Kémia. az alapiskolák 8. és a nyolcosztályos gimnáziumok 3. évfolyama számára. Helena Vicenová



Hasonló dokumentumok
XLVI. Irinyi János Középiskolai Kémiaverseny február 6. * Iskolai forduló I.a, I.b és III. kategória

Az elektronpályák feltöltődési sorrendje

7. osztály 2 Hevesy verseny, országos döntő, 2004.

Az anyagi rendszerek csoportosítása

Kémiai fizikai alapok I. Vízminőség, vízvédelem tavasz

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

T I T M T T. Hevesy György Kémiaverseny

Az elemek periódusos rendszere (kerekített relatív atomtömegekkel)

7. osztály Hevesy verseny, megyei forduló, 2003.

Energiaminimum- elve

Az elemek rendszerezése, a periódusos rendszer

Az elemeket 3 csoportba osztjuk: Félfémek vagy átmeneti fémek nemfémek. fémek


KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!

KÉMIA FELVÉTELI KÖVETELMÉNYEK

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

A tudós neve: Mit tudsz róla:

Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

A SZERB KÖZTÁRSASÁG OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA SZERB KÉMIKUSOK EGYESÜLETE. KÖZTÁRSASÁGI KÉMIAVERSENY (Varvarin, május 12.

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Az atomok szerkezete. Az atomok szerkezete. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

1./ Jellemezd az anyagokat! Írd az A oszlop kipontozott helyére a B oszlopból arra az anyagra jellemző tulajdonságok számát! /10

Vegyületek - vegyületmolekulák

KÖZSÉGI VERSENY KÉMIÁBÓL (2016. március 5.)

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Mit tanultunk kémiából?2.

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

ALPHA spektroszkópiai (ICP és AA) standard oldatok

7. osztály 2 Hevesy verseny, megyei forduló, 2004.

T I T M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

ISMÉTLÉS, RENDSZEREZÉS

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő

Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

Elektronegativitás. Elektronegativitás

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Elektrokémia. A nemesfém elemek és egymással képzett vegyületeik

Javítóvizsga. Kalász László ÁMK - Izsó Miklós Általános Iskola Elérhető pont: 235 p

I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv: oldal) 1. Részletezze az atom felépítését!

Kötések kialakítása - oktett elmélet

T I T - M T T. Hevesy György Kémiaverseny

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyz jeligéje:... Megye:...

Kormeghatározás gyorsítóval

Általános Kémia, BMEVESAA101

a. 35-ös tömegszámú izotópjában 18 neutron található. b. A 3. elektronhéján két vegyértékelektront tartalmaz. c. 2 mól atomjának tömege 32 g.

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály. 2. feladat:... pont. 3. feladat:...

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Hevesy verseny döntő, 2001.

8. osztály 2 Hevesy verseny, megyei forduló, 2008.

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

A feladatokat írta: Kódszám: Harkai Jánosné, Szeged Kálnay Istvánné, Nyíregyháza Lektorálta: .. Kozma Lászlóné, Sajószenpéter

Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Hevesy György Kémiaverseny. 8. osztály. megyei döntő 2003.

KÉMIA FELVÉTELI DOLGOZAT

3. A kémiai kötés. Kémiai kölcsönhatás

Az anyagi rendszerek csoportosítása

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály C változat

A periódusos rendszer, periodikus tulajdonságok

MAGYAR TERMÉSZETTUDOMÁNYI TÁRSULAT

Szent-Györgyi Albert kémiavetélkedő

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

KÖZSÉGI VERSENY KÉMIÁBÓL március 3.

Előtétszó Jele Szorzó milli m 10-3 mikro 10-6 nano n 10-9 piko p femto f atto a 10-18

7. osztály 2 Hevesy verseny, megyei forduló, 2002.

KÉMIA TEMATIKUS ÉRTÉKELİ FELADATLAPOK. 9. osztály A változat

Hevesy verseny, megyei forduló, 2001.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

I. ATOMOK, IONOK I FELELETVÁLASZTÁSOS TESZTEK

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam

KÖZSÉGI VERSENY KÉMIÁBÓL március 3.

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

T I T M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

Az elemek általános jellemzése

Mi a hasonlóság és mi a különbség a felsorolt kémiai részecskék között? Hasonlóság:... Különbség: atom a belőle származó (egyszerű) ion

Kooperatív csoportmunkára épülő kémiaóra a szilárd anyagok rácstípusainak vizsgálatára

KÖZSÉGI VERSENY KÉMIÁBÓL (2016. március 5.)

1. feladat Összesen: 10 pont. 2. feladat Összesen: 14 pont

KÉMIA TANMENETEK osztályoknak

8. osztály 2 Hevesy verseny, megyei forduló, 2004.

(2014. március 8.) TUDÁSFELMÉRŐ FELADATLAP A VIII. OSZTÁLY SZÁMÁRA

... Dátum:... (olvasható név)

T I T - M T T. Hevesy György Kémiaverseny. országos döntő. Az írásbeli forduló feladatlapja. 7. osztály

Az atommag összetétele, radioaktivitás

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

V É R Z K A S A Y E N P

Minta vizsgalap I. Karikázza be az egyetlen megfelelő válasz betűjelét! (10x1 pont) 1. Melyik sorban szerepel csak só?

