KLINCS KÖTÉS TECHNOLÓGIAI PARAMÉTEREINEK VIZSGÁLATA, VÉGESELEMES MODELLEZÉSE



Hasonló dokumentumok
Miskolci Egyetemi Közlemények, Miskolc, X. kötet. (2015) pp.

ALAKÍTHATÓ NAGYSZILÁRDSÁGÚ LEMEZ- ANYAGOK KLINCS KÖTÉSE

PLATTÍROZOTT ALUMÍNIUM LEMEZEK KÖTÉSI VISZONYAINAK TECHNOLÓGIAI VIZSGÁLATA TECHNOLOGICAL INVESTIGATION OF PLATED ALUMINIUM SHEETS BONDING PROPERTIES

A TRIP ACÉL PONTHEGESZTÉSÉNEK HATÁSA RESISTANCE SPOT WELDING EFFECT IN CASE OF TRIP STEEL

VÉKONYLEMEZEK ELLENÁLLÁS-PONTKÖTÉSEINEK MINŐSÉGCENTRIKUS OPTIMALIZÁLÁSA

A lineáris dörzshegesztés technológiai paramétereinek megválasztása

RONCSOLÁSMENTES VIZSGÁLATTECHNIKA

Kvartó elrendezésű hengerállvány végeselemes modellezése a síkkifekvési hibák kimutatása érdekében. PhD értekezés tézisei

Lézeráteresztő fém-polimer kötés kialakításának vizsgálata

ERŐMŰI SZERKEZETI ELEMEK ÉLETTARTAM GAZ- DÁLKODÁSÁNAK TÁMOGATÁSA A TÖRÉSMECHANI- KA ALKALMAZÁSÁVAL

Anyagmérnöki Tudományok, 37. kötet, 1. szám (2012), pp

XV. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010

1725 Budapest, Pf. 16. Telefon: Telex:

ÖNTÉSTECHNIKAI ÉS HŐTECHNIKAI PARAMÉTEREK HATÁSA AZ ALUMÍNIUM NYOMÁSOS ÖNTVÉNY SZILÁRDSÁGI TULAJDONSÁGAIRA. PhD-értekezés tézisei

PLAZMAVÁGÁS GÁZELLÁTÁSI KÉRDÉSEI

PRÓBAMÉRÉSEK TEREPI KÖRÜLMÉNYEK KÖZÖTT KÖNNYŰ EJTŐSÚLYOS DINAMIKUS TERHELŐTÁRCSÁVAL

A felület vizsgálata mikrokeménységméréssel

Hegesztési folyamatok és jelenségek véges-elemes modellezése

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS

A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN

Kavaró dörzshegesztéssel készült polimer varratok szilárdsági elemzése

Nagyszilárdságú lemezanyagok alakíthatósági vizsgálatai

A Telefongyár korszerű kábellétra-szerkezet konstrukciójának ismertetése

Átlapolt horganyzott lemezek MIG/MAG hegesztése

Gyakorlati tapasztalatok hegesztett kötések eljárásvizsgálatában

FÉMKOMPOZITOK KOPÁSÁLLÓSÁGÁNAK VIZSGÁLATA INVESTIGATION OF THE WEAR RESISTANCE PROPERTIES OF METAL MATRIX COMPOSITES

HIDEGEN HENGERELT ALUMÍNIUM SZALAG LENCSÉSSÉGÉNEK VIZSGÁLATA INVESTIGATION OF CROWN OF COLD ROLLED ALUMINIUM STRIP

TDA-TAR ÉS O-TDA FOLYADÉKÁRAMOK ELEGYÍTHETŐSÉGÉNEK VIZSGÁLATA STUDY OF THE MIXABILITY OF TDA-TAR AND O-TDA LIQUID STREAMS

Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar

NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

LINDAB Floor könnyűszerkezetes födém-rendszer Tervezési útmutató teherbírási táblázatok

Szabó József, Dr. Kazinczy László. Mszaki Szemle 32 45

Korszerű raktározási rendszerek. Szakdolgozat

A Ni-BÁZISÚ SZUPERÖTVÖZETEK MEGMUNKÁLHATÓSÁGA HORONYMARÁSKOR. MACHINEBILITY OF THE Ni-BASED SUPERALLOYS BY END MILLING

Teherviselő faszerkezet csavaros kapcsolatának tervezési tapasztalatai az európai előírások szerint

