HELYI TANTERV MATEMATIKA

Hasonló dokumentumok
Követelmény a 6. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet Matematika az általános iskolák 5 8.

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják

Matematika. Padányi Katolikus Gyakorlóiskola 1

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok

Matematika évfolyam. tantárgy 2013.

Matematika helyi tanterv,5 8. évfolyam

Matematika 6. osztály Osztályozó vizsga

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

A fejlesztés várt eredményei a 1. évfolyam végén

Vizsgakövetelmények matematikából a 2. évfolyam végén

Matematika 5. évfolyam

Osztályozóvizsga követelményei

5. osztály. Matematika

Matematika. 1. osztály. 2. osztály

TANMENET. Matematika

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat

Matematika. 1. évfolyam. I. félév

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

Követelmény a 7. évfolyamon félévkor matematikából

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet Matematika az általános iskolák 1 4. évfolyama számára

Matematika 5. osztály Osztályozó vizsga

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.

Matematika felső tagozat

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY

reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. A tanulóktól megkívánjuk a szaknyelv életkornak

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

Matematika évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály

BÁRSONY-HUNYADI ÁLTALÁNOS ISKOLA MATEMATIKA EMELT HELYI TANTERV 5-8. ÉVFOLYAM KÉSZÍTETTE: Dudásné Simon Edit Szotákné Tóth Márta

Matematika tantervjavaslat, évfolyam A nyolcosztályos gimnáziumok kerettantervének évfolyamonkénti bontása 5 6. évfolyam

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

Követelmény a 8. évfolyamon félévkor matematikából

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika

MATEMATIKA 1-2.osztály

MATEMATIKA Nyolcosztályos gimnázium ( (3+3)vagy(5+5))

Add meg az összeadásban szereplő számok elnevezéseit!

Matematika 5. osztály

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Helyi tanterv. Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap ( óra/hét) 5-12 évfolyam* Készült: 2014 szeptember

Matematika évfolyam. tantárgy 2013.

Osztályozóvizsga-tematika 8. évfolyam Matematika

MATEMATIKA évfolyam. Célok és feladatok. Fejlesztési követelmények

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

2016/2017. Matematika 9.Kny

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára

2016/2017. Matematika 9.Kny

HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK

MILYEN ÚJDONSÁGOK VANNAK AZ OFI ÚJ TANKÖNYVEIBEN? OSZTÁLY

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

TANMENET IMPLEMENTÁCIÓ ELŐREHALADÁS BESZÁMOLÓ. Rendszerezés, kombinativitás. Induktív gondolkodás általánosítás. megtalálása különböző szövegekben.

Matematika pótvizsga témakörök 9. V

Helyi tanterv. Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap ( óra/hét) 5-12 évfolyam Készült: 2014 szeptember

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

MATEMATIKA ( óra)

MATEMATIKA. 1. osztály

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola évfolyam

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

Matematika tanterv 5. e vfolyam

Kerettanterv MATEMATIKA TÉMAKÖRÖNKÉNTI ÓRASZÁMOK. A fejlesztés várt eredményei a két évfolyamos ciklus végén

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, szeptember

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

BALASSAGYARMATI BALASSI BÁLINT GIMNÁZIUM MATEMATIKA HELYI TANTERV 2016

5. évfolyam Matematika helyi tanterv Matematika évfolyam

Matematika 5 8. évfolyam

4. évfolyam. 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Tanmenetjavaslat az 5. osztályos matematika kísérleti tankönyvhöz

Sashalmi Tanoda Általános Iskola. Helyi tanterv évfolyam

Helyi tanterv. Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma. Matematika Munkaközösség

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA Évfolyam: 5-8.

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

Matematika szóbeli érettségi témakörök 2017/2018-as tanév

Matematika 5 8. évfolyam

Nemzeti alaptanterv 2012 MATEMATIKA

Helyi tanterv Matematika az 5 8. évfolyam számára. 6. évfolyam heti 4 óra. Gondolkodási módsz. 3+foly. 3+foly. 10+foly. 14+foly

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése

MATEMATIKA Emelt szint évfolyam

Matematika Mozaik Kiadó. 5. osztály

1. osztály. Gondolkodási módszerek alapozása A tanuló:

Bolyai János Általános Iskola, Óvoda és Alapfokú Művészetoktatási Intézmény Matematika

HELYI TANTERV MATEMATIKA

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.

Osztályozóvizsga követelményei

Átírás:

Sportiskolai Általános Iskola 1 Matematika 5.-6. évf. HELYI TANTERV MATEMATIKA 5. -6. ÉVFOLYAM ÁLTALÁNOS TANTERVŰ ÉS KÖZNEVELÉSI TÍPUSÚ SPORTISKOLAI OSZTÁLYOK RÉSZÉRE ÖSSZEÁLLÍTOTTA: Brunczvikné Máté Ildikó tanító, matematikatanár Tornai Tibor tanító, matematikatanár Érdi Batthyány Sportiskolai Általános Iskola Érd, 2015. - a 2011. évi CXC. törvény a nemzeti köznevelésről; - a 2012. évi CXXIV. törvény, a nemzeti köznevelésről szóló 2011. évi CXC. tv módosítása alapján

Sportiskolai Általános Iskola 2 Matematika 5.-6. évf. Bevezetés A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A matematika: kulturális örökség; gondolkodásmód; alkotó tevékenység; a gondolkodás örömének forrása; a mintákban, struktúrákban tapasztalható rend és esztétikum megjelenítője; önálló tudomány; más tudományok segítője; a mindennapi élet része és a szakmák eszköze. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani és alkalmazni tudják a természeti és társadalmi jelenségekhez illeszkedő modelleket, gondolkodásmódokat (analógiás, heurisztikus, becslésen alapuló, matematikai logikai, axiomatikus, valószínűségi, konstruktív, kreatív stb.), módszereket (aritmetikai, algebrai, geometriai, függvénytani, statisztikai stb.) és leírásokat. A matematikai nevelés sokoldalúan fejleszti a tanulók modellalkotó tevékenységét. Ugyanakkor fontos a modellek érvényességi körének és gyakorlati alkalmazhatóságának eldöntését segítő képességek fejlesztése. Egyaránt lényeges a reproduktív és a problémamegoldó, valamint az alkotó gondolkodásmód megismerése, elsajátítása, miközben nem szorulhat háttérbe az alapvető tevékenységek (pl. mérés, alapszerkesztések), műveletek (pl. aritmetikai, algebrai műveletek, transzformációk) automatizált végzése sem. A tanulás elvezethet a matematika szerepének megértésére a természet- és társadalomtudományokban, a humán kultúra számos ágában. Segít kialakítani a megfogalmazott összefüggések, hipotézisek bizonyításának igényét. Megmutathatja a matematika hasznosságát, belső szépségét, az emberi kultúrában betöltött szerepét. Fejleszti a tanulók térbeli tájékozódását, esztétikai érzékét. A tanulási folyamat során fokozatosan megismertetjük a tanulókkal a matematika belső struktúráját (, axiómák, tételek, bizonyítások elsajátítása). Mindezzel fejlesztjük a tanulók absztrakciós és szintetizáló képességét. Az új alkotása, az összefüggések felfedezése és az ismeretek feladatokban való alkalmazása fejleszti a kombinatív készséget, a kreativitást, az önálló gondolatok megfogalmazását, a felmerült problémák megfelelő önbizalommal történő megközelítését, megoldását. A diszkussziós képesség fejlesztése, a többféle megoldás keresése, megtalálása és megbeszélése a többféle nézőpont érvényesítését, a komplex problémakezelés képességét is fejleszti. A folyamat végén a tanulók eljutnak az önálló, rendszerezett, logikus gondolkodás bizonyos szintjére. A műveltségi terület a különböző témakörök szerves egymásra épülésével kívánja feltárni a matematika és a matematikai gondolkodás világát. A, összefüggések érlelése és a matematikai gondolkodásmód kialakítása egyre emelkedő szintű spirális felépítést indokol az életkori, egyéni fejlődési és érdeklődési sajátosságoknak, a bonyolódó ismereteknek, a fejlődő absztrakciós képességnek megfelelően. Ez a felépítés egyaránt lehetővé teszi a lassabban haladókkal való foglalkozást és a tehetség kibontakoztatását. A matematikai értékek megismerésével és a matematikai tudás birtokában a tanulók hatékonyan tudják használni a megszerzett kompetenciákat az élet különböző területein. A matematika a maga hagyományos és modern eszközeivel segítséget ad a természettudományok, az informatika, a technikai, a humán műveltségterületek, illetve a választott szakma ismeretanyagának tanulmányozásához, a mindennapi problémák értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert at és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban segítheti a mindennapokban, és különösen a média közleményeiben való reális tájékozódásban. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. A tanulóktól megkívánjuk a szaknyelv életkornak megfelelő, pontos használatát, a jelölésrendszer helyes alkalmazását írásban és szóban egyaránt. A tanulók rendszeresen oldjanak meg önállóan feladatokat, aktívan vegyenek részt a tanítási, tanulási folyamatban. A feladatmegoldáson keresztül a tanuló képessé válhat a