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY

Átírás:

Kémia az alapiskolák 8. és a nyolcosztályos gimnáziumok 3. évfolyama számára Helena Vicenová

Szerző RNDr. Helena Vicenová, 2011 Lektorálták: Ing. Mária Filová, Veronika Müllerová, RNDr. Jozef Tatiersky, PhD. Fordította Mgr. Lacza Tihamér Jóváhagyta a Szlovák Köztársaság Oktatási, Tudomány- és Kutatásügyi, valamint Sportminisztériuma 2011-11115/28822:3-919 szám alatt 2011 augusztus 8-án az alapiskolák 8. és a nyolcosztályos gimnáziumok 3. évfolyama számára. A jóváhagyási bizonylat 5 évig érvényes. Minden jog fenntartva. Ez a mű vagy bármely része nem reprodukálható a jogtulajdonos engedélye nélkül. Első kiadás, 2011 ISBN 978-80-8091-238-3

3 Kedves tanulók, ebben a tanévben újabb kémiai ismeretekre tesztek szert. Tudásotok fokozatosan bővül az anyagok összetételével, valamint a kémiai elemekkel és vegyületeikkel kapcsolatos ismeretekkel. A kémia természettudomány, amely az anyagokat és más anyagokká történő átalakulásukat, vagyis a kémiai reakciókat vizsgálja. Már megtanultátok, hogy bizonyos kémiai reakciók nélkül nem létezne élet. Azt is tudjátok, hogy a kémiával mindenhol találkozunk. Ebben a tanévben bepillantotok az anyag belsejébe, többet megtudtok az anyagot alkotó részecskékről. Megismertek néhány kémiai elemet, vegyületet és azok reakcióit. Laboratóriumi körülmények között fogtok vizsgálni egyszerűbb reakciókat és felfedezitek gyakorlati jelentőségüket. Néhány egyszerű kémiai reakciót ti is elvégeztek majd a kémiaórákon. A tankönyvben ezeket a kísérleteket a kísérlethez írt szöveg mellé rajzolt kék lombikkal jelöltük. A barna lombikkal jelölt kísérleteket csak a tanár végezheti. Bizonyos feladatoknál piros csillagocskákat találtok, így jelöltük azokat a feladatokat, amelyek megoldása igényesebb lehet. Tisztelt tanárok, a tananyag egyes témáit, amelyeket Az anyagok összetétele és A jelentős kémiai elemek és vegyületek cím alatt tárgyalunk, felosztottuk Az anyagok összetétele, A kémiai elemek, A vegyületek és A kémiai reakciók fejezetekre. A témákat mindig duplaoldalon dolgoztuk fel. A törzsanyag (az oktatási standarddal összhangban) az egyes oldalak közepén található. A lap szélén van a motiváló, a kiegészítő szöveg, néhol illusztrációkkal és a kísérletek eszközeivel kiegészítve. A törzsanyagba eredeti felvételeken bemutatott kísérletek vannak besorolva. Amennyiben az önök iskolájában valamennyi kísérletet nem lehet végrehajtani, ezért a fényképek legalább szemléltetik a kísérlet lefolyását a tanulók számára. Keressük az összefüggéseket címmel jelöltük meg a motiváló kérdéseket, amelyekre a tanulóknak válaszolniuk kellene a korábbi évfolyamokban szerzett kémiai ismeretek alapján is. A kísérletek fényképei megkönnyíthetik számukra a megoldást. A tanulók lehetséges válaszait a sárga vonalak közötti felületen tüntettük fel. Az egyes témákat záró piros felületen található a tananyag összefoglalása. Minden fejezet után kérdések és feladatok következnek, bizonyos feladatoknál kísérletek is találhatók, amelyek a tananyag begyakorlását szolgálják és ötleteket kínálnak a tervezetek kidolgozásához. Az igényesebb feladatokat csillagocskával jelöltük (az adott sorszám mellett jobbra). A Gondolkozunk és felfedezünk cím alatt olyan tananyag szerepel, amelynek sikeres elsajátításához a tanulóknak alighanem többet kell majd gondolkodniuk, illetve hasznosítaniuk kell a más tantárgyakból, főleg a fizikából és a biológiából szerzett ismereteket. Ezt fel lehet használni pl. a kémia iránt nagyobb érdeklődést mutató tanulók egyéni felkészülésében. A szerző

4 1. Ismétlés... 7 1.1. Vegytiszta anyagok és keverékek... 8 1.2. Kémiai reakciók... 9 2. Az anyagok összetétele... 11 2.1. Kémiai elemek és vegyületek... 12 2.2. Atomok és kémiai elemek... 14 2.3. A kémiai elemek elnevezése és vegyjele... 16 2.4. Molekulák és vegyületek... 18 2.5. Ionok... 20 2.6. Kémiai képletek és az oxidációs szám... 21 2.7. Kémiai kötés... 22 2.8. A tananyag összefoglalása... 26 2.9. Kérdések és feladatok... 27 2.9.1. Kémiai elemek és vegyületek (2.1. rész)... 27 2.9.2. Atomok és kémiai elemek (2.2. rész) A kémiai elemek elnevezései és vegyjelei (2.3. rész)... 28 2.9.3. Molekulák és vegyületek (2.4. rész). Ionok (2.5. rész)... 30 2.9.4. Kémiai képletek és az oxidációs szám (2.6. rész) Kémiai kötés (2.7. rész)... 31 3. Kémiai elemek... 33 3.1. Az elemek periódusos táblázata... 34 3.2. Fémek, félfémek és nemfémek... 36 3.3. Hidrogén... 40 3.4. Oxigén... 42 3.5. Fémek... 44 3.5.1. Vas a legjelentősebb fém... 44 3.5.2. Nátrium és kálium alkáli fémek... 46 3.6. A tananyag összefoglalása... 48 3.7. Kérdések és feladatok... 49 3.7.1. Az elemek periódusos táblázata (3.1. rész) Fémek, félfémek és nemfémek (3.2. rész)... 49 3.7.2. Hidrogén (3.3. rész). Oxigén (3.4. rész)... 50 3.7.3. Vas a legjelentősebb fém (3.5.1. rész) Nátrium és kálium alkáli fémek (3.5.2. rész)... 51 4. Vegyületek... 53 4.1. Víz... 54 4.2. Oxidok... 56 4.2.1. Oxidok elnevezése... 56 4.2.2. Oxidok az építőiparban... 58 4.2.3. Oxidok a környezetben... 59

