ÉRETTSÉGI VIZSGA 2013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 15. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint írásbeli vizsga I. összetevő
Fontos tudnivalók 1. A feladatok megoldására 45 percet fordíthat, az idő leteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos! 4. A feladatok végeredményét az erre a célra szolgáló keretbe írja, a megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad! 5. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 6. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 7. Kérjük, hogy a szürkített téglalapokba semmit ne írjon! írásbeli vizsga, I. összetevő 2 / 8 2013. október 15.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2 pont 2. Adott a valós számok halmazán értelmezett f ( x) = x 4 Mely x értékek esetén lesz f ( x) = 6? függvény. x = 2 pont 3. Oldja meg a [ π; π] zárt intervallumon a 1 cos x = egyenletet! 2 x = 2 pont írásbeli vizsga, I. összetevő 3 / 8 2013. október 15.
4. Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)! A) Két különböző pozitív egész szám legnagyobb közös osztója mindig kisebb mindkét számnál. B) Két különböző pozitív egész szám legnagyobb közös osztója mindig osztója a két szám összegének. C) Két különböző pozitív egész szám legnagyobb közös osztója nem lehet 1. A) B) C) 2 pont 5. Egy országban egy választáson a szavazókorú népesség 63,5%-a vett részt. A győztes pártra a résztvevők 43,6%-a szavazott. Hány fős a szavazókorú népesség, ha a győztes pártra 4 152 900 fő szavazott? Válaszát indokolja! 2 pont A szavazókorú népesség: fő 1 pont írásbeli vizsga, I. összetevő 4 / 8 2013. október 15.
6. Az ábrán az x a m x + b lineáris függvény grafikonjának egy részlete látható. Határozza meg m és b értékét! b = 1 pont m = 2 pont 7. Adja meg, hogy az alábbi geometriai transzformációk közül melyek viszik át önmagába az ábrán látható, háromszög alakú (sugárveszélyt jelző) táblát! A) 60 -os elforgatás a tábla középpontja körül. B) 120 -os elforgatás a tábla középpontja körül. C) Középpontos tükrözés a tábla középpontjára. D) Tengelyes tükrözés a tábla középpontján és a tábla egyik csúcsán átmenő tengelyre. A jó válasz(ok) betűjele: 2 pont írásbeli vizsga, I. összetevő 5 / 8 2013. október 15.
8. Egy számtani sorozat hatodik tagja 15, kilencedik tagja 0. Számítsa ki a sorozat első tagját! Válaszát indokolja! 2 pont A sorozat első tagja: 1 pont 9. Rajzoljon egy olyan 5 csúcsú gráfot, melyben a csúcsok fokszámának összege 12. A feltételeknek megfelelő gráf: 2 pont 10. Az ábrán az : [ 2; 1] R f ; f = x ( x) a függvény grafikonja látható. a) Adja meg az f függvény értékkészletét! b) Határozza meg az a szám értékét! Az f értékkészlete: 1 pont a = 2 pont írásbeli vizsga, I. összetevő 6 / 8 2013. október 15.
11. Adja meg annak az eseménynek a valószínűségét, hogy egy szabályos dobókockával egyszer dobva a dobott szám osztója a 60-nak! Válaszát indokolja! 2 pont A kérdéses valószínűség: 1 pont 12. Egy gyümölcsárus háromféle almát kínál a piacon. A teljes készletről kördiagramot készítettünk. Írja a táblázat megfelelő mezőibe a hiányzó adatokat! Alma fajtája A körcikk középponti szöge (fok) jonatán 90 idared Mennyiség (kg) starking 120 48 3 pont írásbeli vizsga, I. összetevő 7 / 8 2013. október 15.
I. rész maximális pontszám 1. feladat 2 2. feladat 2 3. feladat 2 4. feladat 2 5. feladat 3 6. feladat 3 7. feladat 2 8. feladat 3 9. feladat 2 10. feladat 3 11. feladat 3 12. feladat 3 ÖSSZESEN 30 elért pontszám dátum javító tanár I. rész elért pontszám egész számra kerekítve programba beírt egész pontszám javító tanár jegyző dátum dátum Megjegyzések: 1. Ha a vizsgázó a II. írásbeli összetevő megoldását elkezdte, akkor ez a táblázat és az aláírási rész üresen marad! 2. Ha a vizsga az I. összetevő teljesítése közben megszakad, illetve nem folytatódik a II. összetevővel, akkor ez a táblázat és az aláírási rész kitöltendő! írásbeli vizsga, I. összetevő 8 / 8 2013. október 15.
