hasznosítás támogatásának helyzete és fejlesztési tervei Magyarországon 2009. Március 16. Rajnai Attila Ügyvezetı igazgató Energia Központ Nonprofit Kft. bemutatása Megnevezés : Energia Központ

Részletesebben

Zöldenergia szerepe a gazdaságban

Zöldenergia szerepe a gazdaságban Zöldenergia szerepe a gazdaságban Zöldakadémia Nádudvar 2009 május 8 dr.tóth József Összefüggések Zöld energiák Alternatív Energia Alternatív energia - a természeti jelenségek kölcsönhatásából kinyerhető

Részletesebben

Miért van a konnektorban áram? Horváth Ákos MTA Energiatudományi Kutatóközpont

Miért van a konnektorban áram? Horváth Ákos MTA Energiatudományi Kutatóközpont Miért van a konnektorban áram? Horváth Ákos MTA Energiatudományi Kutatóközpont Atomoktól a csillagokig, 2017. Március 23. Kezdetek M. Faraday indukció törvénye (1831) Indukció elvén működnek az egyenáramú

Részletesebben

A Fenntartható fejlődés fizikai korlátai. Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens

A Fenntartható fejlődés fizikai korlátai. Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens A Fenntartható fejlődés fizikai korlátai Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens Fenntartható fejlődés 1987-ben adja ki az ENSZ Környezet és Fejlődés Világbizottsága a

Részletesebben

A nap- és szélerőművek integrálásának kérdései Európában. Dr. habil Göőz Lajos professor emeritus egyetemi magántanár

A nap- és szélerőművek integrálásának kérdései Európában. Dr. habil Göőz Lajos professor emeritus egyetemi magántanár A nap- és szélerőművek integrálásának kérdései Európában Dr. habil Göőz Lajos professor emeritus egyetemi magántanár A Nap- és szél alapú megújuló energiaforrások nagyléptékű integrálása az országos és

Részletesebben

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc A mezőgazdasági eredetű hulladékok égetése. 133.lecke Mezőgazdasági hulladékok, melléktermékek energetikai

Részletesebben

Szakolyi Biomassza Erőmű kapcsolt energiatermelési lehetőségei VEOLIA MAGYARORSZÁGON. Vollár Attila vezérigazgató Balatonfüred, 2017.

Szakolyi Biomassza Erőmű kapcsolt energiatermelési lehetőségei VEOLIA MAGYARORSZÁGON. Vollár Attila vezérigazgató Balatonfüred, 2017. Szakolyi Biomassza Erőmű kapcsolt energiatermelési lehetőségei Vollár Attila vezérigazgató Balatonfüred, 2017. március VEOLIA MAGYARORSZÁGON Több, mint 20 éve a piacon Víz Hulladék Energia ESZKÖZÖK AJÁNLATOK

Részletesebben

BETON A fenntartható építés alapja. Hatékony energiagazdálkodás

BETON A fenntartható építés alapja. Hatékony energiagazdálkodás BETON A fenntartható építés alapja Hatékony energiagazdálkodás 1 / Hogyan segít a beton a hatékony energiagazdálkodásban? A fenntartható fejlődés eszméjének fontosságával a társadalom felelősen gondolkodó

Részletesebben

A magyar geotermikus energia szektor hozzájárulása a hazai fűtés-hűtési szektor fejlődéséhez, legjobb hazai gyakorlatok

A magyar geotermikus energia szektor hozzájárulása a hazai fűtés-hűtési szektor fejlődéséhez, legjobb hazai gyakorlatok A magyar geotermikus energia szektor hozzájárulása a hazai fűtés-hűtési szektor fejlődéséhez, legjobb hazai gyakorlatok GeoDH Projekt, Nemzeti Workshop Kujbus Attila, Geotermia Expressz Kft. Budapest,

Részletesebben

Energiamenedzsment ISO 50001. A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója

Energiamenedzsment ISO 50001. A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója Energiamenedzsment ISO 50001 A SURVIVE ENVIRO Nonprofit Kft. környezetmenedzsment rendszerekről szóló tájékoztatója Hogyan bizonyítható egy vállalat környezettudatossága vásárlói felé? Az egész vállalatra,

Részletesebben

Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete. II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató

Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete. II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató Lehetséges alapanyagok Mezőgazdasági melléktermékek Állattenyésztési

Részletesebben

ENERGIATERMELÉS 3. Magyarország. Energiatermelése és felhasználása. Dr. Pátzay György 1. Magyarország energiagazdálkodása

ENERGIATERMELÉS 3. Magyarország. Energiatermelése és felhasználása. Dr. Pátzay György 1. Magyarország energiagazdálkodása ENERGIATERMELÉS 3. Magyarország Energiatermelése és felhasználása Dr. Pátzay György 1 Magyarország energiagazdálkodása Magyarország energiagazdálkodását az utóbbi évtizedekben az jellemezte, hogy a hazai

