Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész



Hasonló dokumentumok
MATEMATIKA ÍRÁSBELI VIZSGA május 5.

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA április január II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI május EMELT SZINT. 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Matematika kisérettségi

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.

3. MINTAFELADATSOR KÖZÉPSZINT

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

PRÓBAÉRETTSÉGI VIZSGA január 19.

PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc

ÍRÁSBELI VIZSGA május 7. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 7. pontszám. pontszám. II. rész 70. I.

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

ÉRETTSÉGI VIZSGA október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Időtartam: 45 perc

Matematika kisérettségi május 24. I. rész

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

ÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 15. 8:00. Az írásbeli vizsga időtartama: 240 perc

2. MINTAFELADATSOR KÖZÉPSZINT

Azonosító jel: ÉRETTSÉGI VIZSGA május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

ÉRETTSÉGI VIZSGA október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 45 perc

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Időtartam: 45 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

PRÓBAÉRETTSÉGI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: ÉRETTSÉGI VIZSGA május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc

ÍRÁSBELI VIZSGA május 6. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 6. pontszám. pontszám. II. rész 70. I.

1. MINTAFELADATSOR EMELT SZINT

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc

PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Az írásbeli vizsga időtartama: 240 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA február 16.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

3. MINTAFELADATSOR EMELT SZINT

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

PRÓBAÉRETTSÉGI VIZSGA január 18.

PRÓBAÉRETTSÉGI VIZSGA

1. MINTAFELADATSOR KÖZÉPSZINT

MATEMATIKA II Január 21. PRÓBAÉRETTSÉGI VIZSGA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA Január 21. STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA EMELT SZINT% ÍRÁSBELI VIZSGA október 14. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA. Az írásbeli vizsga idtartama: 240 perc

ÉRETTSÉGI VIZSGA május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA október 19. MINISZTÉRIUM NEMZETI ERFORRÁS október 19. 8:00

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

ÉRETTSÉGI VIZSGA május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Azonosító jel: ÉRETTSÉGI VIZSGA október 17. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 16. 8:00. Az írásbeli vizsga időtartama: 240 perc

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május 6. MINISZTÉRIUMA május 6. 8:00 EMBERI ERFORRÁSOK

Átírás:

2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához zsebszámológépet és négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos! A feladatok végeredményét az erre a célra szolgáló keretbe írja, a feladatok megoldását csak akkor részletezze, ha erre a feladat szövege utasítást ad! A feladatok megoldását tollal készítse! Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető! Az egyes feladatokra az ott feltüntetett pontszámnál több nem kapható. Ha a megadott válasz hibás elemet vagy elemeket tartalmaz, akkor maximális pontszám nem adható. 21

1. Adott két halmaz: A = egyjegyű pozitív páratlan számok B = 2;3;5;7 { } { } Sorolja fel az A B és az A \ B halmaz elemeit! Az A B halmaz elemei: Az A \ B halmaz elemei: 2. Jelölje be, hogy az alábbi egyenlőségek igaz vagy hamis állítások! ( a > 0, a 1) 3 4 12 a) a a = a Az állítás igaz vagy hamis. b) 8 2 4 : a a a = Az állítás igaz vagy hamis. 3. Adott a következő hétjegyű szám: 135947X. Milyen számjegyeket írhatunk az X helyére, hogy az így kapott hétjegyű szám 4-gyel osztható legyen? Az X értéke: 4. Oldja meg a következő egyenletet a valós számok halmazán! x 3 = 81 Az egyenlet megoldása: 5. Hozza egyszerűbb alakra a következő kifejezést! Írja le a megoldás egyes lépéseit! 2 x 1 x R \ {1} x 1 A kapott kifejezés: 22

6. Hányféleképpen lehet egy 10 fős társaságból egy elnököt és egy titkárt választani? Megoldását indokolja! A lehetőségek száma: 7. Egy szabályos hatszög csúcsai: A, B, C, D, E, F, középpontja K. Legyen BA = a és BC = b. Fejezze ki a megadott vektorok segítségével a DE és a BK vektorokat! DE = BK = 8. Egy szabályos pénzérmét háromszor feldobunk. Mekkora az esélye, hogy egyszer fejet és kétszer írást kapjunk? Megoldását indokolja! Az esély: 23