Sportiskolai Általános Iskola 3 Matematika 5.-6. évf. pontos, kitartó, fegyelmezett munkára. Kialakul bennük az önellenőrzés igénye, a sajátunkétól eltérő szemlélet tisztelete. Mindezek érdekében is a tanítás folyamában törekedni kell a tanulók pozitív motiváltságának biztosítására, önállóságuk fejlesztésére. A matematikatanítás, -tanulás folyamatában egyre nagyobb szerepet kaphat az önálló ismeretszerzés képességnek fejlesztése, az ajánlott, illetve az önállóan megkeresett, nyomtatott és internetes szakirodalom által. A matematika lehetőségekhez igazodva támogatni tudja az elektronikus eszközök (zsebszámológép, számítógép, grafikus kalkulátor), internet, oktatóprogramok stb. célszerű felhasználását, ezzel hozzájárul a digitális kompetencia fejlődéséhez. A tananyag egyes részleteinek csoportmunkában való feldolgozása, a feladatmegoldások megbeszélése az együttműködési képesség, a kommunikációs képesség fejlesztésének, a reális önértékelés kialakulásának fontos területei. Ugyancsak nagy gondot kell fordítani a kommunikáció fejlesztésére (szövegértésre, mások szóban és írásban közölt gondolatainak meghallgatására, megértésére, saját gondolatok közlésére), az érveken alapuló vitakészség fejlesztésére. A matematikai szöveg értő olvasása, tankönyvek, lexikonok használata, szövegekből a lényeg kiemelése, a helyes jegyzeteléshez szoktatás a felsőfokú tanulást is segíti. Változatos példákkal, feladatokkal mutathatunk rá arra, hogy milyen előnyöket jelenthet a mindennapi életben, ha valaki jártas a problémamegoldásban. A matematikatanításnak kiemelt szerepe van a pénzügyi-gazdasági kompetenciák kialakításában. Életkortól függő szinten rendszeresen foglakozzunk olyan feladatokkal, amelyekben valamilyen probléma legjobb megoldását keressük. Szánjunk kiemelt szerepet azoknak az optimumproblémáknak, amelyek gazdasági kérdésekkel foglalkoznak, amikor költség, kiadás minimumát; elérhető eredmény, bevétel maximumát keressük. Fokozatosan vezessük be matematikafeladatainkban a pénzügyi at: bevétel, kiadás, haszon, kölcsön, kamat, értékcsökkenés, -növekedés, törlesztés, futamidő stb. Ezek a feladatok erősítik a tanulókban azt a tudatot, hogy matematikából valóban hasznos ismereteket tanulnak, ill. hogy a matematika alkalmazása a mindennapi élet szerves része. Az életkor előrehaladtával egyre több példát mutassunk arra, hogy milyen területeken tud segíteni a matematika. Hívjuk fel a figyelmet arra, hogy milyen matematikai ismerteket alkalmaznak az alapvetően matematikaigényes, ill. a matematikát csak kisebb részben használó szakmák (pl. informatikus, mérnök, közgazdász, pénzügyi szakember, biztosítási szakember, ill. pl. vegyész, grafikus, szociológus stb.), ezzel is segítve a tanulók pályaválasztását. A matematikához való pozitív hozzáállást nagyban segíthetik a matematika tartalmú játékok és a matematikához kapcsolódó érdekes problémák és feladványok. A matematika a kultúrtörténetnek is része. Segítheti a matematikához való pozitív hozzáállást, ha bemutatjuk a tananyag egyes elemeinek a művészetekben való alkalmazását. A motivációs bázis kialakításában komoly segítség lehet a matematikatörténet egy-egy mozzanatának megismertetése, nagy matematikusok életének, munkásságának megismerése. A NAT néhány matematikus ismeretét előírja minden tanuló számára: Euklidész, Pitagorasz, Descartes, Bolyai Farkas, Bolyai János. A kerettanterv ezen kívül is több helyen hívja fel a tananyag matematikatörténeti érdekességeire a figyelmet. Ebből a tanárkollégák csoportjuk jellegének megfelelően szabadon válogathatnak. Minden életkori szakaszban fontos a differenciálás. Ez nemcsak az egyéni igények figyelembevételét jelenti. Sokszor az alkalmazhatóság vezérli a tananyag és a tárgyalásmód megválasztását, más esetekben a tudományos igényesség szintje szerinti differenciálás szükséges. Egy adott osztály matematikatanítása során a célok, feladatok teljesíthetősége igényli, hogy a tananyag megválasztásában a tanulói érdeklődés és a pályaorientáció is szerepet kapjon. A matematikát alkalmazó pályák felé vonzódó tanulók gondolkodtató, kreativitást igénylő versenyfeladatokkal motiválhatók, a humán területen továbbtanulni szándékozók számára érdekesebb a matematika kultúrtörténeti szerepének kidomborítása,

Sportiskolai Általános Iskola 4 Matematika 5.-6. évf. másoknak a középiskolai matematika gyakorlati alkalmazhatósága fontos. A fokozott szaktanári figyelem, az iskolai könyvtár és az elektronikus eszközök használatának lehetősége segíthetik az esélyegyenlőség megvalósulását. Értékelés évfolyam szorgalmi időben félévkor év végén 5. osztályzat osztályzat osztályzat 6. osztályzat osztályzat osztályzat 7. osztályzat osztályzat osztályzat 8. osztályzat osztályzat osztályzat Osztályzat: 5 (jeles), 4 (jó), 3 (közepes), 2 (elégséges), 1 (elégtelen) 5.-6. évfolyam Célok és feladatok A felső tagozaton az eddig megszerzett tudást és kompetenciákat kell elmélyíteni és kiterjeszteni. A mindennapi élet problémamegoldásához szükséges képességek és ismeretek elsajátítása mellett legalább ugyanilyen fontos, hogy a matematikatanulás szolgálja egy jól működő gondolkodásmód, egy tanulási stratégia, ítélőképesség, megértés és sok általánosabb pozitív emberi tulajdonság formálását is. Fontos feladat a tanulás tanítása, az elsajátítás képességének (emlékezet, figyelem, koncentráció, lényegkiemelés stb.) fejlesztése. Meg kell ismertetni a matematika bevált tanulási módszereit. A matematikai gondolkodásmódot fel kell használni a problémamegoldások során. Ehhez szükséges megfelelő szemléltető ábrákat, diagramokat, grafikonokat készíteni, ilyeneket értelmezni, elemezni és felhasználni; halmazokat jellemezni, szabályszerűségeket észrevenni, általánosító sejtéseket, állításokat megfogalmazni. Az érvelés, a cáfolás, a vitakészség, a helyes kommunikáció fejlesztése folyamatos feladatunk. Ehhez szükséges másokkal problémamegoldásban együttműködni, gondolatainkat, a megismert at rendszerezni. A modellalkotás fontos eszköz, amely segítséget nyújt a problémák megoldásában. Fontos, hogy a tanulók a modellalkotásaik során a megértett és megtanult at és eljárásokat fel tudják használni, és a modellekbe szervesen be tudják építeni. Szükséges, hogy problémahelyzetet leíró szöveg alapján a probléma lényegét felismerjék, majd annak megfelelő, a probléma megoldását elősegítő modelleket alkossanak. Fokozatosan fejleszteni kell a matematikai szaknyelv és jelölésrendszer használatát, alkalmazását. Ebben a két évfolyamban sajátítják el egyszerű szöveges feladatok megoldásának néhány stratégiáját: a hétköznapi és gyakorlati problémák megértését és megjelenítését matematikai alakban, az eredmény becslését és ellenőrzését. Tájékozódnak síkban és térben, ismerik az egyszerű síkbeli és térbeli alakzatokat. Tudják a tanult mértékegységeket átváltani. Készség szinten számolnak egész számokkal, és gyakorlottak a racionális számokkal való műveletek végzésében. Az egyes tematikus egységekre javasolt óraszámokat a táblázatok tartalmazzák. Ezen kívül számonkérésre 14, ismétlésre 6 órát terveztünk. Kulcskompetenciák és kiemelt fejlesztési feladatok Kulcskompetenciák:

