KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA



Hasonló dokumentumok
ÍRÁSBELI VIZSGA május 7. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 7. pontszám. pontszám. II. rész 70. I.

MATEMATIKA ÉRETTSÉGI május 7. KÖZÉPSZINT

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ÍRÁSBELI VIZSGA május 5.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

ÉRETTSÉGI VIZSGA október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Időtartam: 45 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA április január II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.

PRÓBAÉRETTSÉGI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.

PRÓBAÉRETTSÉGI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

3. MINTAFELADATSOR KÖZÉPSZINT

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Matematika kisérettségi

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

ÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Időtartam: 45 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

ÉRETTSÉGI VIZSGA október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 45 perc

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

EMELT SZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI május EMELT SZINT. 240 perc

2. MINTAFELADATSOR KÖZÉPSZINT

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 240 perc

PRÓBAÉRETTSÉGI VIZSGA január 18.

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA január 19.

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00

PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 15. 8:00. Az írásbeli vizsga időtartama: 240 perc

EMELT SZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA február 16.

ÉRETTSÉGI VIZSGA május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

ÉRETTSÉGI VIZSGA május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

ÍRÁSBELI VIZSGA május 6. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 6. pontszám. pontszám. II. rész 70. I.

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

1. MINTAFELADATSOR KÖZÉPSZINT

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

Azonosító jel: ÉRETTSÉGI VIZSGA május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 240 perc

PRÓBAÉRETTSÉGI VIZSGA

ÉRETTSÉGI VIZSGA május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

PRÓBAÉRETTSÉGI VIZSGA

1. MINTAFELADATSOR EMELT SZINT

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

ÉRETTSÉGI VIZSGA október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 15. 8:00. Időtartam: 45 perc

Azonosító jel: ÉRETTSÉGI VIZSGA október 15. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 15. 8:00. Időtartam: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Az írásbeli vizsga időtartama: 240 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA október 19. MINISZTÉRIUM NEMZETI ERFORRÁS október 19. 8:00

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 16. 8:00. Az írásbeli vizsga időtartama: 240 perc

ÉRETTSÉGI VIZSGA május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május 6. MINISZTÉRIUMA május 6. 8:00 EMBERI ERFORRÁSOK

Matematika kisérettségi május 24. I. rész

ÍRÁSBELI VIZSGA II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 6. pontszám. pontszám. II. rész 70. I. rész 30

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

Átírás:

ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint írásbeli vizsga I. összetevő

Fontos tudnivalók 1. A feladatok megoldására 45 percet fordíthat, az idő leteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos! 4. A feladatok végeredményét az erre a célra szolgáló keretbe írja, a megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad! 5. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 6. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 7. Kérjük, hogy a szürkített téglalapokba semmit ne írjon! írásbeli vizsga, I. összetevő 2 / 8 2013. május 7.

1. Az A és B halmazokról tudjuk, hogy A B = { 1;2;3;4;5;6;7;8;9 } és \ A = { 1;2;4;7 } Elemeinek felsorolásával adja meg az A halmazt! B. A = { } 2 pont 2. Egy kis cégnél nyolcan dolgoznak: hat beosztott és két főnök. A főnökök átlagos havi jövedelme 190 000 Ft, a beosztottaké 150 000 Ft. Hány forint a cég nyolc dolgozójának átlagos havi jövedelme? A dolgozók átlagos havi jövedelme: Ft 2 pont 3. Az ábra egy sütemény alapanyagköltségeinek megoszlását mutatja. Számítsa ki a vaj feliratú körcikk középponti szögének nagyságát fokban! Válaszát indokolja! 2 pont A körcikk középponti szöge fok. 1 pont írásbeli vizsga, I. összetevő 3 / 8 2013. május 7.

4. Az alábbi hozzárendelési utasítással megadott, a valós számok halmazán értelmezett függvények közül kettőnek egy-egy részletét ábrázoltuk. Adja meg a grafikonokhoz tartozó hozzárendelési utasítások betűjelét! 1) 2) A) x a x + 2 B) x a x 2 C) x a x 2 D) x a x + 2 1) 2) 2 pont 5. A vízszintessel 6,5 -ot bezáró egyenes út végpontja 124 méterrel magasabban van, mint a kiindulópontja. Hány méter hosszú az út? Válaszát indokolja! 2 pont Az út hossza méter. 1 pont írásbeli vizsga, I. összetevő 4 / 8 2013. május 7.