5 4.3. Savak... 62 4.3.1. Savak a háztartásban... 62 4.3.2. Az oldatok savasságának (savas kémhatásának) vizsgálata... 63 4.3.3. A savak összetétele és tulajdonságaik... 64 4.3.4. Jelentős savak... 65 4.4. Hidroxidok... 68 4.4.1. Az oldatok lúgosságának (lúgos kémhatásának) vizsgálata... 68 4.4.2. A hidroxidok összetétele és tulajdonságai... 69 4.4.3. Jelentős hidroxidok... 70 4.5. Sók... 72 4.5.1. Mik a sók... 72 4.5.2. Jelentős sók... 73 4.6. A tananyag összefoglalása... 76 4.7. Kérdések és feladatok... 77 4.7.1. Víz (4.1. rész)... 77 4.7.2. Oxidok (4.2. rész)... 78 4.7.3. Savak (4.3. rész)... 79 4.7.4. Hidroxidok (4.4. rész)... 80 4.7.5. Sók (4.5. rész)... 81 5. Kémiai reakciók... 83 5.1. Kémiai reakciók és kémiai egyenletek... 84 5.2. Közömbösítés (semlegesítés)... 86 5.3. Redoxi reakciók... 88 5.4. A tananyag összefoglalása... 90 5.5. Kérdések és feladatok... 91 5.5.1. Kémiai reakciók és kémiai egyenletek (5.1. rész)... 91 5.5.2. Közömbösítés (5.2. rész)... 92 5.5.3. Redoxi reakciók (5.3. rész)... 93 6. Laboratóriumi gyakorlatok... 95 6.1. Különböző anyagok ph-értékének mérése... 96 6.2. A természetes színanyagoknak az oldat savas és lúgos kémhatásától függő színváltozásának a megfigyelése... 97 6.3. Közömbösítés... 98 6.4. A sav reakciója fémmel... 99 6.5. A kalcium-szulfát előállítása... 100 6.6. A réz(ii)-oxid előállítása... 101 7. A kérdések és a feladatok megoldása... 102 8. Irodalom... 110 9. Magyar-szlovák kisszótár és tárgymutató... 111

Iskolai kémiai laboratórium

Ismételjük át Miből állnak az anyagok? Hogyan lehet felosztani az anyagokat? Mik a vegytiszta anyagok? Mik a keverékek? Mik a kémiai reakciók? Mi a kémiai egyesülés? Mi a kémiai bomlás?

8 Ismétlés 1.1. Vegytiszta anyagok és keverékek Keressük az összefüggéseket Nézzétek meg az ábrákat. Láttátok már őket? Mi a közös a képeken látható anyagokban? hélium hidrogén oxigén nitrogén víz szén-dioxid Ilyen ábrákat láthattok pl. a kémiatankönyvekben, a lexikonokban vagy az interneten. Az ábrákon az anyagokat kis golyók szemléltetik. Minden anyag részecskékből áll. Az egyes anyagok részecskéi különböznek egymástól, eltérő nagyságúak, különböző alakúak és többféle, még kisebb részecskékből állnak, amelyeket kis golyókkal szemléltetnek. A Miben különböznek az ábrákon szemléltetett anyagok? B Az A ábrán látható anyag egyféle (két összekapcsolt golyócskával szemléltetett) részecskékből áll. A B ábrán látható anyag kétféle részecskéből áll, ezeket két, illetve három összekapcsolt golyócskával szemléltettük). Az A ábrán egy vegytiszta (kémiailag tiszta) anyagot szemléltettünk (kémiai anyag). A vegytiszta anyag csak egyféle részecskékből áll. Meghatározott, csak rá jellemző tulajdonságai vannak. Az őt jellemző tulajdonságok (fizikai mennyiségek) mérhetők és számokkal kifejezhetők (pl. sűrűség, olvadáspont). E tulajdonságok számszerű értékei megtalálhatók a fizikai-kémiai táblázatokban. A B ábrán keveréket szemléltettünk. A keverék több vegytiszta anyag részecskéiből áll. A keverék tulajdonságai az összetételétől függnek a keveréket alkotó összetevők (egyszerűbb anyagok) részarányától. A legtöbb anyag, amellyel általában találkozunk keverék. Minden anyag részecskékből áll. Az anyagokat (attól függően, hogy milyen részecskékből állnak) két csoportra oszthatjuk: vegytiszta anyagok és keverékek. A vegytiszta anyagok csak egyfajta részecskékből állnak. A keverékek több vegytiszta anyag részecskéiből állnak.

Ismétlés 9 1.2. Kémiai reakciók Keressük az összefüggéseket A fényképeken olyan kísérletek láthatók, amelyeket az előző tanévben végeztetek el. Mi történik a kémiai reakciók során? Melyek a kiindulási anyagok és melyek a (vég)termékek? A magnézium és az oxigén kémiai reakciója A kísérlet során a magnézium és az oxigén reagált egymással. A kiindulási anyagokból magnézium, oxigén új anyag keletkezett termék (magnézium-oxid). A vas és a kén kémiai egyesülése A kálium-permanganát kémiai bomlása A kísérletben a vas és a kén lépett reakcióba egymással. A kiindulási anyagokból vas, kén új anyag képződött egyetlen termék (vas(ii)-szulfid). A kísérletben a kálium-permanganát volt a kiindulási anyag. A reagáló anyagból a hipermangánból új anyagok termékek keletkeztek. Az egyik termék az oxigén volt. A kémiai reakciók olyan folyamatok, amelyekben az anyagok változnak: bizonyos kémiai anyagokból más kémiai anyagok keletkeznek. A kiindulási (reakcióba lépő) anyagok azok, amelyek belépnek a kémiai reakcióba és reagálnak egymással. A (vég)termékek a kémiai reakcióban keletkező anyagok. A kémiai reakció során a kiindulási anyagok termékekké alakulnak át. A kémiai egyesülés olyan kémiai reakció, amelyben két vagy több egyszerű kiindulási anyagból egyetlen bonyolultabb termék keletkezik. A kémiai bomlás olyan kémiai reakció, amelyben egyetlen bonyolultabb kiindulási anyagból két vagy több egyszerű termék képződik.