Sportiskolai Általános Iskola 5 Matematika 5.-6. évf. Anyanyelvi kommunikáció Idegen nyelvi kommunikáció Matematikai kompetencia Természettudományos, technikai és technológiai kompetencia Digitális kompetencia /elektronikus eszközök (zsebszámológép, számítógép, grafikus kalkulátor), internet, oktatóprogramok célszerű felhasználása/ Szociális és állampolgári kompetencia (Személyközi, személyes) Kezdeményezőképesség és vállalkozói kompetencia Esztétikai-művészeti tudatosság és kifejezőképesség - Kulturális kompetencia A hatékony, önálló tanulás A tanulás tanítása Kognitív kompetencia Tudásszerző kompetencia Gondolkodási kompetencia Narratív kompetencia Kommunikatív kompetencia Kiemelt fejlesztési feladatok: Az erkölcsi nevelés Nemzeti öntudat, hazafias nevelés - Hon- és népismeret Állampolgárságra, demokráciára nevelés - Európai azonosságtudat egyetemes kultúra Önismeret és a társas kapcsolati kultúra fejlesztése - Énkép, önismeret A családi életre nevelés - Felkészülés a felnőttlét szerepeire A testi és lelki egészségre nevelés Felelősségvállalás másokért, önkéntesség Fenntarthatóság, környezettudatosság - Környezettudatosságra nevelés Pályaorientáció Gazdasági és pénzügyi nevelés Médiatudatosságra nevelés A tanulás tanítása

Sportiskolai Általános Iskola 6 Matematika 5.-6. évf. 5. évfolyam Heti óraszám: 4 óra; Éves óraszám: 144 óra Tananyag 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika 8 óra Adott tulajdonságú elemek halmazba rendezése. Halmazba tartozó elemek közös tulajdonságainak felismerése, megnevezése. Annak eldöntése, hogy egy elem beletartozik-e egy adott halmazba. A változás értelmezése egyszerű matematikai tartalmú szövegben. Több, kevesebb, ugyanannyi fogalma. Állítások igazságtartalmának eldöntése. Néhány elem sorba rendezése, az összes eset megtalálása (próbálgatással). Elemek halmazba rendezése több szempont szerint hétköznapi életből vett példák, illetve matematikai tulajdonságok alapján. A halmazba tartozó és a halmazba nem tartozó elemek vizsgálata, adatok elhelyezése halmazábrában. Állítások megfogalmazása, igazságtartalmának eldöntése. Néhány elem sorba rendezése, kiválasztása módszeres próbálgatással. Kommunikáció fejlesztése. Halmazok. Halmazok megadása, részhalmaz, halmazok uniója, metszete. (Műveletek szemléletes alapon, jelölések nélkül.) Halmazok megadása elemek felsorolásával. Adott tulajdonság alapján elemek csoportba foglalása: példák a mindennapi életből és a számhalmazok területéről. Elemek halmazokba rendezése két vagy három tulajdonság alapján. Halmazábra használata. Halmazműveletek elvégzése véges halmazokon. Konkrét alaphalmazokon komplementer halmaz meghatározása. Ábrák színezése adott feltételek szerint. Informatika: könyvtárszerkezet a számítógépen. élőlények csoportosítása. Matematikai logika. Igaz, hamis állítás. Az és és a vagy használata. Állítások megfogalmazása a hétköznapi életből és a matematika területéről. Magyar nyelv és irodalom: mondatfajták; érvelés. Sorba rendezések.

Sportiskolai Általános Iskola 7 Matematika 5.-6. évf. Kulcs/ Halmaz, számhalmaz, elem, részhalmaz, unió, metszet, IGAZ, HAMIS, ÉS, VAGY. 2. Számelmélet, algebra 2.1. Természetes számok 23 óra Számok írása, olvasása (10 000-es számkör). Helyi érték, alaki érték, valódi érték. Számok helye a számegyenesen. Természetes számok nagyság szerinti összehasonlítása. Matematikai jelek: +,,, :, =, <, >, ( ) ismerete, használata. A matematika különböző területein az ésszerű becslés és a kerekítés alkalmazása. Műveletek ellenőrzése. Fejben számolás százas számkörben. Négyjegyű számok összeadása, kivonása, szorzás és osztás egy- és kétjegyű számmal írásban. Műveletek ellenőrzése. A tízes számrendszer fogalmának elmélyítése. A számegyenes használata, alkalmas egység megválasztása. A műveletek biztos elvégzésének erősítése fejben és írásban. Műveleti tulajdonságok felismerése, alkalmazása. Mértékegységek helyes használata és átváltása. A tízes számrendszer. A számokról tanultak ismétlése, a számfogalom fejlesztése milliós számkörben. Helyi érték, alaki érték ismerete, számok kiolvasása. A számok helyesírásának ismerete. Matematikatörténet: a számírás kialakulása, római számok. Kapcsolat a kombinatorikával (számok kirakása). Kapcsolat a mindennapi élettel (pénzegységek, mértékegységek átváltása). A számegyenes. Számok összehasonlítása. Kerekítés, becslés. Számok elhelyezése számegyenesen. Megfelelő beosztás választása. A kerekítés szabályainak ismerete. Összeadás, kivonás, szorzás. Osztás, maradékos osztás. Műveletek elvégzése fejben és írásban. A tanulók tudják a gyakorlati feladatokban felismerni, hogy melyik művelet alkalmazására van szükség. Műveletek ellenőrzése. Az 1 és a 0 a szorzásban és az osztásban. Műveletek tulajdonságai, zárójelek használata, műveletek sorrendje. Műveleti sorrend, ha a kifejezés nem tartalmaz zárójelet. Zárójelek szerepének felismerése. Szorzás, osztás 10-zel, 100-zal, 1000-rel. Mértékegységek átváltása. Történelem, társadalmi és állampolgári ismeretek: történelmi idő-egyenes. Magyar nyelv és irodalom: szövegértés.

