Óceánok az idő mélye



Hasonló dokumentumok
GEO-FIFIKA. Földtudományi ismeretterjesztõ füzet. 9. Óceánok. Az idõ mélye

lemeztektonika 1. ábra Alfred Wegener 2. ábra Harry Hess A Föld belső övei 3. ábra A Föld belső övei

Bevezetés a földtörténetbe

A FÖLD BELSŐ SZERKEZETE

Bevezetés a földtörténetbe

Kőzettan.

Kőzetlemezek és a vulkáni tevékenység

Völgyesi L.: Tengerrengések és a geodézia Rédey szeminárium MFTTT Geodéziai Szakosztály, március 4. (BME, Kmf.16.

Tanítási tervezet. 1. Tantervi követelmények. Az óra időpontja: november :10. Iskola, osztály: gimnázium, 9. B

A FÖLD BELSŐ SZERKEZETE VNÚTORNÁ STAVBA ZEME LITOSZFÉRA (KŐZETBUROK) KŐZETLEMEZEK LITOSFERICKÉ DOSKY. kéreg köpeny k. mag b. mag

Környezetgazdaságtan alapjai

A kőzetlemezek és a vulkáni tevékenység, földrengések

ÁLTALÁNOS FÖLDTANI ALAPISMERETEK 9

Kőzettan.

Földrengések a Rétsági-kismedencében 2013 nyarán

HARTAI ÉVA, GEOLÓGIA 3

NEM KONSZOLIDÁLT ÜLEDÉKEK

A Föld kéreg: elemek, ásványok és kőzetek

(tk oldal) GEOGRÁFIA

A Föld mélye a kéregtől a földmagig

Tektonika és vulkanizmus a Naprendszerben. NYME Csillagászati földrajz Kereszturi Ákos, kru@mcse.hu

Metamorf kőzettan. Magmás (olvadék, kristályosodás, T, p) szerpentinit. zeolit Üledékes (törmelék oldatok kicsapódása; szerves eredetű, T, p)

Kőzettan (ga1c1053)

Készítették: Márton Dávid és Rác Szabó Krisztián

Készítette: GOMBÁS MÁRTA KÖRNYEZETTAN ALAPSZAKOS HALLGATÓ

Szerkezeti földtan és lemeztektonika

P és/vagy T változás (emelkedés vagy csökkenés) mellett a:

Tanítási tervezet. II. Az óra típusa: ismereteket elmélyítő és új ismereteket feldolgozó óra

Földtani alapismeretek

KÖRNYEZETTUDOMÁNY ALAPJAI

Dr. Lakotár Katalin. Meteorológia Légkörtan

ÁLTALÁNOS FÖLDTANI ALAPISMERETEK 11

Ásványi nyersanyagtelepek képződése térben és időben: Metallogénia

A monszun szél és éghajlat

Meteorit becsapódás földtani konzekvenciái a Sudbury komplexum példáján

AZ ÉLETTELEN ÉS AZ ÉLŐ TERMÉSZET

Magmás kőzetek kémiai összetétele különböző tektonikai környezetekben

A kísérlet megnevezése, célkitűzései A vulkánok kialakulásának bemutatása, vulkanikus hegységek jellemzése, vulkánkitörés modellezése

Concursul de geografie Teleki Sámuel Teleki Sámuel földrajzverseny Természetföldrajz május 10 Javítókulcs

Az emberiség bioszféra-átalakításának nagy ugrásai

A legpusztítóbb természeti katasztrófa?

Vízszennyezésnek nevezünk minden olyan hatást, amely felszíni és felszín alatti vizeink minőségét úgy változtatja meg, hogy a víz alkalmassága emberi

A Kárpát medence kialakulása

Az energia áramlása a közösségekben

Hogyan ismerhetők fel az éghajlat változások a földtörténet során? Klímajelző üledékek (pl. evaporit, kőszén, bauxit, sekélytengeri karbonátok,

Érettségi tételek 1. A 2 A 3 A 4 A

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok

Geofizika alapjai. Bevezetés. Összeállította: dr. Pethő Gábor, dr Vass Péter ME, Geofizikai Tanszék

10 rémisztő tény a globális felmelegedésről

Horváth Mária: Bevezetés a földtörténetbe Prekambrium. Oktatási segédanyag

A PANNON-MEDENCE GEODINAMIKÁJA. Eszmetörténeti tanulmány és geofizikai szintézis HORVÁTH FERENC