MEZŐGAZDASÁGI HULLADÉKOT FELDOLGOZÓ PELLETÁLÓ ÜZEM LÉTESÍTÉSÉNEK FELTÉTELEI

FERROMÁGNESES ANYAGOK RONCSOLÁSMENTES VIZSGÁLATA MÁGNESESHISZTERÉZIS-ALHURKOK MÉRÉSE ALAPJÁN. Mágneses adaptív teszt (MAT) Vértesy Gábor

Duálfázisú lemezek csaphegesztése

Légsebesség profil és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai ellenállásának mérése

Egyrétegű tömörfalapok ragasztási szilárdságának vizsgálata kisméretű próbatesteken

BETÉTEDZÉSŰ ACÉLOK KÜLÖNBÖZŐ HŐMÉRSÉKLETŰ KARBONITRIDÁLÁSA. Szilágyiné Biró Andrea 1, Dr. Tisza Miklós 2

Diagram a serleges elevátorok póluspontjának meghatározásához

1.1 Lemezanyagok tulajdonságai és alakíthatóságuk

Vastagréteg hangfrekvenciás oszcillátorok

MUNKAANYAG. Papp Lajos. Az előzékelés technológiája. A követelménymodul megnevezése: Nagyüzemi könyvgyártás

Fém, kerámia és biokompozit bioanyagok lézersugaras felületmódosítása

ÜVEGSZÁL ERŐSÍTÉSŰ KOMPOZIT FÚRÁSÁNAK VIZSGÁLATA GYORSACÉL ÉS KEMÉNYFÉM SZERSZÁMMAL DRILLING OF GLASS-FIBER-REINFORCED COMPOSITE BY HSS AND CARBIDE

Amorf/nanoszerkezetű felületi réteg létrehozása lézersugaras felületkezeléssel

XIII. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

XIII. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

A szárazmegmunkálás folyamatjellemzőinek és a megmunkált felület minőségének vizsgálata keményesztergálásnál

AZ AUTOMATIZÁLT MIG/MAG HEGESZTÉS VALÓS IDEJŰ MINŐSÉGBIZTOSÍTÁSI LEHETŐSÉGEI

STAAD-III véges elemes program Gyakorlati tapasztalatok a FÕMTERV Rt.-nél

Villamos sínek felrakóhegesztése előmelegítés nélkül

MELEGZÖMÍTŐ VIZSGÁLATOK ALUMÍNIUMÖTVÖZETEKEN HOT COMPRESSION TESTS IN ALUMINIUM ALLOYS MIKÓ TAMÁS 1

beolvadási hibájának ultrahang-frekvenciás kimutatása

TDK Dolgozat. DP acélok ellenállás ponthegesztése

Baross Gábor Középiskola, Szakiskola és Kollégium

MOS logikai rendszerek statikus és dinamikus tulajdonságai

A melegen hengerelt acélszalagok tulajdonságainak javítása a szalaghűtő-rendszer optimalizálásával

MUNKAANYAG. Fekete Éva. Marási műveletek végzése fogazó. marógéppel, másoló marógéppel, láncmarógéppel, és pánthely maró géppel

MODULÁRIS CSÍPÕPROTÉZIS SZÁR TERVEZÉSE

MUNKAANYAG. Ujszászi Antal. Fogyóelektródás védőgázas ívhegesztés anyagai, hegesztőhuzalok, védőgázok. A követelménymodul megnevezése:

TÓPARK BERUHÁZÁS ÖSZVÉRSZERKEZETŰ FELÜLJÁRÓ TERVEZÉSE AZ M1 AUTÓPÁLYA FELETT TÓPARK PROJECT COMPOSIT OVERPASS ABOVE THE M1 MOTORWAY

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

A TECHNOLÓGIAI PARAMÉTEREK HATÁSÁNAK VIZSGÁLATA KOPÁSÁLLÓ ACÉLOK KÖRNYEZETTU- DATOS FÚRÁSA SORÁN

ALAKÍTÁSI HATÁRDIAGRAMOK

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

ANYAGVIZSGÁLAT GÉIK, I. évfolyam

MŰANYAGOK ALKALMAZÁSA

COOPERATION IN THE CEREAL SECTOR OF THE SOUTH PLAINS REGIONS STRÉN, BERTALAN. Keywords: cooperation, competitiveness, cereal sector, region, market.

