MAÚT Mérnökakadémia Útépítés és geotechnika szabályok és tapasztalatok MAKADÁM-Klub Budapest, Lövőház u. 15. 21. november 2007 Földművek tervezése, minőségbiztosítása és monitoringja Ausztriában Standardization, Design, Quality Assurance and Monitoring of Earth Works in Road Engineering in Austria Assoc.Prof. Dipl.-Ing. Dr.techn. Dietmar Vienna University of Technology Institute for Ground Engineering and Soil Mechanics A-1040 Vienna, Karlsplatz 13/221 ZT GmbH Wiener Straße 66-72/15/4 A-2345 Brunn am Gebirge John Loudon McAdam (1756-1836) Budapest, 21. november 2007 2 1823 First American Macadam Road (State of Marylande) 1
[RVS 8.24] Earthworks RVS 08.03.01 [draft] Earthworks under Traffic Routes earthworks (substructure) Budapest, 21. november 2007 3 Cross Section Definitions and Standards RVS 08.15.01 [8S.05.11]: base and sub-base layer RVS [8S.05.12]: mechanical stabilized base / sub-base layer RVS 08.17.01 [8S.05.13]: with binder stabilized base / sub-base layer PAVEMENT WORKS (without wearing course) EARTH WORKS RVS 08.03.01[draft] [8.24] ÖNORM B 4417: static load plate test RVS 08.03.04: compaction control with the dynamic load plate (LFWD) RVS 08.03.02 [8S.02.06]: continuous compaction control (CCC) Budapest, 21. november 2007 4 2
Traffic Route Requirements strength & stability + serviceability + durability COMPACTION Budapest, 21. november 2007 5 1 2 3 4 5 6 Methods of Ground / Fill Improvement Ground COMPACTION Ground REPLACEMENT MECHANICAL Improvement Ground REINFORCEMENT Ground STABILIZATION DEEP IMPROVE- MENT OF SUBSOIL surface-near compaction soil excavation and soil exchange Mixing in suitable granular material to improve poorly graded materials (SP, GP), fine materials (silty or clayey) or soft soils reinforcement with geotextiles: in combination with soil replacement to reduce excavation depth stabilization with lime (ÖN EN 14227-11), cement (ÖN EN 14227-10), clinker (ÖN EN 14227-12), hydraulic binder (ÖN EN 14227-13), fly ash (ÖN EN 14227-14) surcharging and preloading vertical drains deep vibro compaction (RSV/RDV) Deep Dynamic Compaction (DYNIV) pile foundation Budapest, 21. november 2007 6 3
Surface-near and Deep Ground Improvement Dynamic roller compaction vibratory, oscillatory, VARIO, automatically controlled rollers Heavy Dynamic Tamping HARMONIC PERIODIC Deep vibro compaction vibro compaction, vibro replacement, grouted stone/gravel columns Rapid Impact Compactor TRANSIENT Budapest, 21. november 2007 7 Compaction Depth Comparison of Techniques Static Dynamic Rolling Rolling 0.2 m 0.5 m 0.4 m 1.0 m R I C Heavy Dynamic Tamping 4.5 m 6.5 m 10 m 14 m normal range possible range Budapest, 21. november 2007 8 4
Dynamic roller compaction Budapest, 21. november 2007 9 Budapest, 21. november 2007 10 Continuous Compaction Control (CCC) 5
Deep Dynamic Compaction (Heavy Tamping) Budapest, 21. november 2007 11 Rapid Impact Compactor (RIC) Budapest, 21. november 2007 12 6
Deep Vibro Compaction in Granular Material Vibro Compaction densification and homogenization of granular soil crater around the vibrator Compaction by horizontal vibration effect Penetration of vibrator into soil with pressurized water jet compacted and homogenized granular soil Budapest, 21. november 2007 13 Deep Vibro Replacement of Cohesive Soils Penetration of bottom feed vibrator Stone / gravel column formation by repenetration of vibrator soft layer very soft layer soft layer Vibro Replacement formation of stone / gravel columns and lateral densification of soft soil grouted material oder concrete Budapest, 21. november 2007 14 7
B A S E S U B B A S E E M B A N K M E N T rock fill sand and gravel silt and silty clays clay Budapest, 21. november 2007 15 Classification of Soil Types by Grain Size 200 mm COARSE-GRAINED / GRANULAR PARTICLES (non cohesive) 63 mm 2 mm sieve analysis Boulders Cobbles Gravel Sand border line between sand and silt: d = 0.063 mm FINE-GRAINED (cohesive) Silt hydrometer analysis (sedimentation) 0.002 mm Clay Budapest, 21. november 2007 16 8