Hidrogén-meghajtású gépjármű Hidrogén a jövő energiája?

Megtanuljuk Mik a kémiai elemek Mik a vegyületek Milyen részecskékből állnak az anyagok Mik az atomok, a molekulák és az ionok Mely részecskék találhatók az atommagban Mely részecskék találhatók az atomburokban Mik a vegyjelek és a kémiai képletek Hogyan keletkezik a kémiai kötés Melyek a kémiai kötések típusai

12 Az anyagok összetétele 2.1. A kémiai elemek és vegyületek Két vegytiszta anyag kémiai egyesülésével új vegytiszta anyag keletkezik. Például a hidrogén és az oxigén egyesülésével új anyag víz keletkezik. A víz kémiai vegyület. + Így keletkezik a víz pl. az űrrakéta meghajtásakor, amelynél a hidrogén és az oxigén a felhasznált hajtóanyag. Az oxigén-hidrogén lánggal történő hegesztéskor ugyancsak a hidrogén és az oxigén egyesülésére kerül sor víz képződése közben. A víz keletkezését bizonyítja a kémcső falának bepárásodása is a hidrogén és a légkör oxigénjének kémiai reakciója során amikor a Bunsen-égővel meggyújtjuk az előkészített hidrogént (erről a 40 41. o. található kísérletben győződhettek meg). A vegytiszta anyag kémiai bomlásakor két vagy több vegytiszta anyag keletkezik. A víz vegyület, mely hidrogénre és oxigénre bomlik. A vegytiszta hidrogén és oxigén azonban már tovább nem bontható egyszerűbb anyagokra. A hidrogén és az oxigén kémiai elem. + A laboratóriumban a vizet felbonthatjuk pl. elektromos áram segítségével. A keletkezett hidrogént és oxigént kémcsövekben fogják fel (a kísérletet a jobb oldali ábrán látható készülékben lehet végrehajtani). A kutatók vizsgálják annak a lehetőségét, hogy a víz felbontásával nyert hidrogénnel gépjárműveket hajtsanak meg. A víz felbontását elektromos energia segítségével végzik, amelyet pl. a napenergiából nyernek (ábra balra). Az egyes kémiai elemeknek és vegyületeknek nem változik az összetételük, ezért a tulajdonságuk is állandó (forráspont, olvadáspont, sűrűség), a kémiai anyagok közé tartoznak. A kémiai elemek vegytiszta anyagok, amelyek tovább már nem bonthatók egyszerűbb anyagokra. A vegyületek vegytiszta anyagok, amelyek egyszerűbb anyagokra bonthatók.

Az anyagok összetétele 13 Keressük az összefüggéseket Figyelmesen nézzétek meg a golyómodellekkel szemléltetett elemek és vegyületek ábráit. Keressétek az elemek és a vegyületek azonos és eltérő tulajdonságait. Kémiai elemek hélium oxigén nitrogén foszfor Vegyületek víz szén-dioxid kén-hidrogén salétromsav Az elemek és a vegyületek is részecskékből állnak. Az elemek olyan részecskékből állnak, amelyeket egyforma golyócskákkal szemléltetünk. A kis golyók lehetnek önmagukban vagy különböző módon összekapcsolódva. A vegyületek olyan részecskékből állnak, amelyeket legalább két eltérő golyócskával szemléltethetünk. A kis golyók nem állnak önmagukban, különbözőképp kapcsolódnak egymáshoz. Az elemek egyféle részecskékből állnak. A kis golyók az atomokat jelképezik, amelyek lehetnek önmagukban vagy különbözőképp összekapcsolódva. A vegyületek ugyancsak egyféle részecskékből állnak. Ezeket a részecskéket azonban két vagy több elem különbözőképpen összekapcsolódott atomjai alkotják. A kémiai elemek vegytiszta anyagok, amelyek tovább már nem bonthatók egyszerűbb anyagokra. A vegyületek vegytiszta anyagok, amelyek egyszerűbb anyagokra bonthatók. Az elem a vegyületek legegyszerűbb építőköve. Az elemeket pontosan majd akkor fogjuk tudni jellemezni, ha többet megtudunk az anyagokat alkotó részecskékről. Amikor a kémikusok még nem ismerték az anyagokat alkotó részecskéket, elemeknek tartottak bizonyos vegyületeket is.