JAVÍTÓ- ÉS OSZTÁLYOZÓ VIZSGA KÖVETELMÉNYEI FÖLDRAJZBÓL HATOSZTÁLYOS GIMNÁZIUM. 7. évfolyam

G L O B A L W A R M I N

Bevezetés az ökológiába Szerkesztette: Vizkievicz András

Sósvíz behatolás és megoldási lehetőségeinek szimulációja egy szíriai példán

MENTSÜK MEG! Veszélyben a kék bálnák

A GEOTERMIKUS ENERGIA ALAPJAI

Az általános földi légkörzés. Dr. Lakotár Katalin

Teleptan I. Magmás, hidrotermális és metamorf eredetű ásványi nyersanyagok

Magyarország Műszaki Földtana MSc. Magyarország nagyszerkezeti egységei

ÁSVÁNYOK ÉS MÁS SZILÁRD RÉSZECSKÉK AZ ATMOSZFÉRÁBAN

FÖLDRAJZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

SZKA_207_22. A lázas Föld. Sikolyok az üvegházból

A LÉGKÖR SZERKEZETE ÉS ÖSSZETÉTELE. Környezetmérnök BSc

A HOLD MOZGÁSA. a = km e = 0, 055 i = 5. P = 18, 6 év. Sziderikus hónap: 27,32 nap. Szinodikus hónap: 29,53 nap

FÖLDRAJZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

TÁJ-1.ea. TÁJ-KÖRNYEZET-RÉGIÓ

A légkör mint erőforrás és kockázat

A GEOTERMIKUS ENERGIA

Vízi szeizmikus kutatások a Balaton nyugati medencéiben

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás

MELLÉKLET. a következőhöz: A Bizottság irányelve

FÖLDRAJZ KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Klímaváltozás a kő magnószalag Földtudományok a társadalomért

Általános földi vízkörzés. Dr. Lakotár Katalin

Gépészmérnök. Budapest

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Arday Istvan - R6zsa Endre - Üt6ne Visi Judit FOLDRAJZ I. MUSZAKIKIAD6, BUDAPEST

FÖLDÜNK ÉS KÖRNYEZETÜNK

Prof. Dr. Krómer István. Óbudai Egyetem

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll.

Általános klimatológia Bevezetés a klimatológiába előadás

A föld belső szerkezete. Kőzetlemezek - lemeztektonika

GEOGRÁFUS MSC záróvizsgatételek, Terület- és településfejlesztés szakirány (GEOGRÁFUS I. záróvizsgabizottság)

Dr Horváth Ákos Füstoszlop Veszprém felett - az ipari baleset meteorológiai körülményei

3. Fészekmélység. I 0 I k = 3 log(d k / h) + 3 log(e) (D k h) (3.1)

Hévforrás-nyomok a Pilis-Budai-hegység triász időszaki dolomitjaiban

GEOTEKTONIKA. A földkéreg nagyobb szerkezeti egységei

OSZTÁLYOZÓ VIZSGA Földrajz

ÁLTALÁNOS FÖLDTANI ALAPISMERETEK 8

Mérnökgeológia. 3. előadás. Szepesházi Róbert

Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.

A Föld belső szerkezete

Láng István. A Környezet és Fejlıdés Világbizottság (Brundtland Bizottság) jelentése húsz év távlatából

GEOGRÁFUS MSC záróvizsgatételek, Terület- és településfejlesztés szakirány. (GEOGRÁFUS I. záróvizsgabizottság)

A magma eredete, differenciálódása

10. előadás Kőzettani bevezetés

tervezési szempontok (igénybevétel, feszültségeloszlás,

Feladatlap. Feladatlap száma Elért pontszám

Feladatlap. Feladatlap száma Elért pontszám

Átírás:

Óceánok az idő mélye Íme, a tenger! Az óceánok tudományos kutatása mintegy 200 évvel ezelőtt kezdődött. Ma már egyértelmű az, hogy a Föld működésének megértéséhez az egyik kulcsot az óceánok jelentik. Az óceáni üledékek értékes adatokat őriztek meg a legutóbbi 200 millió év éghajlati változásairól. Annak ellenére, hogy az óceánokról szóló ismereteink a bolygónk működéséről alkotott képet forradalmian átalakították (a legjobb példa erre a II. világháború utáni tengeri expedíciók sora, amelyek a hatvanas évek végén elvezettek a lemeztektonika elméletéhez), még jóval több minden vár felfedezésre nem csupán az óceánok hasznosítása, hanem a kontinentális lemezszegélyek katasztrófa-kockázatainak enyhítése terén is. A világ népességének mintegy 21 %-a, 1,147 milliárd ember él ugyanis a partmenti 30 km-es sávban. Lemeztektonikai megközelítésben egy új szétsodródási vagy szétterjedési központ ( spreading centre ) születése gyakran kettétöri a kontinenst, majd egy széthasadó ( rifted ) kontinentális lemezszegélypár alakul ki. (Ilyen ma például az Atlanti-óceán két szemközti partvidéke.) Az óceánfenék folyamatosan képződik a szétterülési hátságok ( ridges ) globális rendszerében, a képződött óceáni kéreg pedig egyre távolabb kerül a hátságtól. A mély óceáni medencén történő keresztülhaladás után a tengeraljzat eltűnhet egy óceáni árokban, ahol az óceáni lemez alábukik szubdukció történik, gyakran a kontinens alá is: ez történik napjainkban szerte a Csendes-óceán körül. Így tehát az óceánokra vonatkozó tudományos kérdések jó része a szétterülő hátságokra és a kontinentális lemezszegélyekre irányul, akár hasadások (Atlanti-óceán) akár alábukások (Csendes-óceán) az okozói. Óceáni hátságok és kontinentális lemezszegélyek E tudományos kérdések megválaszolására az elmúlt évtizedben két nemzetközi tudományos kezdeményezés is létrejött. Emellett a tudományos célú óceáni fúrásokra irányuló programok (Mélytengeri Fúrási Projekt 1968-1983; Óceánfúrási Program 1985-2003; Integrált Óceánfúrási Program 2003-) az elmúlt 40 évben a Föld óceánokat is magába foglaló dinamikus rendszerének jobb megértéséhez segítették a földtudományok művelőit azzal, hogy mintát vettek az óceáni üledékekből és az alattuk elhelyezkedő földkéregből. A Föld Bolygó Nemzetközi Éve programsorozat ÓCEÁN témája az óceánközepi hátságokkal foglalkozó InterRidge és a kontinentális szegélyeket vizsgáló InterMARGINS témáit is magában foglaló két kulcskérdésre összepontosít: Miként hat egymásra a litoszféra, hidroszféra és bioszféra az óceánközépi hátságokban és milyen szerepet játszanak ezek a kölcsönhatások a földi élet eredetében? Milyen földi folyamatok hatnak a kontinentális szegélyek kialakulására és fejlődésére, továbbá milyen előnyöket és fenyegetéseket jelentenek a kontinentális szegélyek az emberiségre? Hogyan hat a litoszféra, a hidroszféra és a bioszféra az óceánközepi hátságokra és milyen szerepet játszanak ezek a kölcsönhatások a földi élet eredetében? A Föld felszínén óriási repedések keletkeznek, amikor a bolygónk külső héját alkotó tektonikus lemezek elmozdulnak egymástól. A repedések az óceáni medencék legnagyobb részét átszelik, és kialakítottak egy 60000 km összhosszúságú, a Földet körülölelő vulkáni rendszert, amit

