MAÚT Mérnökakadémia Útépítés és geotechnika szabályok és tapasztalatok MAKADÁM-Klub Budapest, Lövőház u. 15. 16. január 2008 Földművek tervezése, minőségbiztosítása és monitoringja Ausztriában Standardization, Design, Quality Assurance and Monitoring of Earth Works in Road Engineering in Austria Assoc.Prof. Dipl.-Ing. Dr.techn. Dietmar Vienna University of Technology Institute for Ground Engineering and Soil Mechanics A-1040 Vienna, Karlsplatz 13/221 ZT GmbH Wiener Straße 66-72/15/4 A-2345 Brunn am Gebirge John Loudon McAdam (1756-1836) Budapest, 16. január 2008 2 1823 First American Macadam Road (State of Marylande) 1
[RVS 8.24] Earthworks RVS 08.03.01 [draft] Earthworks under Traffic Routes earthworks (substructure) Budapest, 16. január 2008 3 Cross Section Definitions and Standards RVS 08.15.01 [8S.05.11]: base and sub-base layer RVS [8S.05.12]: mechanical stabilized base / sub-base layer RVS 08.17.01 [8S.05.13]: with binder stabilized base / sub-base layer PAVEMENT WORKS (without wearing course) EARTH WORKS RVS 08.03.01[draft] [8.24] ÖNORM B 4417: static load plate test RVS 08.03.04: compaction control with the dynamic load plate (LFWD) RVS 08.03.02 [8S.02.06]: continuous compaction control (CCC) Budapest, 16. január 2008 4 2
Traffic Route Requirements strength & stability + serviceability + durability COMPACTION Budapest, 16. január 2008 5 1 2 3 4 5 6 Methods of Ground / Fill Improvement Ground COMPACTION Ground REPLACEMENT MECHANICAL Improvement Ground REINFORCEMENT Ground STABILIZATION DEEP IMPROVE- MENT OF SUBSOIL surface-near compaction soil excavation and soil exchange Mixing in suitable granular material to improve poorly graded materials (SP, GP), fine materials (silty or clayey) or soft soils reinforcement with geotextiles: in combination with soil replacement to reduce excavation depth stabilization with lime (ÖN EN 14227-11), cement (ÖN EN 14227-10), clinker (ÖN EN 14227-12), hydraulic binder (ÖN EN 14227-13), fly ash (ÖN EN 14227-14) surcharging and preloading vertical drains deep vibro compaction deep dynamic compaction (heavy tamping) pile foundation Budapest, 16. január 2008 6 3
Surface-near and Deep Ground Improvement surface-near deep surface-near & deep Dynamic roller compaction Heavy Dynamic vibratory, oscillatory, VARIO, Tamping automatically controlled rollers HARMONIC PERIODIC Deep vibro compaction vibro compaction, vibro replacement, grouted stone/gravel columns TRANSIENT Rapid Impact Compactor Budapest, 16. január 2008 7 Compaction Depth Comparison of Techniques Static Dynamic Rolling Rolling 0.2 m 0.5 m 0.4 m 1.0 m R I C Heavy Dynamic Tamping 4.5 m 6.5 m 10 m 14 m normal range possible range Budapest, 16. január 2008 8 4
Dynamic roller compaction Budapest, 16. január 2008 9 Budapest, 16. január 2008 10 Continuous Compaction Control (CCC) 5
Deep Dynamic Compaction (Heavy Tamping) Budapest, 16. január 2008 11 Rapid Impact Compactor (RIC) Budapest, 16. január 2008 12 6
Deep Vibro Compaction in Granular Material Vibro Compaction densification and homogenization of granular soil crater around the vibrator Compaction by horizontal vibration effect Penetration of vibrator into soil with pressurized water jet compacted and homogenized granular soil Budapest, 16. január 2008 13 Deep Vibro Replacement of Cohesive Soils Penetration of bottom feed vibrator Stone / gravel column formation by repenetration of vibrator soft layer very soft layer soft layer Vibro Replacement formation of stone / gravel columns and lateral densification of soft soil grouted material oder concrete Budapest, 16. január 2008 14 7
S U B B A S E B A S E E M B A N K M E N T rock fill sand and gravel silt and silty clays clay Budapest, 16. január 2008 15 Classification of Soil Types by Grain Size 200 mm COARSE-GRAINED / GRANULAR PARTICLES (non cohesive) 63 mm 2 mm sieve analysis Boulders Cobbles Gravel Sand border line between sand and silt: d = 0.063 mm FINE-GRAINED (cohesive) Silt hydrometer analysis (sedimentation) 0.002 mm Clay Budapest, 16. január 2008 16 8