1. A kutatások elméleti alapjai

Téglalap és kör alakú lemezek deformációjának számítása fröccsöntött szerszámok esetén

A BÜKKI KARSZTVÍZSZINT ÉSZLELŐ RENDSZER KERETÉBEN GYŰJTÖTT HIDROMETEOROLÓGIAI ADATOK ELEMZÉSE

Tűgörgős csapágy szöghiba érzékenységének vizsgálata I.

SZAKDOLGOZAT. Gömbcsap működtető orsó gyártástervezése

Mérnöki Optimálás Példatár

TÁMOPͲ4.2.2.AͲ11/1/KONVͲ2012Ͳ0029

1 Mechanikai anyagvizsgálatok.

Mechanikai tulajdonságok Statikus igénybevétel. Nyomó igénybevétellel szembeni ellenállásának meghatározása

Mechanikai anyagvizsgálatok

= szinkronozó nyomatékkal egyenlő.

Gyártási folyamatok tervezése

7. Alapvető fémmegmunkáló technikák Öntés, képlékenyalakítás, préselés, mélyhúzás. ( )

Nagyszilárdságú acél és alumínium ötvözetek

TIOLKARBAMÁT TÍPUSÚ NÖVÉNYVÉDŐ SZER HATÓANYAGOK ÉS SZÁRMAZÉKAIK KÉMIAI OXIDÁLHATÓSÁGÁNAK VIZSGÁLATA I

Tevékenység: Tanulmányozza a 4. táblázatot! Gyűjtse ki és tanulja meg a nagyszilárdságú mélyhúzott finom acélok típusait és jelölésüket!

PARAMÉTERES GÖRBÉK ALKALMAZÁSA VALÓSIDE- JŰ DIGITÁLIS HANGFELDOLGOZÁS SORÁN

SZABADALMI LEÍRÁS SZOLGÁLATI TALÁLMÁNY

ACÉL TÉRRÁCSOS TETOSZERKEZET KÍSÉRLETI VIZSGÁLATA

A kockázat alapú felülvizsgálati karbantartási stratégia katonai és polgári alkalmazásának lehetõségei

A HÉJSZERKEZETEK TERVEZÉSÉNEK GYAKORLATI KÉRDÉSEI 1. A NYOMÁSTARTÓ EDÉNYEK TERVEZÉSÉNEK ÁLTALÁNOS ELVEI

Korszerű födémszerkezetek a Közép-Európai építési piacon - hosszúpados, előfeszített, extrudált üreges födémpallók

HU ISSN

Klincs kö té sék minö sé gi ké rdé séi Quality quéstiöns öf clinch jöint

LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN

MŰANYAGOK FELDOLGOZÁSA

Esettanulmány Evezőlapát anyagválasztás a Cambridge Engineering Selector programmal. Név: Neptun kód:

Átírás:

Anyagmérnöki Tudományok, 39/1 (2016) pp. 7 18. KLINCS KÖTÉS TECHNOLÓGIAI PARAMÉTEREINEK VIZSGÁLATA, VÉGESELEMES MODELLEZÉSE INVESTIGATION AND FINITE ELEMENT MODELLING OF TECHNOLOGICAL PARAMETERS OF CLINCHED JOINTS KOVÁCS PÉTER ZOLTÁN 1 TISZA MIKLÓS 2 A klincs kötés napjainkban az iparban egyre terjedő eljárás, azonban még mindig számos kérdés merül fel egy újonnan tervezett szerkezet gyártásánál. A technológusok célja az alapanyagok között a legmegfelelőbb kötés létrehozása, de az ehhez szükséges megfelelő technológiai paraméterek gyakran nem ismertek, ezért egy új szerkezet gyártásának kezdetéig sok kísérlet és az ezzel járó pluszköltségek jelentkezhetnek. Az elkészült kötések mechanikai tulajdonságait szintén költséges roncsolásos vizsgálatokkal tudjuk meghatározni, azonban a végeselemes módszer segíthet abban, hogy ezeket a tulajdonságokat ne időigényes és költséges vizsgálatokkal, hanem számítógépes szoftverek segítségével, numerikus módszerekkel szimuláljuk és határozzuk meg. A végeselemes modellezés alkalmazása lehetővé teszi, hogy költséghatékonyabban és egyszerűbben választhassunk az adott folyamatnak legmegfelelőbb szerszámot, alapanyagot, és ha szükséges, optimizálhassuk a szerszámgeometriát az adott felhasználásra. Kulcsszavak: lemezalakítás, lemezek egyesítése, klincs kötés, nagyszilárdságú acél The clinch joints are more and more widely applied in the industry, but in many cases there are still many questions in the production of newly designed structures. Process engineers aim to create the most suitable joints between materials, but the appropriate process parameters are still often missing; thus in producing new structures, a great amount of experiments are rrequired, and thus additional costs may occur. Strength properties of finished joints can be assessed using destructive tests, however, the application of finite element method can provide a cost-effective technique to determine these properties and to select the most suitable tools and materials, to optimise tool geometry for given purposes. Keywords: sheet metal forming, sheet metal joints, clinching, high strength steels BEVEZETÉS A járműiparban alkalmazott lemezanyagok skálája igen széles körű: a gyártók az adott célnak, rendeltetésnek legmegfelelőbb anyagokat széles anyagválasztékból választhatják meg, és az is gyakori, hogy egy szerkezeti elemen belül többféle anyagú, eltérő vastagságú és tulajdonságú lemezt használnak fel. Azonban ezeket a lemezeket valamilyen módon egyesíteniük kell a megfelelő végső termék kialakítása érdekében. A lemezegyesítő eljárások között is nagy a választék. Ezek fő csoportjai: a hegesztés, a különféle forrasztó, ragasztó eljárások és nem utolsósorban a mechanikus egyesítés vagy akár ezek kombinációi (például ragasztott ponthegesztett lemezek). A kötéstípus választását számos tényező befolyásolja: a szükséges berendezés és költségei, a kötendő alapanyagok, az eljárás gépesíthetősége, a szükséges humánerőforrás, végső soron a gyártás gazdaságossága. 1 Miskolci Egyetem, Anyagszerkezettani és Anyagtechnológiai Intézet 3515 Miskolc Egyetemváros metkpz@gold.uni-miskolc.hu 2 Miskolci Egyetem, Anyagszerkezettani és Anyagtechnológiai Intézet 3515 Miskolc Egyetemváros tisza.miklos@uni-miskolc.hu

8 Kovács Péter Zoltán Tisza Miklós 1. KLINCSELÉS A klincselés napjainkban egyre terjedő, korszerű eljárás, amely a mechanikus sajtoló kötések csoportjába tartozik. Lényege, hogy két vagy több lemezt egy speciális, erre a célra kialakított bélyeg matrica párral egymásba préselünk valamilyen célszerszám vagy présgép segítségével. 1.1. A klincs kötés jellemzői A klincs kötést napjainkban egyre gyakrabban alkalmazzák az autóiparban különböző anyagú, eltérő vastagságú, bevonatos vagy bevonat nélküli vékony lemezek egyesítésére. Példaként megemlítjük az Audi TT modellt, amelynek egyes karosszériaelemeinél sorozatgyártásban is alkalmazták a klincselést. Az eljárásnál két vagy akár három lemezt átlapolva egymásra helyeznek, és képlékenyalakítással egyesítik a lemezeket. Az egyesítendő lemezeket a bélyeggel belesajtolják a matricába, ami kismértékben alakítja az alul lévő fenékrészt, létrehozva így egy oldhatatlan kötést (1. ábra). Az eljárásnak több változata is van, de ezek közül az egy lépésben történő körpontos klincselést, az úgynevezett TOX és Tog-L-Loc eljárást használják leggyakrabban. 1. ábra. A klincselő szerszám főbb elemei 1.1.1. Az eljárás előnyei A klincselés az innovatív kötő-alakító eljárások közé tartozik. Alkalmazzák az autóiparban és számos műszaki cikk gyártásánál. Gyakran alkalmazzák a ponthegesztés kiváltására, főleg alumíniumlemezek esetében. Nagy előnye a ponthegesztéshez képest, hogy gazdaságosabb (akár 60%-os költségmegtakarítást eredményez). További előnye, hogy környezetbarát eljárás, úgynevezett tiszta eljárásnak is hívják. Néhány fontosabb jellemző, amely a klincselés előnyeit támasztja alá: 30 60%-os költségmegtakarítás a ponthegesztéshez képest; a TOX kötés dinamikus terheléssel szembeni ellenálló képessége nagyobb, mint az ellenállás hegesztéssel létrehozott kötéseké; az eljárás kiválóan automatizálható, a folyamat jól nyomon követhető, dokumentálható; egyszerű, roncsolásmentes minőségellenőrzés lehetséges;