Sportiskolai Általános Iskola 8 Matematika 5.-6. évf. Kulcs/ Tízes számrendszer, helyi érték, alaki érték, számegyenes, összeadandó, összeg, tag, kisebbítendő, kivonandó, különbség, szorzandó, szorzó, szorzat, tényező, osztandó, osztó, hányados, maradék. 2. Számelmélet, algebra 2.2. Egész számok Negatív számok a mindennapi életben hőmérséklet, adósság. 4 óra Ellentétes mennyiségek fogalmának mélyítése. Mennyiségi jellemzők kifejezése negatív számokkal. Műveletvégzés az egész számok halmazán. Műveleti tulajdonságok, zárójelek használata az egész számok halmazán. A negatív szám. Számkörbővítés: miért van szükségünk a negatív egész számokra? Ellentétes mennyiségek ismerete, felfedezése az életünkben. Egy szám ellentettje, abszolút értéke. Nagyobb, kisebb fogalma az egész számok körében. Egész számok a számegyenesen. A számegyenes használata segédeszközként (a megértésére, a szükséges absztrakció érdekében). Megtakarítás és adósság. A derékszögű koordináta-rendszer. Első jelzőszám, második jelzőszám. A jelzőszámok nem cserélhetők fel. I., II., III., IV. síknegyed tudatosítása. Példák: színházjegy, sakk, táblázatok, grafikonok. Egész számok összeadása, kivonása, szorzása, osztása. A műveletek eredményének becslése. Többtagú kifejezések összevonása. Zárójelek használata, műveleti sorrend. hőmérséklet, időjárásjelentés, tengerszint feletti magasság. Történelem, társadalmi és állampolgári ismeretek: időszámítás i.e.; megtakarítás, adósság. helymeghatározás, térképek. Kulcs/ Negatív szám, előjel, ellentett, abszolút érték, koordináta-rendszer. A törtek értelmezése. 2. Számelmélet, algebra 2.3. Törtek, tizedes törtek, racionális számok 40 óra Törtek a mindennapi életben: 2, 3, 4, 10, 100 nevezőjű törtek megnevezése, lejegyzése szöveggel, előállítása hajtogatással, nyírással, rajzzal, színezéssel. A törtek jelentésének megalapozása, elmélyítése. Műveletvégzés a törtszámok körében. Számolási készség fejlesztése. Az ellenőrzés igénye, a becslés képességének fejlesztése. Ének-zene: a

Sportiskolai Általános Iskola 9 Matematika 5.-6. évf. Törtek egyszerűsítése, bővítése. Közönséges tört, vegyes tört. Az egyszerűsítés és a bővítés tudatos alkalmazása. Negatív törtek. Törtek ábrázolása a számegyenesen. Törtek összehasonlítása: először egyenlő nevezőjű, egyenlő számlálójú törtek esetében, majd egyszerűsítés vagy bővítés után tetszőleges törtek esetén. Gyakorlás számítógépes szoftverrel. Törtek összeadása, kivonása. Közös nevező keresése. Törtek szorzása. Törtek osztása. Tört szorzása, osztása egész számmal. Műveleti tulajdonságok, zárójelek. Ellenőrzés, becslés. A tizedes törtek értelmezése, használata. Tizedes törtek jelentése, kiolvasása, leírása. Mértékegységek kifejezése tizedes törtekkel. Tizedes törtek a számegyenesen. Mérés a milliméter beosztású vonalzóval, mérőszalaggal. Tizedes törtek összehasonlítása. Számegyenest használva és a szám írott alakja alapján összehasonlítás. Matematikai jelek használata (<,> =). hangjegyek értéke és a törtszámok a kapcsolata. Informatika: alkalmazások használata. távolságmérés különböző nagyságrendekben. Tizedes törtek összeadása, kivonása. Tizedes törtek szorzása, osztása egész számmal. A műveletek elvégzése fejben kisebb számokon. A műveletek eredményének előzetes becslése, írásbeli elvégzése. Számolás negatív tizedes törtekkel is. A műveletek ellenőrzése. Pénzügyi ismeretek: pénzváltás. Tizedes törtek szorzása, osztása 10-zel, 100-zal, 1000-rel Alkalmazás a mértékegységekkel való számolásban: hosszúság, terület, űrtartalom, átváltások. Megfelelő számú tizedes jegy értelmes használata. Az átlag kiszámítása. Statisztikai adatok gyűjtése, elemzése. Tört alakban írt szám tizedes tört alakja. Racionális számok. Véges, végtelen szakaszos tizedes törtek előállítása osztással. Két egész szám hányadosaként felírható számok. Mérés, mértékegységek. Hosszúság, tömeg, idő mérése, mértékegységek. Mérések elvégzése csoportmunkában, együttműködés a társakkal. Hétköznapi életben gyakran használt mennyiségek becslése. Természetismeret; technika, életvitel és gyakorlat; történelem, társadalmi és állampolgári ismeretek: statisztikai adatok használata. Technika, életvitel és gyakorlat: a mindennapokhoz kapcsolódó anyagok, tárgyak mérése, becslése.

Sportiskolai Általános Iskola 10 Matematika 5.-6. évf. Kulcs/ Tört, számláló, nevező, közös nevező, tizedes tört, véges és végtelen szakaszos tizedes tört, racionális szám. 2. Számelmélet, algebra 2.4. Oszthatóság Osztás, osztó, maradékos osztás. Az osztó, többszörös fogalmának elmélyítése. Számolási készség fejlesztése. Számolás maradékokkal. Osztási maradék fogalmának kialakítása zsákolással. Összeg, különbség, szorzat osztási maradékának megállapítása. Osztó, többszörös. Osztók meghatározása, valódi osztók. 8 óra Természetismeret; vizuális kultúra: periodikusan ismétlődő jelenségek, minták. Közös osztók, legnagyobb közös osztó. Közös többszörös, legkisebb közös többszörös. Sok feladaton keresztül tapasztalatszerzés az osztók, közös osztók, közös többszörösök meghatározására. A tanultak alkalmazása törtek egyszerűsítésére, bővítésére. Kulcs/ Osztó, maradék, többszörös. Informatika: egyszerű algoritmusok. 2. Számelmélet, algebra 2.5. Arányos következtetések, egyenletek, egyenlőtlenségek 15 óra Egyszerű szöveges feladatok megoldása: a szöveg értelmezése, adatok kigyűjtése, megoldási terv készítése, becslés, ellenőrzés, az eredmény realitásának vizsgálata. Jelek, szimbólumok használata összefüggések leírására, az ismeretlen szimbólum kiszámítása. Egyenes arányosság felismerése, törtrész meghatározása. Absztrakciós képesség fejlesztése: betűk használata összefüggések leírására. Egyszerű egyenletek, egyenlőtlenségek megoldása: próbálgatás, következtetés, lebontogatás, mérlegelv ismerkedés a megoldási módszerekkel. Szövegértés fejlesztése szöveges feladatok. Az önellenőrzés igényének és képességének fejlesztése. Két szám aránya. Az arány fogalma mindennapi életből vett példákon keresztül. Arányos osztás. Szöveges feladatok mennyiségek adott arányban való felosztására. Egyenes arányosság. Technika, életvitel és gyakorlat: vásárlás. megtett út, táblázatok, grafikonok; térkép alapján távolságok

Sportiskolai Általános Iskola 11 Matematika 5.-6. évf. meghatározása. Egyenlet, azonosság, egyenlőtlenség. Az összefüggések megértése. Alaphalmaz felismerése. Elsőfokú, egyismeretlenes egyenletek, egyenlőtlenségek. Megoldásuk próbálgatással, lebontogatással, következtetéssel, mérlegelvvel. A megoldást ábrázoljuk számegyenesen. Szöveges feladatok. Adatok meghatározása, terv készítése, becslés, egyenlet, megoldás, válasz, ellenőrzés. Az ismeretlen mennyiségre kezdetben jelet, majd betűt használhatunk. A megoldás segítése ábrával. Önellenőrzés. Kulcs/ Magyar nyelv és irodalom: Szövegértés, a nyelv logikai elemeinek helyes használata. A kapott eredmény értékelése. Arány, arányos osztás, egyenes arányosság, törtrész, egyenlet, azonosság, egyenlőtlenség. 3. Sorozatok, függvények 8 óra Szabályfelismerés, szabálykövetés. Növekvő és csökkenő számsorozatok. Összefüggések keresése az egyszerű sorozatok elemei között. A szabály megfogalmazása egyszerű formában, a hiányzó elemek pótlása. Tapasztalati adatok lejegyzése, táblázatba rendezése. Táblázat adatainak értelmezése. Sorozat megadása szabállyal. A koordináta-rendszer biztonságos használata. Függvényszemlélet előkészítése. Sorozatok. Egyszerű sorozatok folytatása adott szabály szerint. Sorozatok készítése. Algoritmusok játékokon keresztül. Koordináta-rendszer, grafikonok. Egyenes arányosság grafikonja. Egyszerű grafikonok értelmezése. Egyszerű kapcsolatok ábrázolása derékszögű koordinátarendszerben. Kulcs/ Sorozat, egyenes arányosság, grafikon. Technika, életvitel és gyakorlat: osztálynévsor, tornasor. arányos mennyiségek, adatok grafikus ábrázolása. 4. Geometria 4.1. Geometriai alap 15 óra