14 Az anyagok összetétele 2.2. Atomok és kémiai elemek Az emberek már régóta szerették volna tudni, hogy miből állnak a körülöttük lévő anyagok. Fokozatosan behatoltak az anyagok belsejébe és feltárták a titkaikat. Démokritosz (i. e. 450), aki a görög atomisták filozófiai iskolájához tartozott, azt állította, hogy az anyagok kis, tovább már nem osztható részecskékből atomokból állnak (görögül az atomosz oszthatatlant jelent). Az összes anyagot alkotó részecskéket golyócskákkal szemléltetik. A golyócskák eltérő nagyságúak és különbözőképpen kapcsolódhatnak egymáshoz. Az egyes golyócskák az atomokat szemléltetik. Mi van ezeknek a golyócskáknak atomoknak a belsejében? Talán üresek? Nem! Az atomot szemléltető golyócska belsejét egyszerűsítve így ábrázolhatjuk: mag proton pozitív elektromos töltésű részecske, jele p + John Dalton (1766 1844) az atomisták tanítására kapcsolódott. A legkisebb részecskéket atomoknak nevezte el. burok neutron elektromos töltéssel nem rendelkező részecske, jele n 0 elektron negatív elektromos töltésű részecske, jele e A protonnak pozitív elektromos töltése van, az elektronnak ugyanakkora, de negatív elektromos töltése van. Ernest Rutherford (1871 1937) megalkotta az atom planetáris modelljét, amelyben a pozitív mag körül úgy keringenek az elektronok, mint a bolygók a Nap körül. Az elektronok az atomburokban rétegekben, ún. héjakon helyezkednek el. Az első héjon legfeljebb 2 elektron, a második héjon pedig legfeljebb 8 elektron lehet. mag Niels Bohr (1885 1962) tökéletesítette Rutherford modelljét. Ő már leírta az elektronok mozgásának pályáit is. A tankönyvben nagyon leegyszerűsített atommodellt használunk. atomburok Az atom magból és atomburokból (elektronburokból) álló anyagrészecske. Az atommagban protonok és neutronok találhatók, az atomburokban helyezkednek el az elektronok. Az elektronok héjakon vannak elrendeződve.

Az anyagok összetétele 15 Gondolkodunk és felfedezünk Az atomokat eltérő nagyságú (sugarú) golyócskákkal szemléltetjük. Milyen nagyok valójában az atomok? Mekkora a tömegük? Keressetek a szakirodalomban vagy az interneten olyan információkat, amelyekben összevetik az atomok nagyságát más testekével és összehasonlítják a protonok, a neutronok és az elektronok tömegét. Keressük az összefüggéseket A proton és az elektron elektromos töltésének a nagysága azonos, csak az előjelükben különböznek. Állapítsátok meg, milyen az eredő töltése az ábrán látható atomnak! 1 Az atomok olyan parányiak, hogy ennek a mondatnak a végén álló pontba több mint egy millió elférne belőlük. Az atom sugara kb. 0,000 000 000 1 m. Ha az oxigénatomot teniszlabda méretűre nagyítanánk, az így megnagyobbított teniszlabda arányait tekintve akkora lenne, mint a Föld. Az oxigénatom tömege 0,0000000000000000000000267 g. Az atom eredő elektromos töltése az elektromosan töltött részecskék a protonok és az elektronok számával függ össze. Miután a protonok száma megegyezik az elektronok számával, az atom eredő elektromos töltése nullával egyenlő. Az atom elektromosan semleges részecske, mert a protonok száma az atommagban megegyezik az atomburokban található elektronok számával. Az atommagban lévő protonok száma megadja a rendszámot, amelyet Z-vel jelölünk. Az elem vegyjele elé a bal alsó részbe írjuk ( Z X). A rendszám az atom fontos jellemzője. Mivel a protonok száma megegyezik az elektronok számával, a rendszám egyszersmind megadja az atomburokban lévő elektronok számát is. Azt a vegytiszta anyagot, amelyben minden atomnak azonos számú protonja van, tehát ugyanaz a rendszáma, kémiai elemnek (vagy röviden: elemnek) nevezik. Az elemet a rendszáma, az elnevezése és a vegyjele jellemzi. A proton és a neutron tömege nagyjából azonos. 2 2 A hélium elem atomja A héliumot olyan atomok alkotják, amelyek magjában 2 proton és 2 neutron található. Az atomburkukban 2 elektronjuk van. A hélium rendszáma 2. Így írjuk: 2 He. 1 1836 A protonhoz viszonyítva az elektron tömege elhanyagolható. Az atom csaknem teljes tömege az atommagra esik. Na a nátrium elem 1 atomja 3Na a nátrium elem 3 atomja Az atom elektromosan semleges részecske, mert az atommagban lévő protonok száma megegyezik az atomburokban található elektronok számával. A rendszám megadja a magban található protonok számát (s egyúttal a burokban található elektronok számát is). Az elem azonos rendszámú atomokból álló vegytiszta anyag. Na a nátrium elem (sok atomot tartalmaz) A mag latinul nucleus. Ezért azokat a részecskéket, amelyek az atommagban vannak (p + a n 0 ), nukleonoknak nevezik. A neutronok száma az atommagban eltérő. Megegyezhet a protonok számával, de lehet több is. A hidrogénatom kivételnek számít, mert egyáltalán nem tartalmaz neutront. A protonok és a neutronok, tehát az atommagban lévő részecskék összege a nukleonszám, jele A. Az elem vegyjele elé a bal felső részbe írjuk ( A X).

