KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA



Hasonló dokumentumok
MATEMATIKA ÍRÁSBELI VIZSGA május 5.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

PRÓBAÉRETTSÉGI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA április január II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

ÉRETTSÉGI VIZSGA október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Időtartam: 45 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc

ÍRÁSBELI VIZSGA május 7. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 7. pontszám. pontszám. II. rész 70. I.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Időtartam: 45 perc

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

ÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70

Azonosító jel: ÉRETTSÉGI VIZSGA május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI május EMELT SZINT. 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

3. MINTAFELADATSOR KÖZÉPSZINT

EMELT SZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

ÉRETTSÉGI VIZSGA október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 45 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

Matematika kisérettségi

2. MINTAFELADATSOR KÖZÉPSZINT

PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA január 18.

ÍRÁSBELI VIZSGA május 6. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 6. pontszám. pontszám. II. rész 70. I.

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 15. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Az írásbeli vizsga időtartama: 240 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

ÉRETTSÉGI VIZSGA május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Azonosító jel: ÉRETTSÉGI VIZSGA október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

PRÓBAÉRETTSÉGI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi május 24. I. rész

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA október 19. MINISZTÉRIUM NEMZETI ERFORRÁS október 19. 8:00

PRÓBAÉRETTSÉGI VIZSGA február 16.

Azonosító jel: ÉRETTSÉGI VIZSGA október 15. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 15. 8:00. Időtartam: 240 perc

Harmadikos vizsga Név: osztály:

PRÓBAÉRETTSÉGI VIZSGA január 19.

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 16. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: ÉRETTSÉGI VIZSGA május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 240 perc

EMELT SZINTŰ ÍRÁSBELI VIZSGA

1. MINTAFELADATSOR KÖZÉPSZINT

EMELT SZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

MATEMATIKA EMELT SZINT% ÍRÁSBELI VIZSGA október 14. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA. Az írásbeli vizsga idtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

ÉRETTSÉGI VIZSGA május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

ÉRETTSÉGI VIZSGA május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Azonosító jel: ÉRETTSÉGI VIZSGA május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 240 perc

1. MINTAFELADATSOR EMELT SZINT

MATEMATIKA II Január 21. PRÓBAÉRETTSÉGI VIZSGA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA Január 21. STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Átírás:

ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Fontos tudnivalók 1. A feladatok megoldására 45 percet fordíthat, az idő leteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot használhatja, más elektronikus vagy írásos segédeszköz használata tilos. 4. A feladatok végeredményét az erre a célra szolgáló keretbe írja, a megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad. 5. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 6. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 7. A szürkített téglalapokba semmit nem írhat! írásbeli vizsga, I. összetevő 2 / 8 2012. május 8.

1 1. Az f függvényt a 3-tól különböző valós számok halmazán értelmezzük az f ( x) = x 3 1 képlettel. Melyik valós x szám esetén veszi fel az f függvény az értéket? 20 x = 2 pont 2. Egy rombusz egyik hegyesszögű csúcsából induló két oldalvektora a és b. Fejezze ki ezzel a két vektorral az ugyanezen csúcsból induló átló vektorát! A keresett vektor: 2 pont 3. Melyik x valós szám esetén igaz a következő egyenlőség? x 2 = 8 x = 2 pont írásbeli vizsga, I. összetevő 3 / 8 2012. május 8.

4. Válassza ki az alábbi grafikonok közül a g: R R, g( x) = 2 x + 1 grafikonját, és adja meg a g függvény zérushelyét! y y y függvény 1 1 1 1 x 1 x 1 x A B C A g függvény grafikonjának betűjele: 2 pont A zérushely: 1 pont 5. Hat ajánlott olvasmányból hányféleképpen lehet pontosan négyet kiválasztani? A lehetőségek száma: 2 pont 6. Két halmazról, A-ról és B-ről tudjuk, hogy A B = { x; y; z; u; v; w }, A \ B={ z; u }, B \ A={ v; w }. Készítsen halmazábrát, és adja meg elemeinek felsorolásával az A B halmazt! 1 pont A B = { } 1 pont írásbeli vizsga, I. összetevő 4 / 8 2012. május 8.

7. Mekkora lesz két év múlva annak az 50 000 Ft-os befektetési jegynek az értéke, amelynek évi 10%-kal nő az értéke az előző évihez képest? Válaszát indokolja! 2 pont A befektetési jegy értéke: 1 pont 8. Az N=437y51 hárommal osztható hatjegyű számot jelöl a tízes számrendszerben. Adja meg az y számjegy lehetséges értékeit! Az y számjegy lehetséges értékei: 2 pont írásbeli vizsga, I. összetevő 5 / 8 2012. május 8.