Material for Embankments ÖNORM B 4400 For the suitability of embankment materials the state at the time of emplacement is decisive! Guidelines for Recycling Materials E.g.: Jet Grouting return flow = recycled, light aggregates ÖNORM EN 132424, 13055-2; ÖNORM B 3137 suitability test (laboratory) + test / calibration field Budapest, 21. november 2007 17 Embankment Materials SC 60 < 60 GP GP GC SP SP 15 40 5 40 SM GW 5 15 GM SW 5 Budapest, 21. november 2007 18 9
Relationship Water Content Dry Density ρ d [g/cm 3 ] dry density [g/cm 3 ] ρ s ρ ρ d = = s 1 + wρ s S r ρ w S r = 0 (1-n a )ρ s 1 + wρ s ρ w S r = 1,0 n a = 0 Proctor curves w [%] ρ d w n n a = 1,0 Budapest, 21. november 2007 19 ρ modpr Proctor Test Standard Modified Proctor Test ρ Pr Sr = 1,0 Proctor mould Ø150 mm falling height 450 mm falling weight 4.5 kg 22 blows/layer 59 3 layers 5 Sr = 0,7 w modpr w Pr 0,6 energy [MJ/m³] 2,65 modρ Pr = 1,03 1,15ρ Pr Budapest, 21. november 2007 10
Proctor Curves of Differnet Types of Soils S G G, s FINE GRAINED MATERIALS C C, m; M M, s, g COARSE GRAINED MATERIALS Budapest, 21. november 2007 21 Compaction Control Spot Testing Methods D I R E C T I N D I R E C T DENSITY STIFFNESS in-situ replacement methods (sand, water, balloon), nuclear gauge probe laboratory Proctor Test California Bearing Ratio (CBR) load plate test Benkelman Beam dry density ρ d Standard Proctor density ρ Pr DEFORMATION MODULUS static dynamic COMPACTION DEGREE ρ d D Pr = 100 [%] ρ Pr E v1, E v2, E v2 /E v1 E vd Budapest, 21. november 2007 22 11
Determination of Density in Field Sand replacement Tube sampling Nuclear gauge method (Troxler probe) Budapest, 21. november 2007 23 Compaction Control Spot Testing Methods D I R E C T I N D I R E C T DENSITY STIFFNESS replacement methods (sand, water, balloon), nuclear gauge probe Proctor Test California Bearing Ratio (CBR) load plate test Benkelman Beam dry density ρ d Standard Proctor density ρ Pr DEFORMATION MODULUS static dynamic COMPACTION DEGREE ρ d D Pr = 100 [%] ρ Pr E v1, E v2, E v2 /E v1 E vd Budapest, 21. november 2007 24 12
Compaction Control Methods using Load Plate Tests determination of deformation modulus checking of compaction quality and material stiffness counter weight for earth works and road construction measurement of plate displacement device with 3 gauges Static load plate test Dynamic load plate test with the Light Falling Weight Device F load plate 300mm Δσ hydraulic jack gauge F(t) notching attachment guide rod falling weight spring-damperelement measurement of acceleration electronic measuring device σ(t) load plate 300mm ÖIAV Erdbebenseminar, 6. September 2007 Dietmar : Erdbeben Interaktion Boden und Bauwerk 25 Dynamic Load Plate Light Falling Weight Device notching attachment handle Design of device: falling weight spring-damper element sphere load plate with sensor guide rod electronic measuring device loading device - falling weight - guide rod - spring-damper element loading plate deflection measuring device Weingart 1977 Budapest, 21. november 2007 26 13
Standardized Test Evaluation Δt determination of moduli Δσ E v = 1.5 r Δz σconst Evd = 1.5 r z E [MN/ m²] max vd = 22.5 z [mm] max Budapest, 21. november 2007 27 Research Results Standardization RVS 08.03.04 Requirements on the device: + tuning of the device parameters + set of disc springs made of steel synthetic spring (!) + exactly defined requirements on the deflection measuring device + calibration at least once a year Standardized test execution and test evaluation: + measuring range E vd = 7,5-90 MN/m² + 3 pre-loading impacts and 3 measuring impacts + assumption of a constant maximum ground contact force (max F) + simplified determination of the dynamic deformation modulus (E vd ) + measuring depth (2 x plate diameter), lateral angle of influence (40 ) ~ ratio s/v as criterion for the compaction quality direct correlation with values obtained by static load plate tests Budapest, 21. november 2007 28 14