6. Adja meg a 2x + y = 4 egyenletű egyenes és az x tengely M metszéspontjának a koordinátáit, valamint az egyenes meredekségét! A metszéspont koordinátái: M( ; ). Az egyenes meredeksége: 2 pont 1 pont 2 7. Adja meg az x a x + 10x + 21 ( x R) másodfokú függvény minimumhelyét és minimumának értékét! Válaszát indokolja! 2 pont A minimumhely: 1 pont A minimum értéke: 1 pont írásbeli vizsga, I. összetevő 5 / 8 2013. május 7.

8. Adja meg a következő állítások logikai értékét (igaz vagy hamis)! A) A {0; 1; 2; 3; 4} adathalmaz szórása 4. B) Ha egy sokszög minden oldala egyenlő hosszú, akkor a sokszög szabályos. C) A 4 és a 9 mértani közepe 6. A) B) C) 2 pont 9. Két gömb sugarának aránya 2 : 1. A nagyobb gömb térfogata k-szorosa a kisebb gömb térfogatának. Adja meg k értékét! k = 2 pont 10. Egy futóverseny döntőjébe hat versenyző jutott, jelöljük őket A, B, C, D, E és F betűvel. A cél előtt pár méterrel már látható, hogy C biztosan utolsó lesz, továbbá az is biztos, hogy B és D osztozik majd az első két helyen. Hányféleképpen alakulhat a hat versenyző sorrendje a célban, ha nincs holtverseny? Válaszát indokolja! 2 pont A lehetséges sorrendek száma: 1 pont írásbeli vizsga, I. összetevő 6 / 8 2013. május 7.

11. Réka év végi bizonyítványában a következő osztályzatok szerepelnek: 4; 2; 3; 5; 5; 4; 5; 5; 4. Adja meg Réka osztályzatainak móduszát és mediánját! A módusz: 1 pont A medián: 1 pont 12. Adja meg annak valószínűségét, hogy a 7, 8, 9, 10, 11, 12, 13, 14 számok közül egyet véletlenszerűen kiválasztva a kiválasztott szám prím! A kérdéses valószínűség: 2 pont írásbeli vizsga, I. összetevő 7 / 8 2013. május 7.

I. rész maximális pontszám 1. feladat 2 2. feladat 2 3. feladat 3 4. feladat 2 5. feladat 3 6. feladat 3 7. feladat 4 8. feladat 2 9. feladat 2 10. feladat 3 11. feladat 2 12. feladat 2 ÖSSZESEN 30 elért pontszám dátum javító tanár I. rész elért pontszám egész számra kerekítve programba beírt egész pontszám javító tanár jegyző dátum dátum Megjegyzések: 1. Ha a vizsgázó a II. írásbeli összetevő megoldását elkezdte, akkor ez a táblázat és az aláírási rész üresen marad! 2. Ha a vizsga az I. összetevő teljesítése közben megszakad, illetve nem folytatódik a II. összetevővel, akkor ez a táblázat és az aláírási rész kitöltendő! írásbeli vizsga, I. összetevő 8 / 8 2013. május 7.

ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 II. Időtartam: 135 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint írásbeli vizsga II. összetevő

írásbeli vizsga, II. összetevő 2 / 16 2013. május 7.

Fontos tudnivalók 1. A feladatok megoldására 135 percet fordíthat, az idő leteltével a munkát be kell fejeznie. 2. A feladatok megoldási sorrendje tetszőleges. 3. A B részben kitűzött három feladat közül csak kettőt kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor a kitűzött sorrend szerinti legutolsó feladatra nem kap pontot. 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos! 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár! 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetők legyenek! 7. A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasság-tétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, de alkalmazhatóságát röviden indokolnia kell. 8. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje! 9. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 10. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 11. Kérjük, hogy a szürkített téglalapokba semmit ne írjon! írásbeli vizsga, II. összetevő 3 / 16 2013. május 7.

13. a) Egy számtani sorozat első tagja 2, első hét tagjának összege 45,5. Adja meg a sorozat hatodik tagját! A b) Egy mértani sorozat első tagja 5, második és harmadik tagjának összege 10. Adja meg a sorozat első hét tagjának az összegét! a) 5 pont b) 7 pont Ö.: 12 pont írásbeli vizsga, II. összetevő 4 / 16 2013. május 7.

írásbeli vizsga, II. összetevő 5 / 16 2013. május 7.

14. A PQR háromszög csúcsai: P( 6; 1), Q(6; 6) és R(2; 5). a) Írja fel a háromszög P csúcsához tartozó súlyvonal egyenesének egyenletét! b) Számítsa ki a háromszög P csúcsnál lévő belső szögének nagyságát! a) 5 pont b) 7 pont Ö.: 12 pont y 1 1 x írásbeli vizsga, II. összetevő 6 / 16 2013. május 7.