9. Állapítsa meg az f: R R, f ( x) = ( x 6) + 3 függvény maximumhelyét és a maximum értékét! Maximumhely: 1 pont Maximum érték: 1 pont 10. Egy vasúti fülkében öt utas utazik. Közülük egy személy három másikat ismer, három főnek 2-2 útitárs ismerőse a fülkében, egy személy van, aki csak egy útitársát ismeri. (Az ismeretségi kapcsolatok kölcsönösek.) Ábrázolja egy ilyen társaság egy lehetséges ismeretségi gráfját! Egy lehetséges ismeretségi gráf: 3 pont írásbeli vizsga, I. összetevő 6 / 8 2012. május 8.

2 2 11. Határozza meg az x + y 4x + 2y = 0 egyenletű kör középpontjának koordinátáit! Mekkora a kör sugara? Válaszát indokolja! 2 pont A középpont: 1 pont A kör sugara: 1 pont 12. Döntse el az alábbi állítások mindegyikéről, hogy igaz vagy hamis! A: Két valós szám közül az a nagyobb, amelyiknek a négyzete nagyobb. B: Ha egy szám 5-tel és 15-tel is osztható, akkor a szorzatukkal is osztható. C: Két különböző hegyesszög közül a kisebbnek a koszinusza a nagyobb. A: 1 pont B: 1 pont C: 1 pont írásbeli vizsga, I. összetevő 7 / 8 2012. május 8.

I. rész maximális pontszám 1. feladat 2 2. feladat 2 3. feladat 2 4. feladat 3 5. feladat 2 6. feladat 2 7. feladat 3 8. feladat 2 9. feladat 2 10. feladat 3 11. feladat 4 12. feladat 3 ÖSSZESEN 30 elért pontszám dátum javító tanár I. rész elért pontszám egész számra kerekítve programba beírt egész pontszám javító tanár jegyző dátum dátum Megjegyzések: 1. Ha a vizsgázó a II. írásbeli összetevő megoldását elkezdte, akkor ez a táblázat és az aláírási rész maradjon üresen! 2. Ha a vizsga az I. összetevő teljesítése közben megszakad, illetve nem folytatódik a II. összetevővel, akkor ez a táblázat és az aláírási rész kitöltendő! írásbeli vizsga, I. összetevő 8 / 8 2012. május 8.

ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 II. Időtartam: 135 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint írásbeli vizsga II. összetevő

írásbeli vizsga, II. összetevő 2 / 16 2012. május 8.

Fontos tudnivalók 1. A feladatok megoldására 135 percet fordíthat, az idő leteltével a munkát be kell fejeznie. 2. A feladatok megoldási sorrendje tetszőleges. 3. A B részben kitűzött három feladat közül csak kettőt kell megoldania. A dolgozat befejezésekor a nem választott feladat sorszámát írja be az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor a 18. feladatra nem kap pontot. 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos. 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár! 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetőek legyenek! 7. A feladatok megoldásában használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasság-tétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, ám alkalmazhatóságát röviden indokolnia kell. 8. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje! 9. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 10. Minden feladatnál csak egyféle megoldás értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 11. A szürkített téglalapokba semmit nem írhat! írásbeli vizsga, II. összetevő 3 / 16 2012. május 8.

A 13. Egy számtani sorozat tizedik tagja 10, a különbsége 4. a) Pali azt állítja, hogy a sorozat tizedik tagjának kettes számrendszerbeli alakja 1011. Indokolja vagy cáfolja Pali állításának helyességét! b) Mekkora a sorozat első tagja? c) Határozza meg a sorozat legkisebb három számjegyű tagját! Hányadik tagja ez a sorozatnak? d) Hány elemű az a halmaz, amelyet ezen számtani sorozat kétjegyű pozitív tagjai alkotnak? a) 3 pont b) 2 pont c) 4 pont d) 3 pont Ö.: 12 pont írásbeli vizsga, II. összetevő 4 / 16 2012. május 8.

írásbeli vizsga, II. összetevő 5 / 16 2012. május 8.

14. Nekeresd város kórháza az alábbi adatokat hozta nyilvánosságra: a Nekeresden lakó 12 320 emberből az előző évben 1978 embert ápoltak hosszabb-rövidebb ideig a város kórházában. a) Mekkora az esélye, hogy egy véletlenül kiválasztott nekeresdi lakost az előző évben a város kórházában ápoltak? Két tizedesjegyre kerekítve adja meg a valószínűséget! Abban az évben a kórházban ápoltak közül 138 fő volt 18 év alatti, 633 fő 18 és 60 év közötti, a többi idősebb. A város lakosságának 24%-a 60 év feletti, 18%-a 18 év alatti. (A számítások során feltehetjük, hogy Nekeresden az ismertetett adatokban lényeges változás egy év alatt nem történt.) b) Készítsen kördiagramot a kórházban ápoltak korosztály szerinti megoszlásáról! A diagram elkészítéséhez szükséges számításokat írja le! c) Mennyivel kisebb vagy nagyobb az a)-ban kérdezett esély, ha a 60 év felettiek közül választunk ki valakit véletlenszerűen? a) 3 pont b) 5 pont c) 4 pont Ö.: 12 pont írásbeli vizsga, II. összetevő 6 / 16 2012. május 8.