Check of the required E v1 with the LFWD E = E req E v1 no 6 5 vd E v 1 calibration factor of device vd m = E vd RVS 08.03.01[draft] [8.24] < 25 MN/m 2 no yes cohesive material ~ Δ% yes RVS 08.03.01 [draft] ~ Δ%( Evd ) ( 1+ ) 100 E 4 E vd = 10 + Ev 5 RVS 08.03.04 vd 1 Faktor 1 E v1 E vd ref E vd ref E vd E vd [MN/m²] [MN/m²] [MN/m²] [MN/m²] [MN/m²] nichtbindig bindig nichtbindig bindig 0,0 0 10 0,0 10,0 2,5 3 12 3,0 12,0 5,0 6 14 6,0 14,0 7,5 9 16 9,0 16,0 10,0 12 18 12,0 18,1 12,5 15 20 15,0 20,1 18,1 22,2 SAMPLE Muster 15,0 18 22 17,5 21 24 21,1 24,2 20,0 24 26 24,2 26,3 22,5 27 28 27,3 28,4 25,0 30 30 30,5 30,5 27,5 33 33,6 30,0 34 34,7 32,5 36 36,8 35,0 38 38,9 37,5 40 41,0 40,0 42 43,2 42,5 44 45,4 45,0 46 47,5 47,5 48 49,7 50,0 50 51,9 52,5 52 54,1 55,0 54 56,4 57,5 56 58,6 60,0 58 60,9 62,5 60 63,1 65,0 62 65,4 67,5 64 67,7 70,0 66 70,0 72,5 68 72,3 75,0 70 74,7 77,5 72 77,0 80,0 74 79,4 82,5 76 81,8 85,0 78 84,2 87,5 80 86,6 90,0 82 89,0 92,5 84-95,0 86-97,5 88 HMP2443-100,0 90 18.10.2005 - Abweichung in % = [ -0,29725853 + (Evd * 0,07197705) + (Evd² * 0,0005825276) ] Evd-Faktor= MW / 7070 = 1,00873 calibration limit Budapest, 21. november 2007 29 Selection of Compaction Control Method (RVS 08.03.01[draft]) 1. Dynamic Load Plate Test (LFWD) E vd or 2. Static Load Plate Test E v1 or 3. Compaction degree D Pr : Standards RVS 08.03.04 ÖNORM B 4417 determination of Proctor density ρ Pr + determination of density in field ρ d 3.1 sand replacement 3.2 water replacement 3.3 nuclear gauge probe 4. Continuous Compaction Control (CCC) other control methods: Benkelman Beam dynamic penetration tests (e.g. DPH) levelling when area of subgrade level 30,000 m² ÖNORM B 4414-2 DIN 18125-2 Bulletin FGSV ÖNORM B 4418 RVS 08.03.02 Bulletin FGSV ÖNORM B 4405 + B 4419 Budapest, 21. november 2007 30 15
Continuous Compaction Control (CCC) Drum acceleration Quality management system Continuous Compaction Control (CCC) Roller-integrated and continuous on-line - control of compaction progress - Optimization of compaction procedure - Self-control - Acceptance testing GPS-supported positioning! Budapest, 21. november 2007 31 Automatically Controlled Compaction recordings automatic inclination of exciter unit Budapest, 21. november 2007 32 16
Operating Modes of Vibratory Roller Drums drum motion Interaction drum-soil operating condition soil contact force application of CCC soil stiffness roller speed drum amplitude continuous contact CONT. CONTACT yes low fast small periodic periodic loss of contact PARTIAL UPLIFT DOUBLE JUMP ROCKING MOTION left right yes yes no chaotic non-periodic loss of contact CHAOTIC MOTION no high slow large Budapest, 21. november 2007 33 Compactometer CMV is based on the evaluation of the acceleration in the frequency domain Terrameter OMEGA is based on the evaluation of the energy transmitted to the soil in the time domain Terrameter E VIB inclination of the soil contact force displacement relationship during loading; time domain CCCsystems ACE k B derived from the soil contact force displacement relationship at maximum drum deflection; time domain Budapest, 21. november 2007 34 17
CCC-values CMV, OMEGA, E vib, k B 100 % CCC-VALUES CCC-VALUES [% OF MAX. VALUE] 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % CONT. CONTACT CMV OMEGA Evib kb PARTIAL UPLIFT DOUBLE JUMP E - MODULUS SOIL [MN/m²] 0 20 40 60 80 100 120 Budapest, 21. november 2007 35 CMV in Dependence of the Operating Conditions large amplitude rocking motion, chaotic double jump partial uplift small amplitude contact 28 Hz soft soil stiff soil Budapest, 21. november 2007 36 18