óceánközepi hátságok néven ismerünk. Ez a vulkáni öv teljes egészében (Izland kivételével) a rejtetten, az óceán alatt 2-4 km-es mélységben húzódik. E hátságok hosszában 20 és 80 km közti mélységben kőzetolvadék (magma) keletkezik, amely a tenger aljzatáig felemelkedik. Ki és feltör. Ezekből a hátságokból eltávolodó magma lassan, de feltartózhatatlanul bolygónk hatalmas kiterjedésű területét burkolja újra be. A folyamat bizarr tájat (az angol landscape ellentéteként a mélytengeri tájat idéző bathyscape kifejezés szerepel az eredeti anyagban; érdekesség hogy Piccard minitengeralattjárójának is Bathyscape volt a neve) eredményez forró, mérgező forrásokkal, a napfénytől függetlenedett élőlények sokaságával. Ezeket a tájakat minden alkalommal újra formálják a vulkánkitörések és földrengések. Ez a terület bolygónknak egy igen érdekes, de kevésbé ismert része, felmerül azonban a kérdés, hogy egészében véve mennyire fontos az effajta vulkanikus tevékenység és az ezáltal táplált élet a világ számára? Milyen szerepet játszanak pl. az ásványtelepek felhalmozódásában, az óceánok kémiai összetételének szabályozásában, a mélytengeri táplálékláncban és az élet kialakulásában? Lévén, hogy a hátságok elképzelhetetlenül hosszúak és viszonylag elérhetetlenek, a feltett kérdések megválaszolása mindig is összehangolt nemzetközi tudományos együttműködést igényelt. A jelenlegi törekvések bebizonyították, hogy a hátságok nagyon fontosak az óceán mélye és az emberi faj számára. A hátságok lehűlő vulkanikus kőzetei által kibocsátott energia kb. fele az ember által a fosszilis tüzelők elégetése útján és a nukleáris úton nyert energia összegének. Jelenleg ez az energia a tengerfenéken, illetve annak közelében szabadul fel, ami hatalmas tömegű tengervizet áramoltat az óceáni kérgen keresztül. E cirkuláció terméke a forró (akár 400 C-os) és savas hidrotermális folyadék, amely fémeket szállít és olyan felbomlott gázokkal telített, mint a metán vagy a hidrogénszulfid. Ha ezek a tengerfenékre jutnak, a forró, fémekkel teli folyadék és az azt körülvevő hideg tengervíz közötti reakciók a fémszulfidok kicsapódásához vezet. Ilyen reakció hozta létre a Föld legnagyobb érctelepeit. Egy forró, szulfidokkal és fémekkel teli folyadékról egyáltalán nem gondolnánk, hogy ott virágzó életkörülmények lennének. Határozottan kijelenthető azonban, hogy a mélytengeri biomasszakoncentráció éppen a hasadékoknak a környékén a legnagyobb. A hidrotermális hasadékokban élő állatok nagyon idegenek számunkra, pl. óriási férgek, amelyeknek nincs belük, és a szöveteikben élő baktériumok segítségével táplálkoznak. Ezek cserébe hasznosítják az energiát az egyébként mérgező kémiai anyagból, a hidrogén-szulfidból. Az efféle hasadéklakó állatok sokasága sok újat mond arról, hogy az ilyen dinamikus és igencsak ellenséges környezetben hogyan lehet túlélésre (esetenként virágzó életre) berendezkedni. Sőt, a hidrotermális résekben talált mikróbák ennél is szélsőségesebb körülmények között élnek. Még csak most kezdjük felfedezni a tengerben és tenger fölött élő rovarokban működő metabolikus ösvények (biokémiai reakcióláncok) hatalmas sokszínűségét. Azt már tudjuk, hogy egyes rovarok képesek sokkal nagyobb hőmérsékleten élni, mint amilyet akármelyik másik földi életforma képes elviselni. Sok tudós pedig gyakorlatilag azt a nézetet vallja, hogy az élet a Földön éppen ilyen helyeken alakult ki. Az óceánközepi hátságok a vulkáni működés és a földrengések szempontjából egyaránt a Föld legaktívabb helyeinek számítanak. A tenger alatti vulkánosság, a földrengések és az óceán mélyének fizikai állapotváltozásai közötti kölcsönhatások hosszú távú megfigyelése e különleges természeti laboratóriumban végezhető. A legutóbbi tanulmányok kimutatták, hogy az óceáni eltolódásos ( transzform ) vetők mentén (a szétterülő hátságok peremén) kipattanó közepes földrengéseknek sokkal több előrengése és sokkal kevesebb utórengése van, mint a kontineseken kipattanó földrengéseknek. Úgy tűnik továbbá, hogy a tengerfenéki vulkánok közelében a szeizmikus tevékenységet az óceáni árapály pattantja ki ( triggereli ). A Föld burkának ( litoszférájának ) és az óceánközepi hátság vulkanikus-tektonikus rendszerének