9. Oldja meg a következő egyenletet a valós számok halmazán! Megoldását indokolja! ( x 1) = 10 2 2 3 A megoldás: 10. Milyen valós x-ekre értelmezhetők a következő kifejezések? a) 5 x Az értelmezési tartomány: b) lg( 5 x) Az értelmezési tartomány: 11. Mi az alábbi, grafikonjával megadott függvény értelmezési tartománya és értékkészlete? Értelmezési tartomány: Értékkészlet: 24

II. rész A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B részben három feladat közül csak kettőt kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor az utolsó feladatra nem kap pontot! A feladatok megoldásához zsebszámológépet és négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos! A feladatok megoldásához alkalmazott gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár! Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetőek legyenek! A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasság-tétel) nem kell pontosan megfogalmazva kimondania; elég csak a tétel megnevezését említeni, de alkalmazhatóságát röviden indokolni kell. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje! A feladatok megoldását tollal készítse! Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. Az egyes feladatokra az ott feltüntetett pontszámnál több nem kapható. Ha a megadott válasz hibás elemet vagy elemeket tartalmaz, akkor maximális pontszám nem adható. 25

II/A 12. Kör alakú amfiteátrum küzdőterének két átellenes pontjában áll egy-egy gladiátor, az uralkodó a pálya szélén ül. A gladiátorok egyenes vonalban odafutnak az uralkodóhoz. Az egyik 20 métert, a másik eggyel többet tesz meg, amíg odaér. Mekkora az amfiteátrum sugara? Készítsen ábrát is a megoldáshoz! 1 26

13. Magyarországon egy átlagos család egy főre eső napi vízfogyasztása 152 liter. Ez a fogyasztás több részből tevődik össze: főzés, mosogatás, WC-használat, mosakodás, mosás, egyebek. A felsoroltak vízfogyasztási aránya rendre 4%, 4%, 25%, 26%, 30%, 11%. A vízdíj 140 Ft/m 3. a) Ha minden egyes mosásnál egy takarékosabb mosógéppel 25%-kal kevesebbet használunk, akkor a lakosság létszámát 10 millióra kerekítve hány m 3 vizet takarít meg az ország lakossága egy év (365 nap) alatt? 6 pont b) Ez hány százaléka az összes vízfogyasztásnak? 3 pont c) Mennyi naponta a lakossági megtakarítás értéke összesen? Az eredményt adja meg normálalakban is! 3 pont 27

14. Egy adatsor öt számból áll, amelyből kettő elveszett, a maradék három: 3; 4; 7. Tudjuk, hogy a módusz 4, és az adatok átlaga (számtani közepe) 6,5. a) Mi a számsor hiányzó két adata? Válaszát indokolja! 5 pont b) Mennyi az adatok mediánja? Válaszát indokolja! 3 pont c) Számolja ki az adatok szórását! 4 pont 28

II/B A 15. 17. feladatok közül tetszés szerint választott kettőt kell megoldania. 15. Reklámcélokra tömör fémből készült dísztárgyakat gyártanak. Ha olyan négyzet alapú szabályos gúla alakúakat öntenek, ahol a gúla alapéle is, magassága is 5 cm, akkor 100 darabra elég a nyersanyag. a) Mekkora a nyersanyag térfogata? 3 pont b) Mennyibe kerülne a 100 gúla befestése, ha 1 m 2 felület festési költsége 1200 Ft? 7 pont Az ellenőrzés során kiderült, hogy az elkészült dísztárgyak 5%-a selejtes. A 100 gúlát tartalmazó dobozból véletlenszerűen nyolcat választunk ki. c) Hányféleképpen lehet ezt megtenni? d) Mennyi az esélye, hogy a nyolc darab kiválasztott gúla közül éppen 3 darab lesz selejtes? 5 pont 29

2x 26x 75 16. a) Mutassa meg, hogy a 4 2 + = 64 a 4 és a 9 a megoldásai! egyenletnek a valós számok körében csak 5 pont 2x 2 26x + 75 = b) Egy számtani sorozat első tagja a 4 64 egyenlet nagyobbik gyöke, a számtani sorozat különbsége pedig az egyenlet kisebbik gyöke. Adja meg e számtani sorozat első 5 tagjának az összegét! 4 pont c) Ha e sorozat első n tagjának összege 3649, akkor mennyi az n értéke? 8 pont 30

17. Írja fel annak a két egyenesnek az egyenletét, amelyek párhuzamosak a 3x 4y = 0 egyenletű egyenessel, és érintik az x 2 + y 2 2x + 4y 20 = 0 egyenletű kört! 17 pont 31