Material for Embankments ÖNORM B 4400 Guidelines for Recycling Materials E.g.: Jet Grouting return flow recycled, light aggregates Standards: ÖNORM EN 132424, 13055-2; ÖNORM B 3137 Quality assurance: suitability test (laboratory) + test site / calibration field For the suitability of embankment materials the state at the time of emplacement is decisive! Budapest, 16. január 2008 17 Embankment Materials SC 60 < 60 GP GP GC SP SP 15 40 5 40 SM GW 5 15 GM SW 5 Budapest, 16. január 2008 18 9
Relationship Water Content Dry Density ρ d [g/cm 3 ] dry density [g/cm 3 ] ρ s ρ ρ d = = s 1 + wρ s S r ρ w S r = 0 (1-n a )ρ s 1 + wρ s ρ w S r = 1,0 n a = 0 Proctor curves w [%] ρ d w n n a = 1,0 water content [%] Budapest, 16. január 2008 19 ρ modpr Proctor Test Standard Modified Proctor Test ρ Pr Proctor mould Ø150 mm falling height 450 mm falling weight 4.5 kg 22 blows/layer 59 Sr = 1,0 3 layers 5 Sr = 0,7 w modpr w Pr 0.6 energy [MJ/m³] 2.65 modρ Pr = 1.03 1.15ρ Pr Budapest, 16. január 2008 10
Proctor Curves of Different Types of Soils S G G, s FINE GRAINED MATERIALS C C, m; M M, s, g COARSE GRAINED MATERIALS Budapest, 16. január 2008 21 Compaction Control Spot Testing Methods D I R E C T I N D I R E C T DENSITY STIFFNESS in-situ replacement methods (sand, water, balloon), nuclear gauge probe laboratory Proctor Test California Bearing Ratio (CBR) load plate test Benkelman Beam dry density ρ d Standard Proctor density ρ Pr DEFORMATION MODULUS static dynamic COMPACTION DEGREE ρ d D Pr = 100 [%] ρ Pr E v1, E v2, E v2 /E v1 E vd Budapest, 16. január 2008 22 11
Determination of Density in Field Sand replacement Tube sampling Nuclear gauge method (Troxler probe) Budapest, 16. január 2008 23 Compaction Control Spot Testing Methods D I R E C T I N D I R E C T DENSITY STIFFNESS replacement methods (sand, water, balloon), nuclear gauge probe Proctor Test California Bearing Ratio (CBR) load plate test Benkelman Beam dry density ρ d Standard Proctor density ρ Pr DEFORMATION MODULUS static dynamic COMPACTION DEGREE ρ d D Pr = 100 [%] ρ Pr E v1, E v2, E v2 /E v1 E vd Budapest, 16. január 2008 24 12
Compaction Control Methods using Load Plate Tests determination of deformation modulus checking of compaction quality and material stiffness counter weight for earth works and road construction measurement of plate displacement device with 3 gauges Static load plate test Dynamic load plate test with the Light Falling Weight Device F load plate 300mm Δσ hydraulic jack gauge F(t) notching attachment guide rod falling weight spring-damperelement measurement of acceleration electronic measuring device σ(t) load plate 300mm Budapest, 16. január 2008 25 Dynamic Load Plate Light Falling Weight Device notching attachment handle Design of device: falling weight spring-damper element sphere load plate with sensor guide rod electronic measuring device loading device - falling weight - guide rod - spring-damper element loading plate deflection measuring device Weingart 1977 Budapest, 16. január 2008 26 13
Standardized Test Evaluation Δt determination of moduli Δσ E v = 1.5 r Δz σconst Evd = 1.5 r z E [MN/ m²] max vd = 22.5 z [mm] max Budapest, 16. január 2008 27 Research Results Standardization RVS 08.03.04 Requirements on the device: + tuning of the device parameters + set of disc springs made of steel synthetic spring (!) + exactly defined requirements on the deflection measuring device + calibration at least once a year Standardized test execution and test evaluation: + measuring range E vd = 10 90 MN/m² + 3 pre-loading impacts and 3 measuring impacts + assumption of a constant maximum ground contact force (max F) + simplified determination of the dynamic deformation modulus (E vd ) + measuring depth (2 x plate diameter), lateral angle of influence (40 ) ~ ratio s/v as criterion for the compaction quality direct correlation with values obtained by static load plate tests Budapest, 16. január 2008 28 14