kölcsönhatásairól szerzett új ismeretek jelentősen lendíthetnek a szárazföldi vulkán- és földrengésveszély kutatásán és az előrejelzésen. Az óceáni hátságok vulkanikus, tektonikus és hidrotermális folyamatai befolyásolják az óceáni litoszféra (az óceán aljzatát alkotó kőzetek) kémiai felépítését és a hatalmas kiterjedésű mélységbeli síkságokat. A gyorsan szétterülő hátságok alatt (mint amilyen a Csendes óceán keleti hátsága) viszonylag állandó magmalencse látható, amely kőzetolvadék-utánpótlást biztosít a viszonylag gyakori magma-benyomuláshoz és a következményként fellépő tengeraljzati kitörésekhez. A magmalencse szolgáltatja azt a hőt is, amely a forró vizes (hidrotermális) cirkulációt az óceáni kéregben meghajtja. A lassan és a nagyon lassan mozgó hátságokon mint a Közép-Atlanti hátság és a Jeges-tenger alatt húzódó Gakkel-hátság a magmás események jóval ritkábbak. A tengerfenék szétterjedésének legjellemzőbb összetevője itt a litoszféra vetődés által okozott tektonikus terjeszkedése ( extenziója ). Az óceánközepi hátságokon lejátszódó magmás-tektonikus eseményciklusok vezérlésének megismerésében még csak a kezdeteknél tartunk. A Föld köpenyéből az óceánaljzat felé irányuló hőáram az óceánközepi hátságokon és forró pontoknál (mint például Izland, az Azori-szigetek és a Galapagosz-szigetek) a legnagyobb. Az efféle forró pontok az óceánaljzatot megemelik, sőt akár a felszínre is kiemelhetik. (A két szembetűnőbb példát a Közép-Atlanti-hátságnál Izland, a Csendes-óceáni medencében a Hawaii szigetek szolgáltatják.) Vastagabb lesz itt az óceáni kéreg, megváltozik a tengeraljzati vulkanizmus formája és intenzitása, továbbá módosulhat a tengerfenéki szétterülési központ geometriája is.. Amikor egy forró pont kölcsönhatásba kerül egy óceánközepi hátság szétterjedési központjával, az óceánfenékre (és a forrópont-szigetre) kifolyó láva szintén fontos ismereteket nyújt a Föld köpenyének kémiai összetételéről. Még nem tudjuk, hogy az óceáni medencékben található forró pontok zöme rendelkezik-e mély (a köpenybe mélyen lenyúló) gyökérrel, vagy csak a felsőköpenyből származnak-e. Az óceánközepi hátságokon és forró pontokon végzendő jövőbeni kutatások fogják megválaszolni ezeket a kérdéseket, más hasonló alapkérdésekkel egyetemben. Milyen földi folyamatok hatnak a kontinentális szegélyek kialakulására és fejlődésére, továbbá milyen előnyöket és fenyegetéseket jelentenek a kontinentális szegélyek az emberiségre? A kontinentális szegély viszonylag meredek lejtői (amelyek függőleges irányban a néhány km-t is elérik) hatással vannak az óceáni áramlatokra. A part mentén fújó szelek a Coriolis-féle eltérítő erő hatására adott esetben a parttól elhajthatják a felszínen lévő tengervizet, és ennek helyébe ilyenkor a mélyből feláramlik a tápanyagdús mélyvíz, és ez igen jelentős mértékben járul hozzá a partmenti zóna biológiai produktivitásához. A kontinensek üledékforrásoknak is tekinthetők, ugyanis a folyók, és különböző emberi tevékenységek révén jelentős mennyiségű üledék kerül az óceán partmenti zónájába. A kontinentális peremen felhalmozódó, szerves szénben gazdag üledékek (különösen, ha több km vastagok) fontos nyersanyagok (például szénhidrogén és gázhidrát) és különféle biológiai közösségek keletkezési- és tárolóhelyei. A kontinentális peremek üledékei sokfelé magukon viselik a múltbéli klímaváltozások nyomait. A kontinentális peremek ugyanakkor veszélyt is jelentenek az emberre. A kontinentális lejtőkön felhalmozódott üledékrétegek lecsúszása akár cunamik keletkezését is kiválthatja, ami a távoli