Klincs kötés technológiai paramétereinek vizsgálata, végeselemes modellezése 9 a kötés során semmilyen metallurgiai változás nem lép fel; a galvanizált, festett, illetve különböző felületvédő réteggel ellátott anyagok sem károsodnak, mert a réteg az anyaggal együtt alakváltozik; nincs magas hőmérséklet, így például ragasztott kötéssel is párosítható; a lemezvastagság 0,1 mm és 12 mm között választható; közbenső rétegek is használhatók, például papír vagy ragasztó; mivel nincs szennyeződés, a kötés nem igényel utólagos megmunkálást; rendkívül környezetbarát eljárás; a lézeres hegesztésnél jóval olcsóbb. 1.1.2. Az eljárás hátrányai Az eljárás hátrányaként említhető, hogy a kötés mechanikai tulajdonságai gyengébbek, mint a ponthegesztésé (a TOX technológiával kialakított kötés szilárdsága csak mintegy 70 %-a a pontkötéssel létrehozott kötés mechanikai tulajdonságainak), de sok esetben nem is szükséges nagyobb kötésszilárdság. 1.2. A klincs kötés minőségi tényezői A kötés erősségét a nyakvastagság, és az alámetszés nagysága határozza meg, ezeket a méreteket pedig a szerszám kialakítása befolyásolja, mint például a bélyegátmérő, a matrica mélysége és az üreg átmérője. Ezeket a paramétereket a 2. ábra mutatja. 2. ábra. A klincs kötés fontos technológiai és minőségi paraméterei A klincs kötésnek számos típusa ismert: ebben a cikkben a vizsgálatainknál használt körpont kötést mutatjuk be (3. ábra). A körpont kialakítás a legegyszerűbb, legtisztább lemezkötés. Nincs szükség előmun-kálatokra, kötőelemre. A szerszámok nem tartalmaznak problémát okozó vágó vagy mozgó elemeket. A körpont egy speciális kivitele a MICRO-pont, amit kiválóan lehet miniatűr fémlemezdarabok összekapcsolására is használni. Nagy hatékonysággal használható az elektronikában és az elektrotechnikában, valamint a mechatronikában.

10 Kovács Péter Zoltán Tisza Miklós 3. ábra. Körpont kötés 1.3. A klincselés folyamata Az egylépéses körpontos klincselés folyamata alapvetően négy fázisból áll. Először a lemezeket belenyomjuk a matricába, majd mikor az alsó lemez eléri a matrica alját, zömülés megy végbe, és az anyag radiális irányban megfolyik. Ezután a matricaüreg megtelik, végül pedig a visszasajtolással fejeződik be a folyamat. 1.4. A kötések vizsgálata Ahhoz, hogy egy gyártási folyamat elkezdődhessen, költséges vizsgálatokat kell elvégezni: az adott alkalmazáshoz a megfelelő szerszámegyüttes kiválasztásához több kötést is el kell készíteni változó szerszámgeometriákkal. A kötéseket statikus és dinamikus terhelésekkel is tesztelik. A vizsgálatok megegyeznek a ponthegesztett kötések roncsolásos vizsgálataival, azaz alapvetően nyíró és húzó szakító vizsgálatokat alkalmaznak (4. ábra). E vizsgálatokkal párhuzamosan tengelymetszetes makrocsiszolaton mérik a nyakszélességet és az alámetszést, vizsgálva a geometriai jellemzők hatását a kötés szilárdságára. 4. ábra. Nyíró, nyak- és fejhúzás ábrája, illetve az előforduló hibák okai