Sportiskolai Általános Iskola 12 Matematika 5.-6. évf. Pont, egyenes, görbe vonalak szemléletes fogalma. Párhuzamos és metsző egyenesek. Háromszög, négyzet, téglalap, sokszög felismerése, jellemzőik, előállításuk másolással, hajtogatással, nyírással. Körvonal és körlap. Kocka, téglatest, gömb felismerése a mindennapi életben. Térelemek fogalmának elmélyítése környezetünk tárgyainak vizsgálata. Távolság szemléletes fogalma, meghatározása. Körző, vonalzó, szögmérő használata, igény erősítése a pontos szerkesztésre. Esztétikai érzék fejlesztése. Pont, egyenes, sík, félegyenes, szakasz. Síkidom, sokszög, oldal, átló, konvexitás. A környezetünkben lévő tárgyakon a vizsgált geometriai felismerése. Test, csúcs, él, lap. Testek építése, szemléltetése. Merőleges egyenesek. Párhuzamos egyenesek. Merőleges és párhuzamos egyenesek szerkesztése. Vízszintező, mérőón. Kitérő egyenesek. Ponthalmazok távolsága. Két pont, pont és egyenes, pont és sík távolsága. Két egyenes távolsága. Két sík távolsága. Geometriai szerkesztés. A ceruza, vonalzó, körző használata. Matematikatörténet: Eukleidész elemek. A szög. Szögek fajtái. A szög jelölése, betűzése. Görög betűk. Szögfajták: hegyesszög, derékszög, tompaszög, egyenesszög, homorúszög, teljesszög, forgásszög. Szögmérés szögmérővel. Fok, szögperc, szögmásodperc. Szögmásolás Háromszögek: csúcs, belső szög, külső szög. A háromszög belső és külső szögeinek összege. Háromszögek szögeinek meghatározása méréssel. Hegyesszögű, derékszögű, tompaszögű háromszög. Egyenlőszárú háromszög, egyenlő oldalú háromszög. Háromszögek szerkesztése. Háromszög-egyenlőtlenség. Sokszögek. Speciális négyszögek ismerete: négyzet, téglalap, paralelogramma. Logika: szükséges és elégséges feltétel. Technika, életvitel és gyakorlat: közlekedés forgalmi csomópontok. földrajzi objektumok távolsága. Informatika: geometriai szerkesztőprogram használata. Kör.

Sportiskolai Általános Iskola 13 Matematika 5.-6. évf. Sugár, átmérő, húr, szelő, érintő. Körív, körcikk, körszelet. A felismerése környezetünk tárgyain. Díszítőminták szerkesztése körzővel. Gömb. Kulcs/ földgömb. Testnevelés és sport: labdák. Vizuális kultúra: kupolák. Pont, egyenes, szakasz, félegyenes, sík, síkidom, sokszög, test, csúcs, él, lap, merőleges, párhuzamos, szög, kör, gömb. 4. Geometria 4.2. Kerület, terület, felszín, térfogat 4 óra Hosszúság mérése (egyszerű gyakorlati példák). Négyzet, téglalap kerülete mérés, számítás, mértékegységek. Négyzet, téglalap területének mérése különféle egységekkel, területlefedéssel. A test és a síkidom közötti különbség megértése. Kocka, téglatest; felismerése, létrehozása, jellemzői. Gömb felismerése. Hosszúság mérésének gyakorlása mérőeszközök használata, becslés. Számolási készség fejlesztése. A térszemlélet fejlesztése: testek hálója, a felszín és a térfogat meghatározása. A kerület mérése, mértékegységei. A téglalap, a négyzet kerülete. Adott alakzatok kerületének meghatározása méréssel, számolással. Méterrúd, mérőszalag használata. A terület mérése, mértékegységei. A téglalap, négyzet területe. Adott alakzatok területének meghatározása az adott egységgel összehasonlítás, közelítés, számolás. Mérőeszközök használata. A téglatest hálója, felszíne. A térfogat, űrtartalom mérése. Mértékegységek. A téglatest térfogata. Mindennapi életben használt tárgyak térfogatának becslése. Testek építése, ábrázolása. Építőjátékok. Kulcs/ Kerület, terület, térfogat, test hálója. Technika, életvitel és gyakorlat: tapétázás, csempézés. Vizuális kultúra: díszítőminták periodikus ismétlése. Technika, életvitel és gyakorlat: üvegek, üdítős dobozok térfogata. 4. Geometria 4.3. Adott tulajdonságú ponthalmazok A távolság fogalma. Körvonal, körlap. Párhuzamos és merőleges 15 óra

Sportiskolai Általános Iskola 14 Matematika 5.-6. évf. egyenesek rajzolása. A térszemlélet fejlesztése, halmaz fogalmának mélyítése. Távolsággal jellemzett ponthalmazok: adott térelemtől adott távolságra lévő pontok halmaza síkban és térben. két térelemtől egyenlő távol lévő pontok halmaza síkban és térben. Szerkesztési feladatok. Kulcs/ Kör, gömb, szakaszfelező merőleges. határvonalak, objektumok környezete. 5. Statisztika, valószínűség 4 óra Adatgyűjtés, adatok lejegyzése, diagram leolvasása. Valószínűségi játékok, kísérletek, megfigyelések biztos, lehetetlen, lehet, de nem biztos állítások. Adatok gyűjtése, értelmezése, jellemzése. Valószínűségi játékok és kísérleteken keresztül a valószínűség fogalmának alapozása. Adatok ábrázolása. Adatok gyűjtése, elemzése. Kész oszlopdiagram, vonaldiagram, kördiagram elemzése. Átlag. Mit fejez ki az átlag? Valószínűségi játékok. Biztos esemény, lehetetlen esemény. Kinek nagyobb az esélye? Adatok tervszerű gyűjtése. Kulcs/ Adat, grafikon, átlag, biztos esemény, lehetetlen esemény. népesség alakulása, összetétele. Technika, életvitel és gyakorlat: lázmérés, lázgörbe. A fejlesztés várt eredményei az 5. évfolyam végén Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének, része két véges halmaz uniója uniójának felírása, ábrázolása. Néhány elem kiválasztása adott szempont szerint.