Comparison of Different CCC-Values rocking motion, chaotic rocking motion, chaotic CMV partial uplift double jump OMEGA double jump partial uplift contact contact rocking motion, chaotic rocking motion, chaotic E vib double jump partial uplift k B double jump 28 Hz partial uplift contact contact Budapest, 21. november 2007 37 Earth Work RVS 08.03.01[draft] [8.24] + Budapest, 21. november 2007 38 19
test site Continuous Compaction Control (CCC) test compaction calibration H = 25 m static load plate test Länge der Dammkrone 170 m Calibration of CCC-values Determination of a clear correlation between soil stiffness and CCC-values Budapest, 21. november 2007 39 Test site to be situated on typical area within construction site Calibration of CCC-values CCC-values 180 160 Static load plate 9 tests Dynamic load plate 36 tests (4 x 9) CCC-VALUE [ ] 140 120 100 80 60 Layer thickness and different depth effects have to be taken into account! high values mean values CCC-VALUE low 40 values r > 0,7 20 Determination of regression line 0 0 10 20 30 40 50 60 Ev1, Ev2, Evd [MN/m²] Budapest, 21. november 2007 40 20
CCC-VALUE [ ] 180 160 140 120 100 80 60 Calibration of CCC-values Determination of limit values According to Austrian guidelines and regulations RVS 08.03.02 8S.02.6 SD CCC STANDARD DEVIATION < 20% Δ CCC INCREASE < 5% MAX 50% MV MV double jump MIN 20% 0,8 MIN r > 0,7 40 + 5% - 5% 20 limit E V -value 0 0 10 20 30 40 50 60 Ev1, Ev2, Evd [MN/m²] Budapest, 21. november 2007 41 Continuous Compaction Control (CCC) CCC VALUE [CMV, OMEGA, Evib] Δ CCC < 5% REPRODUCEABILITY UNIFORMITY MAX MAXIMUM VALUE MV MEAN VALUE CALIBRATION MIN MINIMUM VALUE 0,8MIN 80% MINIMUM VALUE SD CCC STANDARD DEVIATION < 20% ROLLER LANE [m] Budapest, 21. november 2007 42 21
Acceptance Test ( Identitäts-[Abnahme-]Prüfung ) subgrade (RVS 08.03.01[draft] [8.24]) Budapest, 21. november 2007 43 Acceptance Test ( Identitäts-[Abnahme-]Prüfung ) base and sub-base (RVS 08.15.01 [8S.05.11]) Budapest, 21. november 2007 44 22
gravel filter GW-GP SW-SP GM-GC SM-SC D Pr = 101%, E v1 60 MN/m², E vd 58 MN/m² D Pr = 100%, E v1 35 MN/m², E vd 38 MN/m² frost protection layer (RVS 08.15.01 [8S.05.11]) level of subgrade natural soil backfill material + compaction acc. to RVS 08.03.03 [8B.04.01] Backfill track in cut drainage frost protection layer level of subgrade backfill Backfill of bridge abutments subgrade RVS 08.03.01[draft] [8.24] embankment fill base + sub-base RVS 08.15.01 [8S.05.11] RVS 03.08.63 [3.63] Backfill track in fill natural D. Adam: soil Földművek tervezése, minőségbiztosítása és monitoringja Ausztriában Budapest, 21. november 2007 45 roller compaction drum types Continuous Compaction Control calibration of CCC-values dynamic load plate (LFWD) 180 160 140 120 high values CCC-VALUE [ ] MAX 100 mean 80 MV MV double jump values MIN 60 0,8 MIN low MAX = 103,74 values MW = 80,44 40 MIN = 69,16 + 5% - 5% 0,8 MIN = 55,33 20 r = 0,87 limit E V1-value: 35 MN/m² 0 0 10 20 30 40 50 60 Ev1, Ev2, Evd [MN/m²] 23
Embankment on Soft Soil Measurement of Deformations settlement column gauge mark horizontal inclinometer gauge mark gauge mark vertical inclinometer piezometer soft soil stiff soil / bedrock Budapest, 21. november 2007 47 p ξ = [kn/m²] s m a p p max ξ interpolated time-settlement curve s regression line Prediction of Final Settlement Sherif (1973) t ξ s 1 measured settlements b p max time-load curve time [d] extrapolated final settlement s t= ÖNORM B 4431-2 measurement of settlements s documentation of load history p assumption: hyperbolic function for settlement curve t s( t) = ξ a + bt dimensionless parameter ξ ξ = adaption of settlement curve to the load history transformation: p p max t s ξ s t d ξ s cm regression line: a + b.t extrapolation: s t= Budapest, = 1/b 21. november 2007 48 24