Klincs kötés technológiai paramétereinek vizsgálata, végeselemes modellezése 11 A klincs kötések vizsgálatára az Anyagszerkezettani és Anyagtechnológiai Intézetben beszerzésre került egy TOX szerszámpár, amely körpontos klincs kötés létrehozására alkalmas. A kialakított szerszámmal nagyszilárdságú, DP 600-as anyagminőségű, 1 mm vastagságú lemezek közt lehet mechanikus kötést létrehozni. A legkedvezőbb tulajdonságú kötéseket ennél az anyagminőségnél a gyártó szerint akkor lehet elérni, ha a fenékvastagságot 0,5 mmre állítjuk be. A vizsgálatokat az Intézet MTS típusú, elektro-hidraulikus, számítógép vezérlésű, univerzális anyagvizsgáló gépén végeztük. A berendezés maximális nyomóereje: F max = 250 kn. Az 5. ábra a vizsgálati berendezést a szakítógépre felszerelt klincselő szerszámmal együtt a mutatja. 5. ábra. MTS típusú, 250 kn méréshatárú elektro-hidraulikus szakítógép a klincselő szerszámmal A vizsgálataink során először az alakítás folyamatának elemzését tűztük ki célul, ezért előkísérleteket végeztünk, különböző bélyeg elmozdulásokkal: ezáltal különböző fenékvastagságokat hoztunk létre. Az így létrehozott kötéseket, középen kettévágva az alakítás lépéseit a 6. ábra fényképsorozatán szemléltetjük. 1. 2. t fenék = 1,49 mm 3. 4. t fenék = 1,05 mm t fenék = 0,65 mm t fenék = 0,51 mm 6. ábra. Az alakítás folyamata DP 600 anyagminőségű, 1mm vastagságú lemezeknél

12 Kovács Péter Zoltán Tisza Miklós A technológiai folyamat elemzéséhez a létrehozott próbatest sorozaton lehetőség van a fontosabb technológiai paraméterek meghatározására, mint például a fenékvastagág, alámetszés, nyakvastagság mérése az egyes alakítási lépésekben. A kettévágott próbatestekből csiszolatokat készítettünk, és a 0,5 mm fenékvastagságú darabon mikro-keménységmérést is végeztünk (HVM 0,5). A keménységi értékeket a két lemez semleges szálában, a középpontból kiindulva 0,5 mm-enként mértük. A 0,5 mm-es fenékvastagságnál kapott keménységértékeket a 7. ábrán mutatjuk meg. 7. ábra. A keménységmérés eredményei 0,5 mm-es fenékvastagságnál, DP 600-as anyag-minőség párnál (lemezvastagságok: 1 mm) A továbbiakban a gyártó által javasolt fenékvastagságot, illetve ezen érték megváltozásának a kötés szilárdsági tulajdonságaira gyakorolt hatását vizsgáltuk. Az elkészült próbadarabokon háromféle vizsgálatot végeztünk. A vizsgálatok típusai: 1. Nyíró-szakító vizsgálat, 2. Fejhúzó vizsgálat, 3. Nyakhúzó vizsgálat. A kötéshez használt próbatestek előkészítésének első lépése a darabok kimunkálása, 1000x2000x1 mm méretű lemeztáblákból. A darabokat lézervágással készítettük el az Industar Kft.-nél, Felsőzsolcán. A táblákból 30x100 mm próbatesteket vágtunk ki. A különböző geometriájú próbatestek elkészítéséhez egy speciális, erre a célra készült felfogólap készült (8. ábra), amelyeken a csapok kicserélésével változtathatunk attól függően, hogy szakító, fejhúzó vagy nyakhúzó vizsgálatra készítjük el a kötést. A különböző vizsgálatokra kialakított próbatesteket mutatja a 9. ábra. 8. ábra. A kísérleti klincselő szerszám a befogó készülékkel 9. ábra. Szakító, fejhúzó és nyakhúzó vizsgálatra kialakított próbatestek

Klincs kötés technológiai paramétereinek vizsgálata, végeselemes modellezése 13 A szakítóvizsgálatok eredményeit a következő táblázatban foglaljuk össze. 1. táblázat A szakítóvizsgálatok eredményei t fenék = 0.55 mm t fenék = 0.50 mm t fenék = 0.45 mm F [kn] F [kn] F [kn] F [kn] F [kn] F [kn] F [kn] F [kn] F [kn] 2,6 2,8 2,9 2,9 2,9 2,95 3,05 2,95 2,95 1,7 1,6 1,6 2 2,2 1,9 1,8 2,4 1,9 0,7 0,7 0,7 0,8 0,8 0,8 0,82 0,82 0,82 Az eredmények alapján megalapítható, hogy a legjobb kötést a 0,45 mm-es fenékvastagságnál kaptuk, de a kötés létrehozásakor fellépő alakítási erő és ezáltal a bevitt alakítás mértékét figyelembe véve, a szilárdsági jellemzők javulása nem számottevő, ezért a javasolt 0,5 mm-es fenékvastagságú kötés elégségesnek bizonyul. 2. A KLINCS KÖTÉS VÉGESELEMES MODELLEZÉSE Ahhoz, hogy minél jobban megértsük az eljárás közben lejátszódó alakítási, alakváltozási folyamatokat, a végeselemes módszer segítségével számítógépes szimulációt végeztünk. 2.1. A végeselemes modell elkészítése A modellezést az Intézetünkben elérhető DEFORM végeselemes szoftver segítségével végeztük el. A modellezésnél a szerszámgyártó a DP600-as lemezpárhoz, a legjobb minőségű kötés eléréséhez 0,5 mm fenékvastagságot ajánl, ezért ezt a kötéstípust elemeztük a numerikus szimulációval is. 2.1.1. Szerszámgeometria A modellezéshez szükségünk van a szerszámok geometriájára, amit a már bemutatott makrofotók alapján a mintakötésekről készült csiszolatok alapján készítettünk el, mivel a gyártótól nem kaptunk leírást a szerszám geometriájáról. 2.1.2. Az anyagtörvény meghatározása A modell elkészítéséhez szükségünk volt a vizsgálatokhoz használt DP600-as acél anyagtörvényére is. Mivel a klincselés folyamatát tekintve mind zömülés, mind nyúlás lejátszódik, valamint nagy alakváltozások következnek be, ezért a folyási görbe meghatározására a Watts Ford-vizsgálatot alkalmaztuk. A Watts Ford-vizsgálat eredményeit diagram formában a 10. ábra tartalmazza.