Sportiskolai Általános Iskola 15 Matematika 5.-6. évf. Néhány elem sorba rendezése különféle módszerekkel. Állítások igazságának eldöntésére, igaz és hamis állítások megfogalmazása. Összehasonlításhoz szükséges kifejezések helyes használata. Számtan, algebra Racionális számok írása, olvasása, összehasonlítása, ábrázolása számegyenesen. Ellentett, abszolút érték. Mérés, mértékegységek használata, átváltás egyszerű esetekben. A mindennapi életben felmerülő egyszerű arányossági feladatok megoldása következtetéssel, az egyenes arányosság értése, használata. Két-három műveletet tartalmazó műveletsor eredményének kiszámítása, a műveleti sorrendre vonatkozó szabályok ismerete, alkalmazása. Zárójelek alkalmazása. Szöveges feladatok megoldása következtetéssel, (szimbólumok segítségével összefüggések felírása a szöveges feladatok adatai között). Becslés, ellenőrzés segítségével a kapott eredmények helyességének megítélése. Számok osztóinak, többszöröseinek felírása. Közös osztók, közös többszörösök kiválasztása. Oszthatósági szabályok (2, 3, 5, 9, 10, 100) ismerete, alkalmazása. A hosszúság, terület, térfogat, űrtartalom, idő, tömeg szabványmértékegységeinek ismerete. Mértékegységek egyszerűbb átváltásai gyakorlati feladatokban. Algebrai kifejezések gyakorlati használata a terület, kerület, felszín és térfogat számítása során. Összefüggések, függvények, sorozatok Tájékozódás a koordinátarendszerben: pont ábrázolása, adott pont koordinátáinak a leolvasása. Egyszerűbb grafikonok, elemzése. Egyszerű sorozatok folytatása adott szabály szerint, szabályok felismerése, megfogalmazása néhány tagjával elkezdett sorozat esetén. Geometria Térelemek, félegyenes, szakasz, szögtartomány, sík, fogalmának ismerete. A geometriai ismeretek segítségével a feltételeknek megfelelő ábrák pontos szerkesztése. A körző, vonalzó célszerű használata. Alapszerkesztések: pont és egyenes távolsága, két párhuzamos egyenes távolsága, szakaszfelező merőleges, merőleges és párhuzamos egyenesek. A tanult síkbeli és térbeli alakzatok tulajdonságainak ismerete és alkalmazása feladatok megoldásában. Valószínűség, statisztika Egyszerű diagramok készítése, értelmezése, táblázatok olvasása. Valószínűségi játékok, kísérletek során adatok tervszerű gyűjtése.

Sportiskolai Általános Iskola 16 Matematika 5.-6. évf. 6. évfolyam Heti óraszám: 4 óra; Tananyag Éves óraszám:144 óra a köznevelési típusú sportiskolai osztály 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika 4 óra Adott tulajdonságú elemek halmazba rendezése. Halmazba tartozó elemek közös tulajdonságainak felismerése, megnevezése. Annak eldöntése, hogy egy elem beletartozik-e egy adott halmazba. A változás értelmezése egyszerű matematikai tartalmú szövegben. Több, kevesebb, ugyanannyi fogalma. Állítások igazságtartalmának eldöntése. Néhány elem sorba rendezése, az összes eset megtalálása (próbálgatással). Elemek halmazba rendezése több szempont szerint hétköznapi életből vett példák, illetve matematikai tulajdonságok alapján. A halmazba tartozó és a halmazba nem tartozó elemek vizsgálata, adatok elhelyezése halmazábrában. Állítások megfogalmazása, igazságtartalmának eldöntése. Néhány elem sorba rendezése, kiválasztása módszeres próbálgatással. Kommunikáció fejlesztése. Halmazok. Halmazok megadása, részhalmaz, halmazok uniója, metszete. (Műveletek szemléletes alapon, jelölések nélkül.) Halmazok megadása elemek felsorolásával. Adott tulajdonság alapján elemek csoportba foglalása: példák a mindennapi életből és a számhalmazok területéről. Elemek halmazokba rendezése két vagy három tulajdonság alapján. Halmazábra használata. Halmazműveletek elvégzése véges halmazokon. Konkrét alaphalmazokon komplementer halmaz meghatározása. Konstrukciók. Adott tulajdonságú objektumok konstruálása. Adott tulajdonságú sorozatok készítése. Adott tulajdonságú halmazok konstruálása. (Pl. olyan csoport lerajzolása, amiben mindenkinek három ismerőse van.) Ábrák színezése adott feltételek szerint. Matematikai logika. Informatika: könyvtárszerkezet a számítógépen. élőlények csoportosítása. Magyar nyelv és

Sportiskolai Általános Iskola 17 Matematika 5.-6. évf. Igaz, hamis állítás. Az és és a vagy használata. Állítások megfogalmazása a hétköznapi életből és a matematika területéről. Definíciók megértése, alkalmazása. Állítások igazságtartalmának eldöntése. Tanuljunk érvelni! Igazmondós-hazudós logikai feladatok. Kombinatorika. Sorba rendezések. Kiválasztások. Néhány elem sorba rendezése. Néhány elem kiválasztása adott szempont szerint. Próbálkozzunk logikusan stratégiák az összes lehetőség megtalálására. irodalom: mondatfajták; érvelés. Kulcs/ Halmaz, számhalmaz, elem, részhalmaz, komplementer halmaz, unió, metszet, IGAZ, HAMIS, ÉS, VAGY. 2. Számelmélet, algebra 2.1. Természetes számok 4 óra Számok írása, olvasása (10 000-es számkör). Helyi érték, alaki érték, valódi érték. Számok helye a számegyenesen. Természetes számok nagyság szerinti összehasonlítása. Matematikai jelek: +,,, :, =, <, >, ( ) ismerete, használata. A matematika különböző területein az ésszerű becslés és a kerekítés alkalmazása. Műveletek ellenőrzése. Fejben számolás százas számkörben. Négyjegyű számok összeadása, kivonása, szorzás és osztás egy- és kétjegyű számmal írásban. Műveletek ellenőrzése. A tízes számrendszer. Számfogalom milliós számkörben. Helyi érték, alaki érték ismerete, számok kiolvasása. A számok helyesírásának ismerete. Matematikatörténet: a számírás kialakulása, római számok. Kapcsolat a kombinatorikával (számok kirakása). Kapcsolat a mindennapi élettel (pénzegységek, mértékegységek átváltása). A számegyenes. Számok összehasonlítása. Kerekítés, becslés. Számok elhelyezése számegyenesen. Megfelelő beosztás választása. A kerekítés szabályainak ismerete. Összeadás, kivonás, szorzás. Osztás, maradékos osztás.

Sportiskolai Általános Iskola 18 Matematika 5.-6. évf. Műveletek elvégzése fejben és írásban. Műveletek ellenőrzése. Az 1 és a 0 a szorzásban és az osztásban. Műveletek tulajdonságai, zárójelek használata, műveletek sorrendje. Műveleti sorrend, ha a kifejezés nem tartalmaz zárójelet. Zárójelek szerepének felismerése. Szorzás, osztás 10-zel, 100-zal, 1000-rel. Mértékegységek átváltása.. A tízes számrendszer fogalmának elmélyítése. A számegyenes használata, alkalmas egység megválasztása. A műveletek biztos elvégzésének erősítése fejben és írásban. Műveleti tulajdonságok felismerése, alkalmazása. Mértékegységek helyes használata és átváltása. Kapcsolat a kombinatorikával (számok kirakása). Kapcsolat a mindennapi élettel (pénzegységek, mértékegységek átváltása). Számrendszerek. Nem csak 10-esével csoportosíthatóság felismerése. Matematikatörténet: 12-es,60-as számrendszer nyomai az időmérésben. Kulcs/ Informatika: 2-es számrendszer. Tízes számrendszer, helyi érték, alaki érték, számegyenes, összeadandó, összeg, tag, kisebbítendő, kivonandó, különbség, szorzandó, szorzó, szorzat, tényező, osztandó, osztó, hányados, maradék, számrendszer. 2. Számelmélet, algebra 2.2. Egész számok Negatív számok a mindennapi életben hőmérséklet, adósság. 32 óra Ellentétes mennyiségek fogalmának mélyítése. Mennyiségi jellemzők kifejezése negatív számokkal. Műveletvégzés az egész számok halmazán. Műveleti tulajdonságok, zárójelek használata az egész számok halmazán. A negatív szám. Számkörbővítés: miért van szükségünk a negatív egész számokra? Ellentétes mennyiségek ismerete, felfedezése az életünkben. Egy szám ellentettje, abszolút értéke. Nagyobb, kisebb fogalma az egész számok körében. Egész számok a számegyenesen. A számegyenes használata segédeszközként (a megértésére, a szükséges absztrakció érdekében). hőmérséklet, időjárásjelentés, tengerszint feletti magasság. Történelem, társadalmi és állampolgári ismeretek: időszámítás