partvidékeken élő életközösségek pusztulását is előidézheti. Megfordítva: akárhol is keletkezett a cunamihullám, jelentőségét a partközeli tengerfenék topográfiája határozza meg. Ez dönti el, hogy okoz-e katasztrofális károkat a szárazföldön. Jelenleg még kevéssé világos, hogy a globális felmelegedés által előidézett fokozatos tengerszint-emelkedésnek milyen lehetséges destabilizáló hatásai vannak. Az aktív hasadékokkal vagy alábukási zónákkal határos szegélyek szeizmikus katasztrófák, vagy tenger- illetve felszín alatti vulkánkitörések színhelyei lehetnek. A kontinentális peremeket a szárazföld felől érkező folyók és emberi tevékenység szennyezi. A szennyeződés ipari, kereskedelmi és szabadidős tevékenység hatására keletkezik, és fizikaikémiai-biológiai folyamatok révén halmozódik fel a kontinentális szegélyeken. A peremek a tengerészeti partvédelemben is szerepet játszanak (főképp a víz alatti hangjelzések terén), továbbá a halászatban, a szénhidrogén-kutatásban és a biztonságos hajózásban is. A fentebb említett ismeretek a hasadt (és hasadó) szegélyek, továbbá az alábukásos peremek alakulásával együtt járó geológiai folyamatok megértésén alapulnak. Valószínű, hogy hasadékos peremeken a szegélyek fejlődését elsősorban az eredeti kontinentális litoszféra-lemez fizikai-kémiai jellegzetességei: a hasadásra adott választ kialakító alakváltozási és áramlási jellemzői határozzák meg. Amennyiben előrejelzési modelleket kívánunk készíteni a riftesedésre és a kontinens-felhasadásra vonatkozóan, ismernünk kell a riftesedés alatt létrejövő litoszféra-megnyúlás nagyságát, a litoszféra legfelső, merev részén kialakuló fő vetődések formáját és eloszlását, a sók és magmajelenségek kiterjedését, valamint a süllyedés történetét. Alábukásos (szubdukciós) zónákban a konvergens (összetorlódó) szegélyek alakját és fejlődését erősen befolyásolja az óceánból érkező üledék sorsa (vagy ledörzsölődnek és felhalmozódnak a szemközti feltolódásos ún. obdukciós lemezen vagy egyszerűen alábuknak). Meg kell értenünk az alábukás sebessége és szöge, az óceáni kéreg hőmérséklete, a folyadékok és a pórusnyomás, a vetők, szeizmicitás és vulkánosság, ill. az asztenoszférába (a földköpeny képlékeny, litoszféra alatti rétegébe) lesüllyedő litoszféra-lemezek sorsának sokféle méretben és időközben megnyilvánuló szerepét is. A kontinentális szegélyekkel kapcsolatban a megoldandó tudományos problémák meglehetősen sokfélék, de mindegyiknek van hatása az emberi szükségletekre és tevékenységekre, illetve a környezetre. Ezek a következő fejezetekre oszthatók: Mélyszerkezet Üledékek Nyersanyagok és folyadékok Veszélyforrások Adatgyűjtés Technológiai előrehaladás A hasadékos szegélyek mélyszerkezete A hasadékos szegélyekkel kapcsolatos legfontosabb feladat ma az, hogy a litoszféra szegélykialakulás alatti fejlődésére elvi és numerikus modelleket készítsünk. E feladat az óceáni kéreg üledékei alatt lévő különféle kőzettípusokról, azok mechanikus és fizikai tulajdonságairól, korukról és beágyazódásuk történetéről, továbbá nyújtásra (tágulásra) adott merev vagy képlékeny reagálásukról igényel információt. Ideális esetben hogy teljes képet kaphassunk a peremeket a hasadék (rift) mindkét oldalán ugyanazokkal az eszközökkel kell vizsgálnunk, egy közös szelvényvonal mentén. A vizsgálatok alapvető eszköze egyrészt az üledékbe és az alapkőzetbe behatoló mélyfúrás (beleértve a fúrófolyadékos fúrást), másrészt a szeizmika (beleértve a 3D-s