Monitoring of Slope Deformations extensometer in borehole inclinometer gauge - lateral inclination - axial incremental displacement deflectometer multiple rod extensometer anchor force measurement Budapest, 21. november 2007 49 Budapest, 21. november 2007 50 25
Budapest, 21. november 2007 51 Budapest, 21. november 2007 52 26
RVS 8.24 Budapest, 21. november 2007 53 RVS 8.24 RVS 08.03.01 CUT!!! Budapest, 21. november 2007 54 27
Methods of Ground Improvement Ground REPLACEMENT Ground COMPACTION Ground CEMENTATION soil excavation and soil exchange surface-near compaction, deep vibro compaction, heavy dynamic tamping, Rapid Impact Compaction soil stabilization with cement and lime, grouting, jet grouting, soil freezing MECHANICAL Ground Improvement Ground DRAINAGE vertical drains, vacuum consolidation, surcharging and preloading Ground REINFORCEMENT reinforcement, cell structures Budapest, 21. november 2007 55 Technical Testing Standard TP BF - StB part B 8.3 Dynamic load plate test with the Light Falling Weight Device (LFWD) 1. Application range E vd = 15-80 MN/m² Testing of bearing capacity and compaction quality of soils and unbound base layers in earth works and construction of traffic systems 2. Terms 3. Devices dimensions, masses, measurement data acquisition, tolerances 4. Testing conditions soil characteristics and inclination of testing surface 5. Test execution 3 pre-loading impacts + 3 measuring impacts 6. Test report and evaluation 7. Calibration of the device carried out by a certified institute (at least once a year) loading device adjustment of falling height + possibly spring prestressing displacement measuring device Budapest, 21. november 2007 56 28
Oberflächenverdichtung mit Walzen 57 1. statische Walzen 2.1 2.2 2. dynamische Walzen 2.1 Vibrationswalze 2.2 Oszillationswalze 2.3 Walze mit Richtschwinger 2.4 automatisch geregelte Walzen (VARIOCONTROL, VARIOMATIC, ACE) 2.4 Technische Universität Wien Institut für Grundbau und Bodenmechanik VÖBU-Veranstaltung Vom Ziegelschutt zur Tiefenverdichtung, 8. November 2005 D. Adam & I. Paulmichl: Bodenphysikalische Grundlagen der Bodenverbesserung static vibration vertical stresses oscillation horizontal 29
static vibration shear stresses oscillation horizontal Compaction Control Methods using Load Plate Tests determination of deformation modulus checking of compaction quality and bearing capacity for earth works and road construction counter weight falling weight measurement of plate displacement F hydraulic jack F(t) load plate measurement electronic of acceleration device device with 3 gauges q load plate gauge static load plate test dynamic load plate test Budapest, 21. november 2007 60 30
Dynamic Load Plate Light Falling Weight Device Weingart 1977 Budapest, 21. november 2007 61 CCC-value E vib time domain Bodenkontaktkraft F 90% ΔF bei Sprungbetrieb 100% 40% Belastung Δz1 ΔF Δz1 Entlastung Schwingweg z1 ΔF Evib 2 a π = 3 Δz1 2 π (2 a) Evib 2 (1 ν ) 2,14 + 0,5 ln( 2 (1 ν ) 16 ( mb + me + mr ) g ( d / ) 2) Budapest, 21. november 2007 62 31
CCC-value k B time domain Schwingweg z1 Erregerkraft max Ferr Ferr=(me.e.ω²).sin(ω.t).Vario π 2π 3π 4π ω.t ϕ max z1 2.A(z1) k B 2 = ω ( mb ( m + m ) + e contact e e Vario) cos( ϕ) A ( z1 ) Bodenkontaktkraft F bei Sprungbetrieb Fmax 2.A(z1) Belastung F(z1=0) Entlastung k B F = loss of contact m ( z& 1 = 0) ( b + e + r ) A m ( z1 ) m g Schwingweg z1 Budapest, 21. november 2007 63 Earth Work RVS 08.03.01 (RVS 8.24) revision Budapest, 21. november 2007 64 32
Earth Work RVS 08.03.01[draft] [8.24] + Budapest, 21. november 2007 65 Acceptance Test ( Identitäts- [Abnahme-] Prüfung ) Budapest, 21. november 2007 66 33