Sportiskolai Általános Iskola 19 Matematika 5.-6. évf. Megtakarítás és adósság. A derékszögű koordináta-rendszer. Első jelzőszám, második jelzőszám. A jelzőszámok nem cserélhetők fel. I., II., III., IV. síknegyed tudatosítása. Példák: színházjegy, sakk, táblázatok, grafikonok. Egész számok összeadása, kivonása, szorzása, osztása. A műveletek eredményének becslése. Többtagú kifejezések összevonása. Zárójelek használata, műveleti sorrend. i.e.; megtakarítás, adósság. helymeghatározás, térképek. Kulcs/ Negatív szám, előjel, ellentett, abszolút érték, koordináta-rendszer. 2. Számelmélet, algebra 2.3. Törtek, tizedes törtek, racionális számok 20 óra Törtek a mindennapi életben: 2, 3, 4, 10, 100 nevezőjű törtek megnevezése, lejegyzése szöveggel, előállítása hajtogatással, nyírással, rajzzal, színezéssel. A törtek értelmezése. Törtek egyszerűsítése, bővítése. Közönséges tört, vegyes tört. Az egyszerűsítés és a bővítés tudatos alkalmazása. Negatív törtek. Törtek ábrázolása a számegyenesen. Törtek összehasonlítása Törtek összeadása, kivonása. Közös nevező keresése. A tizedes törtek értelmezése, használata. Tizedes törtek jelentése, kiolvasása, leírása. Tizedes törtek a számegyenesen. Mérés a milliméter beosztású vonalzóval, mérőszalaggal. Tizedes törtek összehasonlítása. Tizedes törtek összeadása, kivonása. Tizedes törtek szorzása, osztása egész számmal. Tizedes törtek szorzása, osztása 10-zel, 100-zal, 1000-rel A törtek jelentésének megalapozása, elmélyítése. Műveletvégzés a törtszámok körében. Számolási készség fejlesztése. Az ellenőrzés igénye, a becslés képességének fejlesztése. Gyakorlás számítógépes szoftverrel. Informatika:

Sportiskolai Általános Iskola 20 Matematika 5.-6. évf. Törtek összeadása, kivonása. Közös nevező keresése. Törtek szorzása. A reciprok fogalma. Törtek osztása. Tört szorzása, osztása egész számmal, törtszámmal. Műveleti tulajdonságok, zárójelek. Ellenőrzés, becslés. A tizedes törtek értelmezése, használata. Tizedes törtek jelentése, kiolvasása, leírása. Mértékegységek kifejezése tizedes törtekkel. Tizedes törtek a számegyenesen. Mérés a milliméter beosztású vonalzóval, mérőszalaggal. Tizedes törtek összehasonlítása. Számegyenest használva és a szám írott alakja alapján összehasonlítás. Matematikai jelek használata (<,> =). Tizedes törtek kerekítése. Tizedes törtek összeadása, kivonása. Tizedes törtek szorzása, osztása egész számmal. A műveletek elvégzése fejben kisebb számokon. A műveletek eredményének előzetes becslése, írásbeli elvégzése. Számolás negatív tizedes törtekkel is. A műveletek ellenőrzése. Pénzügyi ismeretek: pénzváltás. Tizedes törtek szorzása, osztása 10-zel, 100-zal, 1000-rel Alkalmazás a mértékegységekkel való számolásban: hosszúság, terület, űrtartalom, átváltások. Megfelelő számú tizedes jegy értelmes használata. Szorzás tizedes törttel. Osztás tizedes törttel. Az átlag kiszámítása. Statisztikai adatok gyűjtése, elemzése. Tört alakban írt szám tizedes tört alakja. Racionális számok. Véges, végtelen szakaszos tizedes törtek előállítása osztással. Két egész szám hányadosaként felírható számok. Mérés, mértékegységek. Hosszúság, tömeg, idő mérése, mértékegységek. Mérések elvégzése csoportmunkában, együttműködés a társakkal. Hétköznapi életben gyakran használt mennyiségek becslése. alkalmazások használata. távolságmérés különböző nagyságrendekben. Természetismeret; technika, életvitel és gyakorlat; történelem, társadalmi és állampolgári ismeretek: statisztikai adatok használata. Technika, életvitel és gyakorlat: a mindennapokhoz kapcsolódó anyagok, tárgyak mérése, becslése.

Sportiskolai Általános Iskola 21 Matematika 5.-6. évf. Kulcs/ Tört, számláló, nevező, közös nevező, reciprok, tizedes tört, véges és végtelen szakaszos tizedes tört, racionális szám. 2. Számelmélet, algebra 2.4. Oszthatóság Osztás, osztó, maradékos osztás. Az osztó, többszörös fogalmának elmélyítése. Számolási készség fejlesztése. Számolás maradékokkal. Összeg, különbség, szorzat osztási maradékának megállapítása. Osztó, többszörös. Osztók meghatározása, osztópárok, valódi osztók. Oszthatósági szabályok. 2-vel, 4-gyel, 8-cal, 5-tel, 25-tel, 125-tel, 10-zel,100-zal való oszthatóság eldöntése a szám végződése alapján. 3-mal, 9-cel való oszthatóság eldöntése a számjegyek összege alapján. Prímszám, összetett szám, prímtényezős felbontás. Matematikatörténet: Eratoszthenész szitája. Közös osztók, legnagyobb közös osztó. Közös többszörös, legkisebb közös többszörös. Sok feladaton keresztül tapasztalatszerzés az osztók, közös osztók, közös többszörösök meghatározására. A tanultak alkalmazása törtek egyszerűsítésére, bővítésére. Kulcs/ 14 óra Természetismeret; vizuális kultúra: periodikusan ismétlődő jelenségek, minták. Informatika: egyszerű algoritmusok. Osztó, maradék, többszörös, prímszám, összetett szám, legnagyobb közös osztó, legkisebb közös többszörös. 2. Számelmélet, algebra 2.5. Arányos következtetések, egyenletek, egyenlőtlenségek 24 óra Egyszerű szöveges feladatok megoldása: a szöveg értelmezése, adatok kigyűjtése, megoldási terv készítése, becslés, ellenőrzés, az eredmény realitásának vizsgálata. Jelek, szimbólumok használata összefüggések leírására, az ismeretlen szimbólum kiszámítása. Egyenes és fordított arányosság felismerése, törtrész, százalékérték biztos meghatározása. Absztrakciós képesség fejlesztése: betűk használata összefüggések leírására. Egyszerű egyenletek, egyenlőtlenségek megoldása: próbálgatás, következtetés, lebontogatás, mérlegelv ismerkedés a megoldási módszerekkel. Szövegértés fejlesztése szöveges feladatok. Az

Sportiskolai Általános Iskola 22 Matematika 5.-6. évf. önellenőrzés igényének és képességének fejlesztése. Két szám aránya. Az arány fogalma mindennapi életből vett példákon keresztül. Arányos osztás. Szöveges feladatok mennyiségek adott arányban való felosztására. Egyenes arányosság. Fordított arányosság. Százalékszámítás. Százalékérték, százalékalap, százalékláb. Százalékszámítás arányos következtetéssel és tizedes törtek használatával. Egyenlet, azonosság, egyenlőtlenség. Az összefüggések megértése. Alaphalmaz felismerése. Elsőfokú, egyismeretlenes egyenletek, egyenlőtlenségek. Megoldásuk próbálgatással, lebontogatással, következtetéssel, mérlegelvvel. A megoldást ábrázoljuk számegyenesen. Szöveges feladatok. Adatok meghatározása, terv készítése, becslés, egyenlet, megoldás, válasz, ellenőrzés. Az ismeretlen mennyiségre kezdetben jelet, majd betűt használhatunk. A megoldás segítése ábrával. Önellenőrzés. Kulcs/ Technika, életvitel és gyakorlat: vásárlás. megtett út, táblázatok, grafikonok; térkép alapján távolságok meghatározása. Technika, életvitel és gyakorlat: áremelkedés, árengedmény, kamat. Magyar nyelv és irodalom: Szövegértés, a nyelv logikai elemeinek helyes használata. A kapott eredmény értékelése. Arány, arányos osztás, egyenes arányosság, fordított arányosság, törtrész, százalék, egyenlet, azonosság, egyenlőtlenség. 3. Sorozatok, függvények 4 óra Szabályfelismerés, szabálykövetés. Növekvő és csökkenő számsorozatok. Összefüggések keresése az egyszerű sorozatok elemei között. A szabály megfogalmazása egyszerű formában, a hiányzó elemek pótlása. Tapasztalati adatok lejegyzése, táblázatba rendezése. Táblázat adatainak értelmezése. Sorozatok. Egyszerű sorozatok folytatása adott szabály szerint. Koordináta-rendszer, grafikonok.