felméréseket); de egyéb technikák (részben az új fejlesztésűek, mint a tengerfenéken vagy ahhoz közel végzett geoelektromos-elektromágneses vagy más geofizikai mérések) is alkalmazásra kerülhetnek. Az alábukási (szubdukciós) zónák és az üledékek mélyszerkezete Egy erősen nyomásos szegélyen az üledékek felhalmozódási története csak kevéssé meghatározó az üledék sorsának alakulása szempontjából, a dinamikus alábukási (szubdukciós) folyamatban mégis gyakran együtt tárgyalják a mélyebb kéreggel és a földköpennyel. A lefelé mozgó lemezeket kísérő nagy földrengések jelentik az óceáni lemezek alábukási folyamatra adott rövid periódusidejű válaszát. Az elmozdulás évenként néhány cm. Szeizmikus és más geofizikai paraméterek felhasználásával háromdimenziós képet kell alkotnunk a földrengést előidéző zónákról, hogy feltérképezhessük a lemeznek a tektonikus folyamatokra adott válaszát. A földrengést előidéző (szeizmogén) zóna megfúrása és az ott elhelyezett különböző érzékelők mellett e leképezés is rendkívül fontos. A Globális Helymeghatározó Rendszer (GPS) megjelenése alapjaiban változtatta meg a geodéziát. Most már állandóan megfigyelhetjük ( monitorozhatjuk ) a szárazföld deformációit. Ugyanezt szeretnénk elérni a tengerfenéken is. A kezdeti kísérletek igazolták az elképzelés megvalósíthatóságát. Ki kell terjesztenünk ezt a technikát az egész tengerre, hogy mérhessük a Föld most végbemenő deformációját. Ha a tudósok mérni tudják a deformációk pontos nagyságát és a földrengés szeizmikus energiájának hirtelen felszabadulását, kibocsátódását, ez elvezethet a szigetívek fejlődésének, a vulkanizmusnak és a veszélycsökkentésnek a jobb megértéséhez. Az alábukás (szubdukció) felfogható egy globális körfolyamat részeként: hívják alábukásgyárnak is. Jó lenne megérteni az egész Föld anyagkörfolyamatát. A kis mélységekben pl. a gázhidrát fejlődésével kapcsolatos szén-körforgalom ismerete közelebb vinne a globális szénciklus megértéséhez. A nagyobb mélységekben pedig a litoszféra behatolásának hatásai (például az alábukó szerpentinitesedett óceáni kéreg lehetséges következményei, illetve a lemezközépi magmatizmus termékei) még nem teljesen tisztázottak. A hasadékszegély üledékei A part közelében és attól távolabb elhelyezkedő üledékek tükrözik a hasadékos peremek extenziós, eróziós és lerakódási történetét csakúgy, mint felemelkedésüket és alábukásukat. Nem feltétlenül szükséges az üledékeket a szegélyek szemben lévő párjain vizsgálni, de a riftesedéssel egyidejűleg (syn-rift) utána lezajlott (post-rift) üledékfelhalmozódási történet teljes megértése geológiai térképezést és mintavételezést kíván a szárazföldön és a tengeren egyaránt: sűrű szeizmikus méréseket (nem csak vonalmentieket, hanem területieket is) és mintavételt (fúrómagmintákat is), hogy nagy üledékfelhalmozódási sorozatok és a jelentős hullámvisszaverő felületek nagy távolságokon át követhetők legyenek. Az üledékek egykori mélységét meghatározó i módszereket is fejlesztik. A modern üledékes rendszerek tanulmányozása hanglokátoros és a többsugaras mélységméréseket és fúrómagokat is igényel. Nyersanyagforrások és folyadékok A hasadékperemeken az ásványi nyersanyagok közül elsősorban szénhidrogén (kőolaj és földgáz) található. Gázhidrát a hasadékos és a nyomásos peremeken is fellelhető. A szénhidrogénkutatás és

