19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:

Hasonló dokumentumok
Elektronika alapjai. Témakörök 11. évfolyam

5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások

Elektronika Oszcillátorok

Jelgenerátorok ELEKTRONIKA_2

O S Z C I L L Á T O R O K

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

1. ábra 1 (C 2 X C 3 ) C 1 ( R 1 + R 2 ) R 3. 2 π R C

Wien-hidas oszcillátor mérése (I. szint)

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

1. ábra a három RC-tagból felépített fázistoló

1. ábra A Meißner-oszcillátor mérőpanel kapcsolási rajza

1. ábra A Wien-hidas mérőpanel kapcsolási rajza

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

25.B 25.B. 25.B Impulzustechnikai alapáramkörök Impulzusok elıállítása

Foglalkozási napló a 20 /20. tanévre

Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1

ELMÉLETI ÉS MÉRÉSI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Analóg elektronika - laboratóriumi gyakorlatok

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

ANALÓG ÉS DIGITÁLIS TECHNIKA I

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak:

1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor

Elektronika 11. évfolyam

ELEKTRONIKAI ALAPISMERETEK

Számítási feladatok a 6. fejezethez

ELEKTRONIKAI ALAPISMERETEK

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

ELEKTRONIKAI ALAPISMERETEK

10.B Tranzisztoros alapáramkörök Munkapont-beállítás

1. Visszacsatolás nélküli kapcsolások

2. és 3. ábra az áthidalt T-tag átviteli- és fáziskarakterisztikája

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Számítási feladatok megoldással a 6. fejezethez

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

Analóg elektronika - laboratóriumi gyakorlatok

1. ábra a függvénygenerátorok általános blokkvázlata

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

ELEKTRONIKAI ALAPISMERETEK

Az együttfutásról általában, és konkrétan 2.

M ű veleti erő sítő k I.

Villamosságtan szigorlati tételek

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok

Versenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny

Logaritmikus erősítő tanulmányozása

2.Előadás ( ) Munkapont és kivezérelhetőség

A 2009-es vizsgákon szereplő elméleti kérdések

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ELEKTRONIKAI ALAPISMERETEK

Áramköri elemek mérése ipari módszerekkel

20.B 20.B. Annak függvényében, hogy a kimeneti feszültség, vagy a kimeneti áram értékét próbáljuk állandó értéken tartani megkülönböztetünk:

Elektronika I. Gyakorló feladatok

Feszültségérzékelők a méréstechnikában

ELEKTRONIKAI ALAPISMERETEK

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv

EGYENÁRAMÚ TÁPEGYSÉGEK

Zárt mágneskörű induktív átalakítók

ELKON S-304 autó villamossági mőszer áramköri leírása

ELEKTRONIKAI ALAPISMERETEK

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

ELEKTRONIKAI ALAPISMERETEK

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKAI ALAPISMERETEK

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.

ÍRÁSBELI FELADAT MEGOLDÁSA

Elektronika Előadás

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

ELEKTRONIKAI ALAPISMERETEK

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Versenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Foglalkozási napló a 20 /20. tanévre

Lehetővé teszi szűrőáramkörök tervezésekor az átviteli karakterisztika megvalósítását közelítő függvényekkel.

ELEKTRONIKAI ALAPISMERETEK

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

Összefoglaló kérdések fizikából I. Mechanika

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Az N csatornás kiürítéses MOSFET jelleggörbéi.

évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: Tanítási órák száma: 1 óra/hét

Analóg elektronika - laboratóriumi gyakorlatok

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

ELEKTRONIKAI ALAPISMERETEK

Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.

ANALÓG ÉS DIGITÁLIS TECHNIKA I

UNIPOLÁRIS TRANZISZTOR

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás

Átírás:

9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés fázis- és amplitúdó-feltételeit! Csoportosítsa felépítés és frekvenciatartomány alapján az oszcillátorokat! Ismertesse egy-egy tipikus kis- és nagyfrekvenciás oszcillátor mőködését! Mutassa be az oszcillátorok gyakorlati alkalmazási lehetıségeit! Hasonlítsa össze elınyei és hátrányai alapján az LC-, az RC- és a kvarcoszcillátorokat! Az oszcillátor Az oszcillátorok olyan elektronikus áramkörök, amelyek egyenáramú tápenergiát felhasználva, vezérlı jel nélkül csillapítatlan periodikus jelek elıállítására alkalmasak. A létrehozott periodikus jel lehet: nem szinuszos, szinuszos idıbeli lefolyású jel. Az oszcillátorok osztályozása A szinuszos jeleket elıállító áramköröket harmonikus, vagy szinuszos oszcillátoroknak nevezzük. A nem szinuszos jeleket elıállító áramköröket szokás relaxációs oszcillátoroknak nevezni. A csillapított rezgés Az oszcillátorok létrehozásánál szükség van egy frekvencia- meghatározó elemre, amely meghatározza a rezgés frekvenciáját. Ha egy feltöltött kondenzátor energiája egy induktív tagon keresztül kisül, akkor csillapított rezgések keletkeznek. Rezonancia frekvencia számítása A csillapított rezgések frekvenciáját a következı jól ismert összefüggés határozza meg: f = 2π L C 0. A csillapítatlan rezgés létrejötte A rezgıkör veszteséges, így energiatartalma csökken. A rezgések fenntartása úgy lehetséges, ha a veszteségeket pótoljuk. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges: negatív ellenállású karakterisztika- szakasszal rendelkezı áramköri elem használata, pozitív visszacsatolással rendelkezı erısítı alkalmazása. A negatív dinamikus ellenállás A negatív dinamikus ellenállás hatása Egyes félvezetı áramköri elemeknél, mint például az alagútdióda vagy az egyátmenető tranzisztor, a negatív ellenállás jelenlétét a karakterisztika mutatja. Alagútdiódás oszcillátor jelleggörbéje Egyátmenető tranzisztoros oszcillátor jelleggörbéje

Az egyátmenető tranzisztor jelleggörbéje A negatív ellenállású szakasz felhasználható a rezgıkör veszteségeinek a kiegyenlítésére. A rezgıkör veszteségei kompenzálhatók, ha a vele párhuzamosan vagy sorosan kapcsolunk egy a veszteségi ellenállással megegyezı értékő negatív ellenállást. Az így kiegészített hálózat csillapítatlan rezgéseket képes elıállítani. A párhuzamos rezgıkör elvi felépítése negatív ellenállással A soros rezgıkör elvi felépítése negatív ellenállással A kapcsolási rajz összeállítása és az áramköri elemek szerepe Az egyátmenető tranzisztor esetében a negatív dinamikus ellenállás kis értékő áramváltozás esetén jön létre, amely a jelleggörbébıl is kiolvasható. A keletkezı rezgések amplitudójának a határolása a tranzisztor bemeneti körével sorosan kapcsolt, soros rezgıkörrel valósítható meg. Egyátmenető tranzisztoros oszcillátor Alagútdiódás oszcillátor Alagútdióda alkalmazása Az alagútdióda esetén a negatív dinamikus ellenállást U I kis értékő feszültségváltozás hozza létre. Az alagútdióda csak nagy frekvencián mőködik megfelelıen, ezért a felhasználása a magas frekvenciatartományra esik. A visszacsatolt oszcillátor A visszacsatolt oszcillátor létrehozása Ha egy erısítıt amely egy széles sávban erısít, visszacsatoló négypólussal pozitívan visszacsatolunk, akkor oszcillátort kapunk. A visszacsatolt erısítés A uv Au = β A u A hurokerısítés Ha a hurokerısítés ( ) növekszik., ahol A u az eredeti erısítı erısítése, A uv a visszacsatolt erısítı erısítése. β A u egy értékő, akkor az összefüggés értelmében a visszacsatolt erısítı erısítése végtelenre A visszacsatolt oszcillátor felépítése 2