Részletesebben

JÜLLICH GLAS SOLAR Karnyújtásnyira a Naptól Nagyméretű napelemes erőművek

JÜLLICH GLAS SOLAR Karnyújtásnyira a Naptól Nagyméretű napelemes erőművek JÜLLICH GLAS SOLAR Karnyújtásnyira a Naptól Nagyméretű napelemes erőművek A megújuló energiák között a napenergia hasznosítása a legdinamikusabban fejlődő üzletág manapság. A napenergia hasznosításon belül

Részletesebben

Éves energetikai szakreferensi jelentés év

Éves energetikai szakreferensi jelentés év Éves energetikai szakreferensi jelentés 2018. év Készítette: Terbete Consulting Kft. szakreferensi névjegyzéki jelölés: ESZSZ-56/2019 Tartalomjegyzék Tartalomjegyzék... 1 Vezetői összefoglaló... 2 Energiafelhasználás...

Részletesebben

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek.

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. www.atomeromu.hu Paks déli részén a 6-os számú főút és a Duna között Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. Az urán 235-ös izotópját lassú neutronok

Részletesebben

2014. Év. rendeletére, és 2012/27/EK irányelvére Teljesítés határideje 2015.04.30

2014. Év. rendeletére, és 2012/27/EK irányelvére Teljesítés határideje 2015.04.30 Adatszolgáltatásra vonatkozó adatai Adatszolgáltatás címe Energiafelhasználási beszámoló Adatszolgáltatás száma OSAP 1335a Adatszolgáltatás időszaka 2014. Év Az adatszolgáltatás a statisztikáról szóló

Részletesebben

Tervezzük együtt a jövőt!

Tervezzük együtt a jövőt! Tervezzük együtt a jövőt! gondolkodj globálisan - cselekedj lokálisan CÉLOK jövedelemforrások, munkahelyek biztosítása az egymásra épülő zöld gazdaság hálózati keretein belül, megújuló energiaforrásokra

Részletesebben

Miért van szükség új erőművekre? Az erőmű építtetője. Új erőmű a régi üzemi területen. Miért Csepelre esett a választás?

Miért van szükség új erőművekre? Az erőmű építtetője. Új erőmű a régi üzemi területen. Miért Csepelre esett a választás? Csepel III Erőmű 2 Miért van szükség új erőművekre? A technikai fejlődés folyamatosan szükségessé teszi az erőműpark megújítását. Megbízható, magas hatásfokú, környezetbarát erőműpark tudja biztosítani

Részletesebben

A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA

A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA A MEGÚJULÓ ENERGIAHORDOZÓ FELHASZNÁLÁS MAGYARORSZÁGI STRATÉGIÁJA Dr. Szerdahelyi György Főosztályvezető-helyettes Gazdasági és Közlekedési Minisztérium Megújuló energiahordozó felhasználás növelés szükségességének

Részletesebben

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13.

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13. Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése Kódszám: KMOP-3.3.3-13. Támogatható tevékenységek köre I. Megújuló energia alapú villamosenergia-, kapcsolt hő- és villamosenergia-,

Részletesebben

Hazai erőművi létesítmények szélsőséges környezeti hatásoknak való kitettsége

Hazai erőművi létesítmények szélsőséges környezeti hatásoknak való kitettsége Hazai erőművi létesítmények szélsőséges környezeti hatásoknak való kitettsége dr. Péter Kádár Óbuda Univesity Bécsi u. 94., Budapest H-1034 Hungary kadar.peter@kvk.uni-obuda.hu Berendezések Méret Kitettség

Részletesebben

Magyarország megújuló energia stratégiai céljainak bemutatása és a megújuló energia termelés helyezte

Magyarország megújuló energia stratégiai céljainak bemutatása és a megújuló energia termelés helyezte Magyarország megújuló energia stratégiai céljainak bemutatása és a megújuló energia termelés helyezte Szabó Zsolt fejlesztés- és klímapolitikáért, valamint kiemelt közszolgáltatásokért felelős államtitkár

Részletesebben

Az 55/2016. (XII. 21.) NFM rendelet a megújuló energiát termelő berendezések és rendszerek műszaki követelményeiről

Az 55/2016. (XII. 21.) NFM rendelet a megújuló energiát termelő berendezések és rendszerek műszaki követelményeiről 55/2016. (XII. 21.) NFM rendelet beszerzéséhez és működtetéséhez nyújtott támogatások igénybevételének A rendeletben előírt műszaki követelményeket azon megújuló energiaforrásból energiát termelő rendszerek