14 Kovács Péter Zoltán Tisza Miklós DP600-as acél kf-φ görbéje Alakítási keményedés - k f 1300,0 1250,0 1200,0 1150,0 1100,0 1050,0 1000,0 950,0 900,0 850,0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Összehasonlító alakváltozás - φ 10. ábra. Folyási görbe meghatározása Watts-Ford vizsgálattal 2.1.3. A végeselemes modell A modellezést a hosszadalmas futási idők miatt a DEFORM 2D moduljában végeztük, amely tengelyszimmetrikus alakváltozásnál megfelelő a kötés vizsgálatára. (A DEFORM Integrated 2D/3D moduljával a 2D-s modellt egyszerűen és viszonylag gyorsan 3D-s modellé alakíthatjuk (11. ábra). Anyagminőség: DP600 / DP600, Lemezvastagság: 1 mm / 1 mm Ránctartó Bélyeg Lemez 1 Matrica Lemez 2 11. ábra. A DEFORM programban összeállított modell A modellezésnél használt fontosabb paraméterek: elemszám = 3000 / lemez, = 0,12, bélyegsebesség: 1 mm/s, újrahálózás: 0,65/s, modellezés lépésköze: 0,01 mm A következő ábrán szemléltetjük a DEFORM végeselemes szoftverben elkészített modell alakítási lépéseit, és mellette feltüntettük az azonos fenékvastagságoknál a kísérleti kötéseket is.

Klincs kötés technológiai paramétereinek vizsgálata, végeselemes modellezése 15 1. 2. t fenék = 1,49 mm 3. 4. t fenék = 1,05 mm t fenék = 0,65 mm t fenék = 0,51 mm 12. ábra. A kísérleti és a modellezett kötések összehasonlítása 2.2. A modellezés eredményeinek értékelése A modell validálását a kapott kötés geometriájának és a keménységi értékeinek a kísérletek során mért értékekkel való összehasonlításával végeztük el. A modell geometriája az alakítás egyes pontjaiban a vizsgált próbadarabok geometriájával jó egyezést mutatott. Az összehasonlítást a makrofotók és a DEFORM-ból készített képernyőképek összehasonlításával végeztük (13. ábra). A klincs kötés során a fenékvastagságot hosszmérő eszközzel mértük, a többi fő paramétert, az alámetszést, a nyakvastagságot, a fenékmélységet pedig a makrofotókról az AutoCAD program segítségével határoztuk meg. 13. ábra. A kísérleti és a modellezett kötés geometriájának összehasonlítása 0,51 mm fenékvastagságnál 0,01 mm-es értékekkel A kísérleti kötések és a modellezés között az összehasonlítást a geometriai összehasonlítás mellett az alakváltozások összehasonlításával is elvégeztük.