16 Az anyagok összetétele A kémiai elemek fontos tulajdonsága, hogy képesek vegyülni. A kémiai elemek vegyülő képességével magyarázható, hogy több mint 25 millió vegyületet ismerünk. A többségüket laboratóriumi körülmények között állították elő. Már az ókorban volt neve hét fémes elemnek (vas, réz, ezüst, arany, higany, ón, ólom) és két nemfémes elemnek (szén és kén). Az egyes korszakokban az újonnan felfedezett elemeknek eltérően adtak nevet. A magyar kémiai nevezéktanban az új elemek esetében az elemek elfogadott nevéből indulnak ki. Az elemek vegyjelét és nevét a Tiszta és Alkalmazott Kémia Nemzetközi Uniója (International Union of Pure and Applied Chemistry IUPAC) hagyja jóvá. Az elem szisztematikus elnevezését a rendszámból vezetik le számjelek alkalmazásával: 0 nil, 1 un, 2 bi, 3 tri, 4 quard, 5 pent, 6 hex, 7 sept, 8 okt, 9 enn. Például a 113-as rendszámú elem neve ununtrium, vegyjele pedig Uut. 2.3. A kémiai elemek elnevezése és vegyjele Minden anyag kémiai elemekből áll. Bizonyos elemek tiszta, elemi állapotban fordulnak elő a természetben tehát nem részei valamilyen vegyületnek. Ilyen elem azonban kevés van, pl. a hélium és az arany. A legtöbb elem kizárólag más elemekkel alkotott vegyületekben fordul elő, pl. a nátrium és a kalcium. Vannak azonban olyan elemek is, amelyek vegyületek formájában és elemi állapotban is megtalálhatók a természetben, pl. az oxigén, a nitrogén, a szén. Eddig 114 elemet ismerünk. Ezek többsége a természetben is előfordul, a többit laboratóriumi körülmények között állították elő. Az elemek elnevezése Ahogy fokozatosan felfedezték az elemeket, úgy keletkeztek a neveik is. Az elemek elnevezése többnyire görög vagy latin szavakból ered. Bizonyos elnevezések az elem valamely tulajdonságára utalnak, mások az elem előfordulására a természetben, vannak elemek, amelyeket égitestekről, jelentős tudósokról, a felfedezők hazájáról vagy lakóhelyéről stb. nevezték el. Jód (iodium): jódész (gör.) = ibolyaszínű; nevét gőzeinek színe nyomán kapta (régi magyar neve: iblany). Hélium (helium): héliosz (gör.) = Nap; a létezéséről először a Nap megfigyelésekor szereztek tudomást. Klór (chlorum): klorosz (gör) = sárgászöld; a színe alapján nevezték el. Szilícium: silex (lat.) = kemény kő, nyelvújítás kori magyar neve: kovany; a kvarcban találták meg. Kűrium: a név a kiváló tudósházaspár, Marie és Pierre Curie tiszteletére született. 1903-ban közösen fizikai Nobel-díjat kaptak, Marie 1911-ben megkapta a kémiai Nobel-díjat is. Polónium: az elnevezés Lengyelország latin nevéből ered, amely Marie Curie-Skłodowska szülőhazája. Az elemek többségének magyar neve úgy keletkezett, hogy a latin vagy görög nevüket a magyar nyelvhez igazították (pl. baryum bárium, phoszphorosz foszfor; a foszfort a nyelvújítók villanyként is írták, de ez nem vert gyökeret). Bizonyos elemek magyar neve teljesen eltér az eredeti elnevezéstől (pl. hydrargyrum = higany, sőt korábban kénesőnek is nevezték).

Az anyagok összetétele 17 Az elemek vegyjele Az elemek vegyjelét úgy vezetik le, hogy kiválasztják a latin nevük első betűjét (pl. S sulphur). Ha több elem neve is ugyanazzal a betűvel kezdődik, az első betűhöz hozzáadnak egy további betűt a névből (Si silicium, Sn stannum). Projektet készítünk 1735 és 1830 között gyakran mitológiai vagy mondabeli neveket adtak az új elemeknek. Így keletkezett pl. a kobalt. Amikor a bányászoknak nem sikerült kinyerniük az ércből a rezet, azt gondolták, hogy a gonosz szellemek tehetnek erről. A kobold a német mondákban rossz manót jelent. Készítsetek projektet a Vizsgáljuk a kémiai elemek nevének eredetét témára. Tájékoztassátok osztálytársaitokat is az érdekes megállapításaitokról. Az interneten vagy a szakirodalomban is találtok információkat. Néhány kémiai elem neve és vegyjele magyar név latin név vegyjel szlovák név rendszám kálium Kalium K draslík 19 nitrogén Nitrogenium N dusík 7 fluor Fluorum F fluór 9 foszfor Phosphorus P fosfor 15 hélium Helium He hélium 2 alumínium Aluminium Al hliník 13 magnézium Magnesium Mg horčík 12 klór Chlorum Cl chlór 17 jód Iodum I jód 53 szilícium Silicium Si kremík 14 oxigén Oxygenium O kyslík 8 lítium Lithium Li lítium 3 mangán Manganum Mn mangán 25 réz Cuprum Cu meď 29 ólom Plumbum Pb olovo 82 higany Hydrargyrum Hg ortuť 80 szelén Selenium Se selén 34 kén Sulphur S síra 16 nátrium Natrium Na sodík 11 ezüst Argentum Ag striebro 47 szén Carboneum C uhlík 6 kalcium Calcium Ca vápnik 20 hidrogén Hydrogenium H vodík 1 cink Zincum Zn zinok 30 arany Aurum Au zlato 79 vas Ferrum Fe železo 26 Az első feljegyzések az anyagokról és átalakulásaikról még az alkimistáktól származnak. A különböző szimbólumok és jelek voltak hivatva rá, hogy eltitkolják a megjelölt anyagok és az eljárási módok jelentőségét. Az első ismert fémek vegyjeleit nem a nevükből vezették le, hanem ezek a naprendszer ismert égitestjeinek szimbólumai voltak. Ezek a következők? arany (Nap), ezüst (Hold), réz (Vénusz), higany (Merkúr), vas (Mars), ólom (Szaturnusz), ón (Jupiter). 1808-ban az angol John Dalton olyan vegyjeleket vezetett be, amelyek körökből álltak, belsejükben különböző rajzokkal: Az ábrán az oxigén, a hidrogén, a nitrogén, a szén, a kén, a foszfor, a nátrium jele látható. Az elemek vegyjeleinek mai formáját 1811-ben J. J. Berzelius svéd vegyész vezette be. Az elemeknek nevük van és vegyjelekkel jelölik őket