A hurokerısítés értékének következménye Ez azt jelenti, hogy a visszacsatolt erısítı ilyen esetben vezérlı jel nélkül is szolgáltat kimenı jelet, mivel az Auv=. Ekkor a visszacsatolt erısítı begerjed és saját maga hozza létre a kimenı jelet. Ha a hurokerısítés értéke nem megfelelı, akkor az oszcillátor nem képes begerjedni. A fázisfeltétel és az amplitúdó feltétel A gyakorlatban a hurokerısítést nem lehet pontosan beállítani. Az oszcillátor mőködésének két feltétele van: fázisfeltétel, a visszacsatolt jel a bemenıjellel azonos fázisú legyen, vagyis a fáziseltérés 0 0, vagy 360 0 legyen, amplitúdó feltétel, a hurokerısítés β Au = értékő legyen. A hurokerısítés Megfelelı hurokerısítés és fázisfeltétel esetén, a keletkezı rezgések frekvenciáját egy frekvencia- meghatározó elem határozza meg, amint azt a fenti ábrán is láthatjuk (LC rezgıkör). A frekvencia- meghatározó elem szerint a szinuszos oszcillátorok lehetnek: LC, RC, és kvarc oszcillátorok. LC oszcillátorok Az LC oszcillátorok rezgıköre Ezen oszcillátorok frekvencia- meghatározó eleme egy rezgıkör. A rezgıkör csillapításának kompenzálását egy erısítı biztosítja. Az LC oszcillátorokat fıleg nagyfrekvenciás tartományban alkalmazzák, mivel kisfrekvenciákon a rezgıkör elemei nagy értékőek lennének, ezért veszteségük is megnıne. A nagy jósági tényezıjő rezgıkörök nagyfrekvencián könnyen megvalósíthatóak. Az LC oszcillátorok többféle kapcsolása ismert. A kapcsolások amelyeket ismertetünk, nevük a feltalálójukra utal. Az LC oszcillátorok típusai: hangolt kollektorkörő Meissner-oszcillátor hangolt báziskörő Meissner-oszcillátor kapacitív hárompont-csatolású Collpits-oszcillátor induktív hárompont-csatolású Hartley-oszcillátor A Meissner-oszcillátor A Meissner- oszcillátor jellemzıje, hogy transzformátoros visszacsatolással mőködik, és a frekvencia- meghatározó elem a transzformátor primer tekercsével párhuzamosan kapcsolt kondenzátor által meghatározott rezgıkör. A rezgıkör viselkedése A következı ábra az oszcillátor kapcsolását mutatja, melyben hangolt kollektorkörös emitterkapcsolású erısítıfokozatot alkalmaznak. A kimeneti feszültség a tranzisztor kollektorán lép fel és fázist fordít. A frekvenciája f = 2π L C 0. A hangolt kollektorkörös Meissner oszcillátor 3

A kapcsolási rajz elemzése A pozitív visszacsatolás megvalósítására a kimeneti feszültség egy részét az L tekerccsel lecsatoljuk, és az R, C soros tagon keresztül visszavezetjük a tranzisztor bázisára. A kapcsolásban fontos szerepet játszik az L és L tekercsek menetiránya, hiszen a visszacsatolt jel a tekercsek menetirányának megfelelıen azonos vagy ellentétes fázisban kerül vissza a kollektorkörbıl a bázisra. RC oszcillátorok Az RC oszcillátorokat kisfrekvencián (pl. hangfrekvencián) használjuk. A közös emitteres erısítı kimeneti és bemeneti feszültsége közötti 80 0 -os eltérést RC elemekkel állítjuk helyre (pl. fázistolós oszcillátornál). Az RC oszcillátorok egy részének hangolható a frekvenciája. Ilyen a Wien-hidas oszcillátor. Az LC oszcillátorok típusai: fázistolós oszcillátor (nem hangolható), Wien-hidas oszcillátor ( hangolható), Kettıs T-hidas oszcillátor (nem hangolható). Wien-hidas oszcillátor A híd felépítése A Wien-hidas oszcillátor esetében a visszacsatolatlan erısítıt egy Wien-híddal csatoljuk vissza. A Wien-híd A híd egy frekvenciafüggı és egy frekvenciafüggetlen ágból áll. A híd baloldali ága frekvenciafüggı, jobb oldali ága pedig frekvenciafüggetlen elemekbıl épül fel. A Wien-híd frekvenciafüggı ága A Wien-híd frekvenciafüggı ágának erısítés-frekvencia jelleggörbéje A Wien-híd frekvenciafüggı ágának fázismenete A híd frekvenciafüggı ága és a leosztott feszültség megállapítása A frekvenciafüggı ág egy osztó áramkör, amelyre igaz, hogy: ω = 0 R C körfrekvencián, az ág alsó részén az U p fázisban van az U bemenı feszültséggel, minden más frekvencián fázistolás lép fel. A híd feszültség-átvitele: U p lesz. 4