ÉRETTSÉGI VIZSGA 2013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 15. 8:00 II. Időtartam: 135 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint írásbeli vizsga II. összetevő
írásbeli vizsga, II. összetevő 2 / 16 2013. október 15.
Fontos tudnivalók 1. A feladatok megoldására 135 percet fordíthat, az idő leteltével a munkát be kell fejeznie. 2. A feladatok megoldási sorrendje tetszőleges. 3. A B részben kitűzött három feladat közül csak kettőt kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor a kitűzött sorrend szerinti legutolsó feladatra nem kap pontot. 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos! 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár! 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetők legyenek! 7. A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasság-tétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, de alkalmazhatóságát röviden indokolnia kell. 8. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje! 9. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül a ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 10. Minden feladatnak csak egy megoldása értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 11. Kérjük, hogy a szürkített téglalapokba semmit ne írjon! írásbeli vizsga, II. összetevő 3 / 16 2013. október 15.
13. a) Oldja meg a valós számok halmazán a következő egyenletet! x + 4 = 4x + 21 b) Oldja meg az alábbi egyenletrendszert, ahol x és y valós számot jelöl! A 3x + y 5x 2y = 16 = 45 a) 6 pont b) 6 pont Ö.: 12 pont írásbeli vizsga, II. összetevő 4 / 16 2013. október 15.
írásbeli vizsga, II. összetevő 5 / 16 2013. október 15.
14. Az ábrán látható ABC háromszögben a D pont felezi az AB oldalt. A háromszögben ismert: AB = 48 mm, CD = 41 mm, δ = 47. a) Számítsa ki az ABC háromszög területét! b) Számítással igazolja, hogy (egész milliméterre kerekítve) a háromszög BC oldalának hossza 60 mm! c) Számítsa ki a háromszög B csúcsánál lévő belső szög nagyságát! a) 5 pont b) 4 pont c) 3 pont Ö.: 12 pont írásbeli vizsga, II. összetevő 6 / 16 2013. október 15.
írásbeli vizsga, II. összetevő 7 / 16 2013. október 15.
15. Egy végzős osztály diákjai projektmunka keretében különböző statisztikai felméréseket készítettek az iskola tanulóinak körében. a) Éva 150 diákot kérdezett meg otthonuk felszereltségéről. Felméréséből kiderült, hogy a megkérdezettek közül kétszer annyian rendelkeznek mikrohullámú sütővel, mint mosogatógéppel. Azt is megtudta, hogy 63-an mindkét géppel, 9-en egyik géppel sem rendelkeznek. A megkérdezettek hány százalékának nincs otthon mikrohullámú sütője? b) Jóska a saját felmérésében 200 diákot kérdezett meg arról, hogy hány számítógépük van a háztartásban. A válaszokat a következő táblázatban összesítette: A számítógépek száma a háztartásban Gyakoriság 0 3 1 94 2 89 3 14 Jóska felmérése alapján töltse ki az alábbi táblázatot az egy háztartásban található számítógépek számáról! A számítógépek számának átlaga A számítógépek számának mediánja A számítógépek számának módusza c) Tamás a saját felmérése alapján a következőt állítja: Minden háztartásban van televízió. Az alábbi négy állítás közül válassza ki azt a kettőt, amely Tamás állításának tagadása! A) Semelyik háztartásban nincs televízió. B) Van olyan háztartás, ahol van televízió. C) Van olyan háztartás, ahol nincs televízió. D) Nem minden háztartásban van televízió. Tamás állításának tagadását jelentő állítások betűjele: a) 6 pont b) 4 pont c) 2 pont Ö.: 12 pont írásbeli vizsga, II. összetevő 8 / 16 2013. október 15.
írásbeli vizsga, II. összetevő 9 / 16 2013. október 15.