Check of the required E v1 with the LFWD E = E req E v1 no 6 5 vd E v 1 regression function vd m = E vd RVS 08.03.01[draft] [8.24] < 25 MN/m 2 no yes cohesive material ~ Δ% yes RVS 08.03.01 [draft] ~ Δ%( Evd ) ( 1+ ) 100 E 4 E vd = 10 + Ev 5 RVS 08.03.04 vd 1 Faktor 1 E v1 E vd ref E vd ref E vd E vd [MN/m²] [MN/m²] [MN/m²] [MN/m²] [MN/m²] nichtbindig bindig nichtbindig bindig 0,0 0 10 0,0 10,0 2,5 3 12 3,0 12,0 5,0 6 14 6,0 14,0 7,5 9 16 9,0 16,0 10,0 12 18 12,0 18,1 12,5 15 20 15,0 20,1 18,1 22,2 SAMPLE Muster 15,0 18 22 17,5 21 24 21,1 24,2 20,0 24 26 24,2 26,3 22,5 27 28 27,3 28,4 25,0 30 30 30,5 30,5 27,5 33 33,6 30,0 34 34,7 32,5 36 36,8 35,0 38 38,9 37,5 40 41,0 40,0 42 43,2 42,5 44 45,4 45,0 46 47,5 47,5 48 49,7 50,0 50 51,9 52,5 52 54,1 55,0 54 56,4 57,5 56 58,6 60,0 58 60,9 62,5 60 63,1 65,0 62 65,4 67,5 64 67,7 70,0 66 70,0 72,5 68 72,3 75,0 70 74,7 77,5 72 77,0 80,0 74 79,4 82,5 76 81,8 85,0 78 84,2 87,5 80 86,6 90,0 82 89,0 92,5 84-95,0 86-97,5 88 HMP2443-100,0 90 18.10.2005 - Abweichung in % = [ -0,29725853 + (Evd * 0,07197705) + (Evd² * 0,0005825276) ] Evd-Faktor= MW / 7070 = 1,00873 calibration limit Budapest, 16. január 2008 29 Selection of Compaction Control Method (RVS 08.03.01[draft]) 1. Dynamic Load Plate Test (LFWD) E vd or 2. Static Load Plate Test E v1 or 3. Compaction degree D Pr : Standards RVS 08.03.04 ÖNORM B 4417 determination of Proctor density ρ Pr + determination of density in field ρ d 3.1 sand replacement 3.2 water replacement 3.3 nuclear gauge probe 4. Continuous Compaction Control (CCC) other control methods: Benkelman Beam dynamic penetration tests (e.g. DPH) levelling when area of subgrade level 30,000 m² ÖNORM B 4414-2 DIN 18125-2 Bulletin FGSV ÖNORM B 4418 RVS 08.03.02 Bulletin FGSV ÖNORM B 4405 + B 4419 Budapest, 16. január 2008 30 15
Continuous Compaction Control (CCC) Drum acceleration Quality management system Continuous Compaction Control (CCC) Roller-integrated and continuous on-line - control of compaction progress - Optimization of compaction procedure - Self-control - Acceptance testing GPS-supported positioning! Budapest, 16. január 2008 31 Automatically Controlled Compaction recordings automatic inclination of exciter unit Budapest, 16. január 2008 32 16
Operating Modes of Vibratory Roller Drums drum motion Interaction drum-soil operating condition soil contact force application of CCC soil stiffness roller speed drum amplitude continuous contact CONT. CONTACT yes low fast small periodic periodic loss of contact PARTIAL UPLIFT DOUBLE JUMP ROCKING MOTION left right yes yes no chaotic non-periodic loss of contact CHAOTIC MOTION no high slow large Budapest, 16. január 2008 33 Compactometer CMV is based on the evaluation of the acceleration in the frequency domain Terrameter OMEGA is based on the evaluation of the energy transmitted to the soil in the time domain Terrameter E VIB inclination of the soil contact force displacement relationship during loading; time domain CCCsystems ACE k B derived from the soil contact force displacement relationship at maximum drum deflection; time domain Budapest, 16. január 2008 34 17
CCC-values CMV, OMEGA, E vib, k B 100 % CCC-VALUES CCC-VALUES [% OF MAX. VALUE] 90 % 80 % 70 % 60 % 50 % 40 % 30 % 20 % 10 % 0 % CONT. CONTACT CMV OMEGA Evib kb PARTIAL UPLIFT DOUBLE JUMP E - MODULUS SOIL [MN/m²] 0 20 40 60 80 100 120 Budapest, 16. január 2008 35 CMV in Dependence of the Operating Conditions large amplitude rocking motion, chaotic double jump partial uplift small amplitude contact 28 Hz soft soil stiff soil Budapest, 16. január 2008 36 18
Comparison of Different CCC-Values rocking motion, chaotic rocking motion, chaotic CMV partial uplift double jump OMEGA double jump partial uplift contact contact rocking motion, chaotic rocking motion, chaotic E vib double jump partial uplift k B double jump 28 Hz partial uplift contact contact Budapest, 16. január 2008 37 Earth Work RVS 08.03.01[draft] [8.24] + Budapest, 16. január 2008 38 19