írásbeli vizsga, II. összetevő 7 / 16 2012. május 8.

15. Földmérők a megfelelő vízszintezés után az alábbi (síkbeli) ábrával dolgoznak. A Q pontot a többi ponttól egy folyó választja el. Az A pontban dolgozó földmérő a P ponttól 720 méterre volt, és a P és Q pontokat egy egyenesben látta. A PAB szöget 53º-nak mérte. A B pontban álló földmérő A-tól 620 méterre, az ABQ szöget 108º-nak mérte. Számítsa ki ezek alapján a BP; PQ és BQ távolságokat! Válaszát méterre kerekítve adja meg! Q P A B Ö.: 12 pont írásbeli vizsga, II. összetevő 8 / 16 2012. május 8.

írásbeli vizsga, II. összetevő 9 / 16 2012. május 8.

B A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 16. Két ország sakkválogatottja, az A és a B csapat közös edzőtáborban készül egy világversenyre. Az első héten az azonos nemzetbeli sportolók játszanak körmérkőzéses bajnokságot, tehát minden egyes sportoló minden nemzetbelijével egy mérkőzést. Az A csapat 7 játékossal érkezett, a B csapatnál összesen 55 mérkőzés zajlott. a) Hány mérkőzés zajlott az A csapatnál, és hány tagja van a B csapatnak? A második héten az A csapat 6 kiválasztott tagjának mindegyike 8 B csapatbeli játékossal játszik egy-egy játszmát. b) Összesen hány játszma zajlott a második héten? Az edzőtáborozás végén a csapatok összes játékosa között négy egyforma ajándéktárgyat sorsolnak ki. Egy játékos legfeljebb egy ajándéktárgyat kaphat. c) Mennyi annak a valószínűsége, hogy az ajándékok közül egyet A csapatbeli játékos, hármat B csapatbeli játékosok kapjanak? a) 7 pont b) 3 pont c) 7 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 10 / 16 2012. május 8.

írásbeli vizsga, II. összetevő 11 / 16 2012. május 8.

A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 17. a) Oldja meg a valós számok halmazán a következő egyenletet! lg 2x 1 + lg 2x 3 = lg ( ) ( ) 8 b) Egy háromszög x szögére igaz, hogy 4cos 2 x 8cosx 5 = 0. Mekkora ez a szög? c) Oldja meg a valós számok halmazán a következő egyenletet! 4 y 5 = 8 y d) Megadtunk hét olyan különböző valós számot, amelyek közül az egyik a c) kérdésben szereplő egyenletnek is megoldása. A számokat felírjuk valamilyen sorrendben. Hány olyan sorrendje van a megadott számoknak, amelyben az említett szám a középső? a) 6 pont b) 4 pont c) 4 pont d) 3 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 12 / 16 2012. május 8.

írásbeli vizsga, II. összetevő 13 / 16 2012. május 8.

A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 18. Egy víztároló középső része egy 6 m belső átmérőjű, 8 m magasságú forgáshenger, alsó része félgömb, felső része forgáskúp alakú. A kúp magassága 3 m. A tartály függőlegesen áll, mellékeljük a forgástengelyén átmenő egyik síkmetszetét. a) Hány négyzetmétert kell vízálló anyaggal bevonni a tartály teljes belső felületének felújításakor? b) Hány köbméter víz van a tartályban, ha a teljes magasságának 85%-áig van feltöltve? A vízálló réteg vastagságát számítása során elhanyagolhatja. A válaszokat egészre kerekítve adja meg! a) 6 pont b) 11 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 14 / 16 2012. május 8.

írásbeli vizsga, II. összetevő 15 / 16 2012. május 8.

II. A rész II. B rész a feladat sorszáma maximális pontszám 13. 12 14. 12 15. 12 17 17 ÖSSZESEN 70 elért pontszám nem választott feladat összesen maximális pontszám elért pontszám I. rész 30 II. rész 70 Az írásbeli vizsgarész pontszáma 100 dátum javító tanár I. rész II. rész elért pontszám egész számra kerekítve programba beírt egész pontszám javító tanár jegyző dátum dátum írásbeli vizsga, II. összetevő 16 / 16 2012. május 8.