B A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 16. A kólibaktérium (hengeres) pálcika alakú, hossza átlagosan 2 mikrométer ( 2 10 7 átmérője 0,5 mikrométer ( 5 10 m). a) Számítsa ki egy 2 mikrométer magas és 0,5 mikrométer átmérőjű forgáshenger térfogatát és felszínét! Számításainak eredményét m 3 -ben, illetve m 2 -ben, normálalakban adja meg! Ideális laboratóriumi körülmények között a kólibaktériumok gyorsan és folyamatosan osztódnak, számuk 15 percenként megduplázódik. Egy tápoldat kezdetben megközelítőleg 3 millió kólibaktériumot tartalmaz. b) Hány baktérium lesz a tápoldatban 1,5 óra elteltével? 15 A baktériumok számát a tápoldatban t perc elteltével a B( t) = 3 000 000 2 összefüggés adja meg. c) Hány perc alatt éri el a kólibaktériumok száma a tápoldatban a 600 milliót? Válaszát egészre kerekítve adja meg! t 6 m), a) 5 pont b) 4 pont c) 8 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 10 / 16 2013. október 15.
írásbeli vizsga, II. összetevő 11 / 16 2013. október 15.
A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 17. Adott a koordináta-rendszerben két pont: A(1; 3) és B(7; 1). a) Írja fel az A és B pontokra illeszkedő e egyenes egyenletét! 2 2 b) Számítással igazolja, hogy az A és a B pont is illeszkedik az x + y 6x 2y = 10 egyenletű k körre, és számítsa ki az AB húr hosszát! Az f egyenesről tudjuk, hogy illeszkedik az A pontra és merőleges az AB szakaszra. c) Számítsa ki a k kör és az f egyenes (A-tól különböző) metszéspontjának koordinátáit! a) 4 pont b) 4 pont c) 9 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 12 / 16 2013. október 15.
írásbeli vizsga, II. összetevő 13 / 16 2013. október 15.
A 16-18. feladatok közül tetszése szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon lévő üres négyzetbe! 18. a) Egy memóriajáték 30 olyan egyforma méretű lapból áll, melyek egyik oldalán egyegy egész szám áll az 1, 2, 3, 14, 15 számok közül. Mindegyik szám pontosan két lapon szerepel. A lapok másik oldala (a hátoldala) teljesen azonos mintázatú. A 30 lapot összekeverjük. A játék kezdetén a lapokat az asztalra helyezzük egymás mellé, hátoldalukkal felfelé fordítva, így a számok nem látszanak. Számítsa ki annak a valószínűségét, hogy a játék kezdetén két lapot véletlenszerűen kiválasztva a lapokon álló számok megegyeznek! b) Egy dominókészlet azonos méretű kövekből áll. Minden dominókő egyik oldala egy vonallal két részre van osztva. Az egyes részeken elhelyezett pöttyök száma 0-tól 6-ig bármi lehet. Minden lehetséges párosításnak léteznie kell, de két egyforma kő nem lehet egy készletben. Az ábrán két kő látható: a 4-4-es és a 0-5-ös (vagy 5-0-ás). Hány kőből áll egy dominókészlet? c) A Ki nevet a végén? nevű társasjátékban egy játékos akkor indulhat el a pályán, amikor egy szabályos dobókockával 6-ost dob. Számítsa ki annak a valószínűségét, hogy valaki pontosan a harmadik dobására indulhat el a pályán! a) 5 pont b) 6 pont c) 6 pont Ö.: 17 pont írásbeli vizsga, II. összetevő 14 / 16 2013. október 15.
írásbeli vizsga, II. összetevő 15 / 16 2013. október 15.
II. A rész II. B rész a feladat sorszáma maximális pontszám 13. 12 14. 12 15. 12 17 17 ÖSSZESEN 70 elért pontszám nem választott feladat összesen maximális pontszám elért pontszám I. rész 30 II. rész 70 Az írásbeli vizsgarész pontszáma 100 dátum javító tanár I. rész II. rész elért pontszám egész számra kerekítve programba beírt egész pontszám javító tanár jegyző dátum dátum írásbeli vizsga, II. összetevő 16 / 16 2013. október 15.