16 Kovács Péter Zoltán Tisza Miklós Az alakváltozás mértékét a próbakötéseknél használt DP 600-as anyagminőségű acél-lemezen, az ún. ékpróbával és a mikrokeménység mérésével határoztuk meg. Mivel a DEFORM nem képes keménységi értékek megjelenítésére, a keménységmérésre azért is szükségünk van, hogy ebből meg tudjuk határozni az alakváltozás mértékét, ami a valós és a modellezett adatok összehasonlítását segíti majd. A keménység (HV) és a valódi összehasonlító nyúlás ( kapcsolatát a 14. ábra mutatja, amelynek segítségével a kísérleti alakítás és a végeselemes modellezés eredményei összehasonlíthatók. HV 350 DP600-as acél HV- φ görbéje y = 312,52x 0,101 300 250 200 ϕ 0,0 0,5 1,0 1,5 2,0 2,5 3,0 14. ábra DP600 acél HV- görbéje és egyenlete A kísérleti és a modellezett kötés alakváltozási értékeinek összehasonlítását a 15. ábra szemlélteti. 15. ábra. A kísérleti és a modellezett kötés tengelymetszete az alakváltozási értékekkel tf = 0,51 mm fenékvastagságnál Az eredmények összehasonlítását szemléletesen mutatja a következő két diagram (16. és 17. ábra).

Klincs kötés technológiai paramétereinek vizsgálata, végeselemes modellezése 17 Összehasonlító alakváltozás, Mérési pontok sorszáma, n Valós értékek Modellezett értékek 16. ábra. A 0,51 mm fenékvastagságú darab modellezett és mért alakváltozási értékei a megegyező pontokban a bélyeg oldali lemez esetében Összehasonlító alakváltozás, 2 1,5 1 0,5 0 Alakváltozási értékek összehasonlítása - 0,51 mm fenékvastagság - Matrica oldal Valós értékek Modellezett értékek 1 2 3 4 5 6 7 8 9 10 11 12 Mérési pontok sorszáma, n 17. ábra. A 0,51 mm fenékvastagságú darab modellezett és mért alakváltozási értékei a megegyező pontokban a matrica oldali lemez esetében ÖSSZEFOGLALÁS Az elvégzett vizsgálatok eredményeiből látható, hogy a klincs kötés egyszerűsége ellenére is számos paraméter függvénye, amelyek hatásának elemzésére a végeselemes modellezés egy költséghatékony megoldás A végeselemes modellezés segítsége nélkül ezen paraméterek hatását mind roncsolásos vizsgálatokkal, csiszolatok készítésével és új szerszámok legyártásával kellene elvégezni. Ezek a folyamatok nagyon sok időt és jelentős költségeket vonnának maguk után, mivel az adott szerszámegyüttest optimalizálni kell a kötésben részt vevő lemezvastagságokhoz, valamint sok esetben a lemezek anyaga is befolyásoló tényező. Az eredményekből látszik, hogy a végeselemes modellezés alkalmas a kötés vizsgálatára, és nagyban megkönnyíti a tervezési folyamatot, viszont az előzetes vizsgálatok elvégzése itt is elengedhetetlenül szükséges.

18 Kovács Péter Zoltán Tisza Miklós KÖSZÖNETNYILVÁNÍTÁS A cikkben ismertetett kutatómunka a TÁMOP-4.2.1.B-10/2/KONV-2010-0001 projekt eredménye-ire alapozva a TÁMOP-4.2.2/A-11/1-KONV-2012-0029 jelű projekt részeként az Új Széchenyi Terv keretében az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg. IRODALOMJEGYZÉK [1] SAKIYAMA, Tatsuya NAITO, Yasuaki MURAYAMA, Gen SAITA, Kenji OIKAWA, Hatsuhiko NOSE, Tetsuro: Dissimilar Metal Joining Technologies for Steel Sheet and Aluminium Alloy Sheet in Auto Body. Nippon Steel Technical Report, No. 103, May 2013. [2] GOULD, J. E.: Joining Aluminium Sheet in the Automotive Industry A 30 Year History. Welding Research, January 2012, Vol. 91. [3] GREMSPERGER Géza GÁTI József BÉRES Lajos KOVÁCS Mihály KOMÓCSIN Mihály: Hegesztési zsebkönyv. 2003. [4] DANYI József VÉGVÁRI Ferenc: Gépgyártás és Fenntartás. Egyetemi tananyag, 2011. [5] www.tox-en.com/products/joining-systems/ [6] http://www.clinchsystems.com/ [7] TISZA M. GÁL G. KISS A. KOVÁCS P. LUKÁCS Zs.: Alakítható nagyszilárdságú lemezanyagok klincs kötése. Multidiszciplináris Tudományok, 4. kötet, 1. sz. (2014) 49 58.