18 Az anyagok összetétele Olyan részecskéket, amelyek csak egy atomból állnak, kevés anyag tartalmaz (pl. a nemesgázok hélium, neon, argon ): hélium (He) neon (Ne) argon (Ar) 2.4. Molekulák és vegyületek Keressük az összefüggéseket Gyurmából modelláljatok golyócskákat: a kis fehér golyók a hidrogénatomokat, a nagyobb fekete golyócskák a szénatomokat és a piros golyócskák az oxigénatomokat szemléltetik. Kapcsoljatok össze két vagy három golyócskát különböző módon (az ábrák alapján) hurkapálcák segítségével. A golyócskák atomok összekapcsolásával új részecskéket (összekapcsolt golyócskák) molekulákat hoztatok létre. Hogyan keletkezik a molekula? Miben különböznek az ábrán látható molekulák? Az anyagok többségét olyan atomok alkotják, amelyek kémiai kötéssel kapcsolódnak össze két- vagy többatomos részecskékké (molekulákká). A legtöbb elem, amely normális körülmények között gáznemű, kétatomos molekulákból áll. nitrogén (N 2 ) oxigén (O 2 ) klór (Cl 2 ) Az ózont az oxigén háromatomos molekulái alkotják (O 3 ) A kén kémiai elem, nyolcatomos molekulákból áll (S 8 ) A szén kémiai elem, egyik formáját a fullerént 60 szénatomból felépült, futball-labdaszerűen elrendezett molekulák alkotják: hidrogén oxigén víz szén-dioxid A molekula az atomok összekapcsolódásával jön létre A hidrogén- és az oxigénmolekula azonos elemek két atomjából áll. A vízmolekula és a szén-dioxidmolekula két elem három atomjából áll. Az ábrákon látható molekulák az atomok számában és abban különböznek, hogy ezek az atomok ugyanannak az elemnek vagy különböző elemeknek az atomjai. Az atomok nagyobb részecskékké kapcsolódhatnak össze (egyesülhetnek), amelyeket molekuláknak neveznek. A legtöbb anyag molekulákból áll. Az elemek azonos atomokat tartalmaznak, amelyek molekulákká egyesülhetnek. Pl. a hidrogén és az oxigén molekuláit két atom alkotja, vagyis a hidrogén és az oxigén kétatomos molekulákból (H 2, O 2 ) áll. Az elemeket három- és többatomos molekulák is alkothatják. Pl. a kén nyolcatomos molekulákból (S 8 ) áll. A különböző elemek atomjai is egyesülhetnek, miközben a vegyületek molekulái keletkeznek. Legegyszerűbbek a két elemet tartalmazó biner vegyületek, pl. a víz (H 2 O), a szén-dioxid (CO 2 ). A vegyületek három és több elemből is állhatnak. Három elemet tartalmazó vegyület pl. a salétromsav (HNO 3 ). A vegyület két vagy több elem összekapcsolódott atomjait tartalmazza. Az elemek atomjaiból keletkezett molekulák összetételét az elemek vegyjelével és számokkal fejezik ki. Az a szám, amelyet a vegyjel után jobb alsó indexként írnak, megadja az egyes elemek atomjainak a számát a molekulában: hidrogénmolekula H 2 (két hidrogénatom), ózonmolekula O 3 (három oxigénatom), vízmolekula H 2 O (két hidrogénatom, egy oxigénatom), szén-dioxidmolekula CO 2 (egy szénatom, két oxigénatom). A molekulák összetételének a leírása a kémiai képlet. A molekula két vagy több összekapcsolódott atomból álló anyagrészecske. A vegyület vegytiszta anyag, amely két vagy több féle elem atomjaiból áll.

Az anyagok összetétele 19 A molekula képlete jelentheti egy elem molekulájának vagy egy vegyületnek a képletét, de sok molekuláét is. Az egynél több molekula számát a képlet elé írt számjeggyel adjuk meg. A két elemet tartalmazó (biner) kénhidrogén (szulfán) molekula háromatomos molekulákból áll (egy kénatom és két hidrogénatom H 2 S): A klór elem 1 molekulája (Cl 2 ) a klór elem 3 molekulája (3Cl 2 ) További két elemet tartalmazó molekulák, mint a víz (H 2 O) és a szén-dioxid (CO 2 ) szintén háromatomos molekulákból állnak. a klór elem sok klórmolekula (Cl 2 ) A Cl 2 képlet 1 molekula klórt fejez ki, de sok klórmolekulát klór element is jelenthet. A három elemet tartalmazó salétromsav (HNO 3 ) ötatomos molekulákból áll: a sósav vegyület 1 molekulája (HCl) a sósav vegyület 3 molekulája (3HCl) A dezoxiribonukleinsav (DNS) az a vegyület, amely az élőlények minden tulajdonságát meghatározza. Nagyszámú atomból áll, amelyek bonyolult térbeli kapcsolatot alakítanak ki. Rengeteg golyócskából (atomból) felépített kettősspirálként ábrázolják. Elvégre sok információt is tartalmaz. Egy adott egyedről mindent elmond benne van az egész genetikai anyag (öröklődési információk). a sósav vegyület sok sósavmolekula (HCl) A HCl képlet a sósav egy molekuláját fejezi ki, de sok sósavmolekulát a sósav vegyületet is jelentheti. A molekulákból álló elemek és a vegyületek összetételét képletekkel fejezik ki.