test site Continuous Compaction Control (CCC) test compaction calibration H = 25 m static load plate test Länge der Dammkrone 170 m Calibration of CCC-values Determination of a clear correlation between soil stiffness and CCC-values Budapest, 16. január 2008 39 Test site to be situated on typical area within construction site Calibration of CCC-values CCC-values 180 160 Static load plate 9 tests Dynamic load plate 36 tests (4 x 9) CCC-VALUE [ ] 140 120 100 80 60 Layer thickness and different depth effects have to be taken into account! high values mean values CCC-VALUE low 40 values r > 0,7 20 Determination of regression line 0 0 10 20 30 40 50 60 Ev1, Ev2, Evd [MN/m²] Budapest, 16. január 2008 40 20
CCC-VALUE [ ] 180 160 140 120 100 80 60 Calibration of CCC-values Determination of limit values According to Austrian guidelines and regulations RVS 08.03.02 8S.02.6 SD CCC STANDARD DEVIATION < 20% Δ CCC INCREASE < 5% MAX 50% MV MV double jump MIN 20% 0,8 MIN r > 0,7 40 + 5% - 5% 20 limit E V -value 0 0 10 20 30 40 50 60 Ev1, Ev2, Evd [MN/m²] Budapest, 16. január 2008 41 Continuous Compaction Control (CCC) CCC VALUE [CMV, OMEGA, Evib] Δ CCC < 5% REPRODUCEABILITY UNIFORMITY MAX MAXIMUM VALUE MV MEAN VALUE CALIBRATION MIN MINIMUM VALUE 0,8MIN 80% MINIMUM VALUE SD CCC STANDARD DEVIATION < 20% ROLLER LANE [m] Budapest, 16. január 2008 42 21
Acceptance Test ( Identitäts-[Abnahme-]Prüfung ) subgrade (RVS 08.03.01[draft] [8.24]) Budapest, 16. január 2008 43 Acceptance Test ( Identitäts-[Abnahme-]Prüfung ) base and sub-base (RVS 08.15.01 [8S.05.11]) Budapest, 16. január 2008 44 22
gravel filter GW-GP GM-GC crushed grain 0/90 (max. 15 M-% < 0.063 mm) drainage frost protection layer level of subgrade backfill D Pr = 100%, E v1 35 MN/m², E vd 38 MN/m² frost protection layer (RVS 08.15.01 [8S.05.11]) level of subgrade natural soil backfill material + compaction acc. to RVS 08.03.03 [8B.04.01] and RVS 08.03.01[draft][8.24] subgrade RVS 08.03.01[draft] [8.24] embankment fill D Pr = 101%, E v1 60 MN/m², E vd 58 MN/m² Backfill of bridge abutments base + sub-base RVS 08.15.01 [8S.05.11] RVS 03.08.63 [3.63] Backfill track in cut Backfill track in fill Acceptance Test (RVS 08.03.01[draft] [8.24]) ( Identitäts-[Abnahme-]Prüfung ) : every 600 m³ but 3 static load plate tests natural D. Adam: soil Földművek every tervezése, 150 minőségbiztosítása m³ but 12 dynamic és monitoringja load Ausztriában plate tests Budapest, 16. január 2008 45 roller compaction drum types Continuous Compaction Control calibration of CCC-values dynamic load plate (LFWD) 180 160 140 120 high values CCC-VALUE [ ] MAX 100 mean 80 MV MV double jump values MIN 60 0,8 MIN low MAX = 103,74 values MW = 80,44 40 MIN = 69,16 + 5% - 5% 0,8 MIN = 55,33 20 r = 0,87 limit E V1-value: 35 MN/m² 0 0 10 20 30 40 50 60 Ev1, Ev2, Evd [MN/m²] 23
Embankment on Soft Soil Measurement of Deformations settlement column gauge mark horizontal inclinometer gauge mark gauge mark vertical inclinometer piezometer soft soil stiff soil / bedrock Budapest, 16. január 2008 47 p ξ = [kn/m²] s m a p p max ξ interpolated time-settlement curve s regression line Prediction of Final Settlement Sherif (1973) t ξ s 1 measured settlements b p max time-load curve time [d] extrapolated final settlement s t= ÖNORM B 4431-2 measurement of settlements s documentation of load history p assumption: hyperbolic function for settlement curve t s( t) = ξ a + bt dimensionless parameter ξ ξ = adaption of settlement curve to the load history transformation: p p max t s ξ s t d ξ s cm regression line: a + b.t extrapolation: s t= = Budapest, 1/b 16. január 2008 48 24
Monitoring of Slope Deformations extensometer in borehole inclinometer gauge - lateral inclination - axial incremental displacement deflectometer multiple rod extensometer anchor force measurement Budapest, 16. január 2008 49 Budapest, 16. január 2008 50 25
Budapest, 16. január 2008 51 26