a potenciális anyakőzetek értékelése szempontjából a hőtörténet megismerése talán a legfontosabb tényezőt jelenti. A hőtörténet megbecsülhető a magmatizmus területi kiterjedéséből és térfogatából, az üledékek vastagságából és korából, ill. a jelenkori hőáramból. A gázhidrát nagy mennyiségben fordul elő. Potenciális energiaforrásként tartjuk számon, de nyomban hozzá kell tennünk, hogy a metán tengerfenékről történő biztonságos és gazdaságos kitermelésének módszere még nem ismert, így e kérdésben további kutatásra van szükség. Tengeraljzati folyadékszivárgást a hasadt és az összenyomódott szegélyek mentén is megfigyeltek. Az ilyen folyadékok a környezet hőmérsékletén szabadulnak fel, és ezért hideg szivárgásnak is nevezik. Hideg szivárgásokat a legkülönbözőbb helyeken találtak, mint pl. kanyonfalakon, aktív kontinentális szegélyeken, mészkőtelepekben és szénhidrogéntelepek fölött. Különböző baktériumfajok élnek ebben a környezetben, mint ahogyan olyan állati közösségek is előfordulnak, amelyek a tengerfenékről származó, kémiai anyagokban gazdag, lebontott folyadékokból eredő energiát hasznosítják. Még csak most kezdjük kapisgálni az itt élő állatok és mikróbák sokszínűségét és a különleges metabolizmusokhoz kapcsolódó lehetséges biotechnológiai alkalmazásokat. A hideg szivárgások létezését akusztikus vizsgálatok is bizonyítják. A peremeken lévő folyadékok kémiájának és áramlásának valószínűleg van köze az alatta elhelyezkedő üledékek diageneziséhez. Ezek a kutatási területek mindenképp új ötleteket és megközelítést kívánnak. Veszélyforrások A szeizmikus- és vulkáni katasztrófa-előrejelzés problémája nem csak az alábukási zónák térségében, de sok más egyéb helyen is jelen van. A cunamiveszély a partmenti térségekben különleges feladatokkal jár. A cunamiveszély csökkentése az instabil üledékrétegek ismeretét és a kritikus régiók részletes mélységi és topográfiai elemzését igényli. Fontos eszköz a maximális károkozás helyének előrejelzésében a cunami-terjedés és -felfutás numerikus modellezése. Úgy tűnik, hogy a klímaváltozás okozta emelkedő tengerszint és az áradások a következő évtizedekben a part menti régiókban tömeges elvándorlást eredményeznek. Az új tengerparti települések helykiválasztásához a cunamiveszélyről is alapos információkkal kell rendelkeznünk. Adatgyűjtés Az ENSZ tengerjogi egyezménye (UNCLOS) felhatalmazza a part menti államokat, hogy a nemzetközi egyezményben leírtaknak megfelelően jogot formáljanak a partjaiktól távol eső tengerfenékre. Hogy ezt érvényesítsék, számos ország nagy mennyiségű adatfeldolgozást végzett és különleges méréseket végzett a sávos tengermélység- és egyéb információkra vonatkozóan. Amíg néhány állam bizalmasan kívánja kezelni ezeket, mások nyitottabbak. Néhány adatbázist már nyilvánossá is tettek. Mi egy olyan adatközpont kialakítását javasoljuk, ahol összegyűjtik és egyesítik a sávos tengermélység-adatokat, továbbá egyéb, a világ kontinentális szegélyeiről származó információkat, ami ezáltal a tengertudományokat és a mérnöki tervezést szolgálná. Előrelépés a technológiában és a műszerezettségben Az óceáni hátságokon és a kontinentális peremeken zajló vulkáni, tektonikus és hidrotermális aktivitás felfedezését hatékonyan népszerűsíteni kell, ezzel párhuzamosan folytatni szükséges a mélytengeri kutatási technológiák és eszközök fejlesztését, amelyek egy része a társadalom számára közvetlen technológiai előnyt fog jeleni.

Néhány példa az új technológiák sorából: ember-vezette járművek (HOV, amelyek az óceán nagy mélységeibe képesek merülni), a távirányítható járművek (ROV), az önjáró víz alatti járművek (AUV), és újfajta mélytengeri szeizmikus, geofizikai, akusztikus, hidrotermális, kémiai és biológiai mérőberendezések. Az új technológia a folyamatos idejű tengerfenéki méréseket (a tengerfenéki obszervatóriumokat), az obszervatóriumok hagyományos és száloptikai mélytengeri kábelekkel történő energiaellátását és az adatok szárazföldi laboratóriumokba történő átvitelét is jelenti, sőt az Integrált Óceánfúrási Program (IODP) révén az óceánközepi hátságokon az óceáni kéregbe és a kontinensperemek mélyébe hatoló tudományos fúrásokat is magában foglalja. Szerzők: J. Chen, C. Devey, C. Fischer, J. Lin, B. Whitmarsh Fordították: a NYME hallgatói Lektorálták: Czelnai Rudolf, Szarka László, Verő József