20 Az anyagok összetétele 2.5. Ionok Keressük az összefüggéseket Mi történik az atommal az elektromosan semleges részecskével, ha felvesz vagy lead egy elektront? Ha az atom lead vagy felvesz egy elektront, elektromos (pozitív vagy negatív) töltésű részecske keletkezik. Az anyag elektromosan töltött részecskéjét, amely az atomból keletkezik, amikor az lead vagy felvesz elektron(oka)t, ionnak nevezik. Az ion lehet pozitív vagy negatív töltésű. Azt a folyamatot, amikor az atom egy vagy több elektront ad le, oxidációnak nevezik. A kation pozitív töltésű ion. Úgy keletkezik, ha az atom egy vagy több elektront ad le. Ha pl. a nátriumatom elektront ad le, nátrium kation keletkezik. Ezt így írjuk: Na e Na + Na 11 12 elektront ad le 11 12 Na + A leadott elektronok számát annak az elemnek a vegyjele után írjuk jobb felső indexként, amelyből a kation keletkezett. Ezt + jellel fejezzük ki (az egynél nagyobb számot az előjel elé írt számjeggyel adjuk meg), pl. Na +, Ca 2+, Al 3+. Azt a folyamatot, amikor az atom egy vagy több elektront vesz fel, redukciónak nevezik. Az anion negatív töltésű ion. Úgy keletkezik, ha az atom felvesz egy vagy több elektront. Ha pl. a klóratom elektront vesz fel, klorid anion keletkezik. Ezt így írjuk: Cl + e Cl Cl 17 18 elektront ad le 17 18 Cl A felvett elektronok számát annak az elemnek a vegyjele után írjuk jobb felső indexként, amelyből az anion keletkezett. Ezt jellel fejezzük ki (az egynél nagyobb számot az előjel elé írt számjeggyel adjuk meg), pl. Cl, O 2, S 2. Az oxidációról és a redukcióról többet megtudtok az 5. fejezetben. A vegyületeket nemcsak molekulák, hanem ionok is alkothatják. Az ion elektromosan töltött anyagrészecske. A kation (pozitív ion) akkor keletkezik, amikor az atom elektront ad le. Az anion (negatív ion), akkor keletkezik, amikor az atom elektront vesz fel.

Az anyagok összetétele 21 2.6. Kémiai képletek és az oxidációs szám Már tudjuk, hogy a leadott vagy a felvett elektronok száma meghatározza a keletkezett ion elektromos töltését. Az oxidációs szám megadja az atom által leadott (pozitív oxidációs szám) vagy felvett (negatív oxidációs szám) elektronok számát. A szervetlen vegyületek szlovák kémiai nevezéktana az oxidációs számon alapul. (A magyar nómenklatúra kissé eltérő és nem annyira egységes a ford. megj.) Az oxidációs szám fontos jellemzője az elemek vegyületet alkotó atomjainak. A vegyületek képletének megalkotásánál hasznosítják. Az oxidációs szám megadja azoknak az elektronoknak a számát, amelyeket az atom leadna (pozitív) vagy felvenne (negatív), ha a vegyületben lévő kémiai kötést ionkötésnek tekintenék. Pozitív oxidációs száma van a kisebb elektronegativitású elem atomjának. Negatív oxidációs száma van a nagyobb elektronegativitású elem atomjának. Az atom oxidációs számát római számmal írjuk az elem vegyjele után jobb felső indexként. A + előjelet nem tüntetjük fel, a előjelet a számjegy elé írjuk. Nulla az oxidációs száma az elem nem vegyült atomjának (pl. Na 0 ), de az elem molekulájában kötött atomnak is (pl. H 0 2 ). Különböző elemek összekapcsolódott atomjainak pozitív vagy negatív oxidációs számuk van. A pozitív oxidációs számot római számokkal írjuk I-től VIII-ig terjedően, pl. Na I Cl. A negatív oxidációs számot római számokkal írjuk I-től IV-ig, pl. NaCl I. Némely elemnek tipikus oxidációs száma van, amit a vegyületeik képleteinek megalkotásánál használnak. Bizonyos elemek tipikus oxidációs számai: a hidrogénatomnak vegyületeiben többnyire I oxidációs száma van, pl. a vízben (H I 2 O), a savakban (HI Cl, H I NO 3 ). Az oxigénatom oxidációs száma a legtöbb vegyületben II, pl. a vízben (H 2 O II ), az oxidokban (MgO II ) A vegyület elektromosan semleges molekulájában az atomok oxidációs számainak összege zérus (pl. H I 2 O II, tehát 2 I + ( II) = 0). A szlovák nevezéktanban a pozitív oxidációs számokat ragokkal fejezik ki, figyelembe véve a főnév nemét is: oxidációs szám I II III IV V VI VII VIII az oxidációs számot kifejező rag -ný (-ny) -natý -itý -ičitý -ičný, -ečný -ový -istý -ičelý Linus Pauling (1901-1994) elsőként jellemezte az atomokat aszerint, mennyire képesek magukhoz vonzani a kötő elektronpárt. Az atomnak ezt a képességét nevezte el elektronegativitásnak. A kémiai kötésről és az elektronegativitásról a következő részben lesz szó. A lítium-, a nátrium-, a káliumatom (ezek az elemek az alkáli fémek közé tartoznak) oxidációs száma a vegyületekben mindig I, pl. a nátrium-kloridban (Na I Cl). A fluor-, a klór-, a bróm-, a jódatom (ezek az elemek a halogének közé tartoznak) oxidációs száma a vegyületekben a halogenidekben I, pl. a nátrium-kloridban (NaCl I ). Az oxidok magyar elnevezésének képzésénél gyakran görög számneveket használunk, pl. szén-monoxid (CO), szén-dioxid (CO 2 ), kén-trioxid (SO 3 ), nitrogén-pentoxid (N 2 O 5 ) stb. a ford. megj. Az atom oxidációs számát római számmal írjuk az elem vegyjele után jobb felső indexként.