Tehát a frekvenciafüggı ág által szolgáltatott bemenı feszültség fázisban van az erısítı kimenı feszültségével, amplitúdója annak /3-a, a β = /3 lesz a pozitív visszacsatolási tényezı értéke. A fázistolás értékének meghatározása A jelátvitel a körfrekvencia függvényében úgy változik, hogy az ω 0 körfrekvencián maximális az átvitel, értéke éppen /3 és ezen a frekvencián a tag fázistolása nulla fok. Természetesen a körfrekvencia az RC elemek nagyságának megválasztásától függ, illetve azok változtathatóvá tételével az ω 0 is változtatható. A hídhoz megfelelı erısítıfokozat megválasztása Az erısítı erısítése, A u = 3 értékő kell hogy legyen, hiszen így lesz a hurokerısítés egy értékő. Az erısítıt általában meghatározott frekvenciatartomány átvitelére tervezik. A visszacsatoló kört választjuk frekvenciafüggıre, amint azt az ábrákon is láthatjuk. Az erısítı kialakítása Mivel a híd nem fordít fázist, ezért (fázisfeltétel) az erısítıt is úgy kell kialakítani, hogy fázistolása nulla legyen. A Wien-híd frekvenciafüggı ága az erısítı nem invertáló bemenetére kapcsolja a visszacsatolt jelet, így a fázisfeltétel teljesül. Az amplitúdó feltételt a frekvenciafüggetlen ág teljesíti, ha pl. R = R 2 = R és C = C 2 = C teljesül, akkor az R3 R4 erısítés: A u = 3 = + R3 =. Az erısítés pontos beállítása miatt szükséges az R 4 potenciométer. A R4 2 frekvencia hangolását az R és R 2 együttfutó potenciométerek teszik lehetıvé. Jó alkatrész méretezéssel a kapcsolás az egész hangfrekvenciás sávban (20 Hz-20 khz-ig) szolgáltat szinuszos jelet a kimeneten. Kvarcoszcillátorok Az oszcillátorok frekvenciastabilitása Az oszcillátorok esetében fontos követelmény a frekvencia vándorlása, eltolódása. A jó minıségő oszcillátoroknál a frekvenciaváltozásnak minimálisnak kell lennie. A frekvenciát az áramköri elemek és a tranzisztor paraméterei határozzák meg, amelyek a hımérséklettıl, a tápfeszültség változásától és a terheléstıl függıen változnak. A jóság szerepe A frekvencia pontosságát a relatív frekvenciastabilitással jellemezzük: S f =, f 0 ahol, a f a frekvenciaváltozás, az f 0 pedig a viszonyítási frekvencia. A tervezés során a legnagyobb gondot a tranzisztor paraméterei okozzák, mert ezek a kritikus jellemzık. Az elsıdleges frekvencia- meghatározó elemek (L és C, R és C) jó minıségőeknek kell lenniük, hiszen az oszcillátorkapcsolásnak a stabilitása nem lehet jobb, mint az áramköri elemek stabilitása. Fontos, hogy a terheletlen rezgıkör jósági tényezıje nagy legyen, mert a külsı elemek így csak jelentéktelen mértékben befolyásolhatják a rezonanciafrekvenciát. A kvarc szerepe Igen jó frekvenciastabilitás érhetı el rezgıkvarc alkalmazásával. 5

A kristály az egymással szemben lévı oldalaira kapcsolt váltakozó feszültség hatására bizonyos frekvencián mechanikai rezgést végez. Ezek a rezgések a két oldalon elektromos rezgéseket eredményeznek. A velük elérhetı frekvenciastabilitás:s= 0 0. A hımérsékletfüggés A kvarcok frekvenciája hımérsékletfüggı, ezért hımérséklet befolyásolja a pontosságot. A frekvenciastabilitás a kristály hımérsékletének állandósításával tovább növelhetı. A kristály hımérsékletét termosztát alkalmazásával lehet állandó értéken tartani. A termosztálásnak több lehetséges megoldása is ismert. A soros és a párhuzamos rezonancia frekvencia A viselkedésüknek a következı ábrán látható egyszerősített helyettesítı kapcsolásban az L s,c s és r s áramköri elemeket tartalmazó soros rezgıkör felel meg. A rezgıkvarcnak soros és párhuzamos rezonanciája is van. A kristály áramköri jelölése A kristály helyettesítı képe A Miller-kapcsolású oszcillátor A fegyverzetek közötti kristálykapacitás C p, amely sokkal nagyobb, mint a C s kapacitás, ezért a kristály rezonanciafrekvenciáját az L s és C s értékek határozzák meg. Ha a kristály jellemzıi: C p = 0pF, C s = 0,0pF, L s = 0,H, r s = 0 Ω, akkor a jósági tényezı: L s 4 Q 0 = = 0. rs Cs A nagy jósági tényezı az oka a kvarckristályokkal épített oszcillátorok nagyon nagy frekvenciastabilitásának. A Miller-kapcsolású oszcillátor Az oszcillátorban a pozitív visszacsatolást a FET C -el jelölt, drain-gate parazita kapacitása biztosítja. Az LC rezgıkört a kristály rezonanciafrekvenciája alá hangolják, ahol induktív jelleget mutat. Sokszor alkalmaznak trimmer kondenzátort, amelyet a kvarccal sorosan párhuzamosan kapcsolnak, melynek segítségével az oszcillációs frekvencia pontosan beállítható. A kvarckristályokkal kb. 00 MHz-ig lehet oszcillátorokat kialakítani. A felharmónikus tartalmat kihasználva lehetıség kínálkozik ettıl jóval nagyobb frekvenciájú kvarcstabilizált oszcillátorok készítésére. 6