Részletesebben

A Mátrai Erőmű ZRt. Ipari parkjának bemutatása

A Mátrai Erőmű ZRt. Ipari parkjának bemutatása A Mátrai Erőmű ZRt. Ipari parkjának bemutatása Ipari szimbiózis workshop Orosz Zoltán 2014.04.15. 1 A Mátrai Erőmű ZRt. vállalati profilja Telephely Mutatók Tulajdonosi struktúra Beépített teljesítm. Értékesített

Részletesebben

A GEOTERMIKUS ENERGIA

A GEOTERMIKUS ENERGIA A GEOTERMIKUS ENERGIA Mi is a geotermikus energia? A Föld keletkezése óta létezik Forrása a Föld belsejében keletkező hő Nem szennyezi a környezetet A kéreg 10 km vastag rétegében 6 10 26 Joule mennyiségű

Részletesebben

A VÍZENERGIA POTENCIÁLJÁNAK VÁRHATÓ ALAKULÁSA KLÍMAMODELLEK ALAPJÁN

A VÍZENERGIA POTENCIÁLJÁNAK VÁRHATÓ ALAKULÁSA KLÍMAMODELLEK ALAPJÁN A VÍZENERGIA POTENCIÁLJÁNAK VÁRHATÓ ALAKULÁSA KLÍMAMODELLEK ALAPJÁN PONGRÁCZ Rita, BARTHOLY Judit, Eötvös Loránd Tudományegyetem Meteorológiai Tanszék, Budapest VÁZLAT A hidrológiai ciklus és a vízenergia

Részletesebben

Ambrus László Székelyudvarhely, 2011.02.23.

Ambrus László Székelyudvarhely, 2011.02.23. Családi méretű biogáz üzemek létesítése Ambrus László Székelyudvarhely, 2011.02.23. AGORA Fenntartható Fejlesztési Munkacsoport www.green-agora.ro Egyesületünk 2001 áprilisában alakult Küldetésünknek tekintjük

Részletesebben

Zöld tanúsítvány - egy támogatási mechanizmus az elektromos energia előállítására a megújuló energiaforrásokból

Zöld tanúsítvány - egy támogatási mechanizmus az elektromos energia előállítására a megújuló energiaforrásokból Zöld tanúsítvány - egy támogatási mechanizmus az elektromos energia előállítására a megújuló energiaforrásokból Maria Rugina cikke ICEMENBERG, Romania A zöld tanúsítvány rendszer egy olyan támogatási mechanizmust

Részletesebben

Elosztott energiatermelés, hulladék energiák felhasználása

Elosztott energiatermelés, hulladék energiák felhasználása AZ ENERGIAGAZDÁLKODÁS ALAPJAI 1.6 2.5 Elosztott energiatermelés, hulladék energiák felhasználása Tárgyszavak: kapcsolt energiatermelés; CHP; hulladék hő; elosztott energiatermelés; villamos energia; erőmű;

Részletesebben

Biogáz hasznosítás. SEE-REUSE Az európai megújuló energia oktatás megerősítése a fenntartható gazdaságért. Vajdahunyadvár, 2014. december 10.

Biogáz hasznosítás. SEE-REUSE Az európai megújuló energia oktatás megerősítése a fenntartható gazdaságért. Vajdahunyadvár, 2014. december 10. Az európai megújuló energia oktatás megerősítése a fenntartható gazdaságért Biogáz hasznosítás Vajdahunyadvár, 2014. december 10. Alaphelyzet A magyar birtokos szegényebb, mint birtokához képest lennie

Részletesebben

Levegővédelem (NGB KM012 1)

Levegővédelem (NGB KM012 1) Levegővédelem (NGB KM012 1) Légszennyező technológiák 2011-2012-es tanév I. félév Előadó: Lautner Péter Az ipari energiahordozók kiválasztása több tényező mérlegelése alapján történik. Ilyen például az

Részletesebben

Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék

Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék Egy fizikai rendszer energiája alatt értjük azt a képességet, hogy ez a rendszer munkát képes végezni egy másik fizikai

Részletesebben

MELLÉKLETEK MAGYARORSZÁG ÁTMENETI NEMZETI TERVE CÍMŰ DOKUMENTUMHOZ

MELLÉKLETEK MAGYARORSZÁG ÁTMENETI NEMZETI TERVE CÍMŰ DOKUMENTUMHOZ MELLÉKLETEK MAGYARORSZÁG ÁTMENETI NEMZETI TERVE CÍMŰ DOKUMENTUMHOZ 1. számú melléklet A tüzelő berendezésekre vonatkozó legfontosabb adatok 2 1/a, számú táblázat: a tüzelőberendezésekre vonatkozó engedélyezéssel,

Részletesebben