írásbeli vizsga, II. összetevő 7 / 16 2013. május 7.

15. A munkavállaló nettó munkabérét a bruttó béréből számítják ki levonások és jóváírások alkalmazásával. Kovács úr bruttó bére 2010 áprilisában 200 000 forint volt. A 2010-ben érvényes szabályok alapján különböző járulékokra ennek a bruttó bérnek összesen 17%-át vonták le. Ezen felül a bruttó bérből személyi jövedelemadót is levontak, ez a bruttó bér 127%-ának a 17%-a volt. A levonások után megmaradó összeghez hozzáadtak 15 100 forintot adójóváírásként. Az így kapott érték volt Kovács úr nettó bére az adott hónapban. a) Számítsa ki, hogy Kovács úr bruttó bérének hány százaléka volt a nettó bére az adott hónapban! Szabó úr nettó bére 2010 áprilisában 173 015 forint volt. Szabó úr fizetésénél a levonásokat ugyanazzal az eljárással számították ki, mint Kovács úr esetében, de ebben a hónapban Szabó úr csak 5980 forint adójóváírást kapott. b) Hány forint volt Szabó úr bruttó bére az adott hónapban? a) 5 pont b) 7 pont Ö.: 12 pont írásbeli vizsga, II. összetevő 8 / 16 2013. május 7.

írásbeli vizsga, II. összetevő 9 / 16 2013. május 7.

B A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 16. Egy iskola asztalitenisz bajnokságán hat tanuló vesz részt. Mindenki mindenkivel egy mérkőzést játszik. Eddig Andi egy mérkőzést játszott, Barnabás és Csaba kettőt-kettőt, Dani hármat, Enikő és Feri négyet-négyet. a) Rajzolja le az eddig lejátszott mérkőzések egy lehetséges gráfját! b) Lehetséges-e, hogy Andi az eddig lejátszott egyetlen mérkőzését Barnabással játszotta? (Igen válasz esetén rajzoljon egy megfelelő gráfot; nem válasz esetén válaszát részletesen indokolja!) c) Számítsa ki annak a valószínűségét, hogy a hat játékos közül kettőt véletlenszerűen kiválasztva, ők eddig még nem játszották le az egymás elleni mérkőzésüket! a) 4 pont b) 6 pont c) 7 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 10 / 16 2013. május 7.

írásbeli vizsga, II. összetevő 11 / 16 2013. május 7.

A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! x + 2 17. a) Oldja meg a valós számok halmazán az 0 3 x egyenlőtlenséget! x x b) Adja meg az x négy tizedesjegyre kerekített értékét, ha 4 3 + 3 = 20. c) Oldja meg a 2cos 2 x + 3cos x 2 = 0 egyenletet a [ π; π] alaphalmazon! a) 7 pont b) 4 pont c) 6 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 12 / 16 2013. május 7.

írásbeli vizsga, II. összetevő 13 / 16 2013. május 7.

A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 18. Tekintsünk két egybevágó, szabályos négyoldalú (négyzet alapú) gúlát, melyek alapélei 2 cm hosszúak, oldalélei pedig 3 cm-esek. A két gúlát alaplapjuknál fogva összeragasztjuk (az alaplapok teljesen fedik egymást), így az ábrán látható testet kapjuk. a) Számítsa ki ennek a testnek a felszínét (cm 2 -ben) és a térfogatát (cm 3 -ben)! Válaszait egy tizedesjegyre kerekítve adja meg! A test lapjait 1-től 8-ig megszámozzuk, így egy dobó-oktaédert kapunk, amely minden oldallapjára egyforma valószínűséggel esik. Egy ilyen test esetében is van egy felső lap, az ezen lévő számot tekintjük a dobás kimenetelének. (Az ábrán látható dobóoktaéderrel 8-ast dobtunk.) b) Határozza meg annak a valószínűségét, hogy ezzel a dobóoktaéderrel egymás után négyszer dobva, legalább három esetben 5-nél nagyobb számot dobunk! a) 9 pont b) 8 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 14 / 16 2013. május 7.

írásbeli vizsga, II. összetevő 15 / 16 2013. május 7.

II. A rész II. B rész a feladat sorszáma maximális pontszám 13. 12 14. 12 15. 12 17 17 ÖSSZESEN 70 elért pontszám nem választott feladat összesen maximális pontszám elért pontszám I. rész 30 II. rész 70 Az írásbeli vizsgarész pontszáma 100 dátum javító tanár I. rész II. rész elért pontszám egész számra kerekítve programba beírt egész pontszám javító tanár jegyző dátum dátum írásbeli vizsga, II. összetevő 16 / 16 2013. május 7.