Sportiskolai Általános Iskola 23 Matematika 5.-6. évf. Sorozat megadása szabállyal. A koordináta-rendszer biztonságos használata. Függvényszemlélet előkészítése. Algoritmusok játékokon keresztül. Koordináta-rendszer, grafikonok. Egyenes arányosság grafikonja. Egyszerű grafikonok értelmezése. Egyszerű kapcsolatok ábrázolása derékszögű koordinátarendszerben. Kulcs/ Sorozat, egyenes arányosság, grafikon. Technika, életvitel és gyakorlat: osztálynévsor, tornasor. arányos mennyiségek, adatok grafikus ábrázolása. 4. Geometria 4.1. Geometriai alap 5 óra Pont, egyenes, görbe vonalak szemléletes fogalma. Párhuzamos és metsző egyenesek. Háromszög, négyzet, téglalap, sokszög felismerése, jellemzőik, előállításuk másolással, hajtogatással, nyírással. Körvonal és körlap. Kocka, téglatest, gömb felismerése a mindennapi életben. Térelemek fogalmának elmélyítése környezetünk tárgyainak vizsgálata. Távolság szemléletes fogalma, meghatározása. Körző, vonalzó, szögmérő használata, igény erősítése a pontos szerkesztésre. Esztétikai érzék fejlesztése. Pont, egyenes, sík, félegyenes, szakasz. Síkidom, sokszög, oldal, átló, konvexitás. A környezetünkben lévő tárgyakon a vizsgált geometriai felismerése. Test, csúcs, él, lap. Testek építése, szemléltetése. Merőleges egyenesek. Párhuzamos egyenesek. Merőleges és párhuzamos egyenesek szerkesztése. Vízszintező, mérőón. Kitérő egyenesek. Ponthalmazok távolsága. Két pont, pont és egyenes, pont és sík távolsága. Két egyenes távolsága. Két sík távolsága. Technika, életvitel és gyakorlat: közlekedés forgalmi csomópontok. földrajzi objektumok távolsága.

Sportiskolai Általános Iskola 24 Matematika 5.-6. évf. Geometriai szerkesztés. A ceruza, vonalzó, körző használata. Matematikatörténet: Eukleidész elemek. A szög. Szögek fajtái. A szög jelölése, betűzése. Görög betűk. Szögfajták: hegyesszög, derékszög, tompaszög, egyenesszög, homorúszög, teljesszög, forgásszög. Szögmérés szögmérővel. Fok, szögperc, szögmásodperc. Szögmásolás, szögfelezés. Nevezetes szögek szerkesztése. Háromszögek: csúcs, belső szög, külső szög. A háromszög belső és külső szögeinek összege. Háromszögek szögeinek meghatározása méréssel. Hegyesszögű, derékszögű, tompaszögű háromszög. Egyenlőszárú háromszög, egyenlő oldalú háromszög. Háromszögek szerkesztése. Háromszög-egyenlőtlenség. Sokszögek. Speciális négyszögek ismerete: négyzet, téglalap, trapéz, paralelogramma, rombusz, deltoid. Logika: szükséges és elégséges feltétel. A sokszög belső és külső szögeinek összege. Kör. Sugár, átmérő, húr, szelő, érintő. Körív, körcikk, körszelet. A felismerése környezetünk tárgyain. Díszítőminták szerkesztése körzővel. Gömb. Kulcs/ Informatika: geometriai szerkesztőprogram használata. földgömb. Testnevelés és sport: labdák. Vizuális kultúra: kupolák. Pont, egyenes, szakasz, félegyenes, sík, síkidom, sokszög, test, csúcs, él, lap, merőleges, párhuzamos, szög, kör, gömb. 4. Geometria 4.2. Kerület, terület, felszín, térfogat 8 óra Hosszúság mérése (egyszerű gyakorlati példák). Négyzet, téglalap kerülete mérés, számítás, mértékegységek. Négyzet, téglalap területének mérése különféle egységekkel, területlefedéssel. A test és a síkidom közötti különbség megértése. Kocka, téglatest; felismerése, létrehozása, jellemzői. Gömb felismerése.

Sportiskolai Általános Iskola 25 Matematika 5.-6. évf. Hosszúság mérésének gyakorlása mérőeszközök használata, becslés. Számolási készség fejlesztése. A térszemlélet fejlesztése: testek hálója, a felszín és a térfogat meghatározása. A kerület mérése, mértékegységei. A téglalap, a négyzet kerülete. Adott alakzatok kerületének meghatározása méréssel, számolással. Méterrúd, mérőszalag használata. A terület mérése, mértékegységei. A téglalap, négyzet területe. Adott alakzatok területének meghatározása az adott egységgel összehasonlítás, közelítés, számolás. Mérőeszközök használata. A téglatest hálója, felszíne. A térfogat, űrtartalom mérése. Mértékegységek. A téglatest térfogata. Mindennapi életben használt tárgyak térfogatának becslése. Testek építése, ábrázolása. Építőjátékok. Kulcs/ Kerület, terület, térfogat, test hálója. Technika, életvitel és gyakorlat: tapétázás, csempézés. Vizuális kultúra: díszítőminták periodikus ismétlése. Technika, életvitel és gyakorlat: üvegek, üdítős dobozok térfogata. 4. Geometria 4.3. Adott tulajdonságú ponthalmazok A távolság fogalma. Körvonal, körlap. Párhuzamos és merőleges egyenesek rajzolása. A térszemlélet fejlesztése, halmaz fogalmának mélyítése. Távolsággal jellemzett ponthalmazok: adott térelemtől adott távolságra lévő pontok halmaza síkban és térben. két térelemtől egyenlő távol lévő pontok halmaza síkban és térben. Szerkesztési feladatok. Kulcs/ Kör, gömb, szakaszfelező merőleges, szögfelező. 10 óra határvonalak, objektumok környezete.

Sportiskolai Általános Iskola 26 Matematika 5.-6. évf. 4. Geometria 4.4. Tengelyes tükrözés Tükrös alakzatok és tengelyes szimmetria előállítása hajtogatással, nyírással, rajzzal, színezéssel. Szimmetria felismerése a természetben, építészetben, művészetben. Alakzatok csoportosítása tengelyes szimmetria szempontjából. A síktükör képalkotása. A tengelyes tükrözés. Szimmetrikus ábrák készítése. Szimmetrikus alakzatok hajtogatása. Szimmetrikus alakzatok építése. A tükörkép szerkesztése. Tükrözés körzővel, vonalzóval. Tükrözés koordináta-rendszerben. A tengelyes tükrözés tulajdonságai. Pont, egyenes, szög, háromszög, kör képe, irányításváltás. Tengelyesen szimmetrikus alakzatok. Kör. Tengelyesen szimmetrikus háromszögek: egyenlő szárú és egyenlő oldalú háromszögek, tulajdonságaik. Szerkesztési feladatok az egyenlő szárú háromszög tulajdonságai alapján. Szimmetrián alapuló játékok. Négyszögek, speciális négyszögek (trapéz, paralelogramma, deltoid, rombusz) megismerése. Sokszögek. Kulcs/ 15 óra Természetismeret; vizuális kultúra: szimmetria a természetben, képzőművészetben, építészetben. Tengelyes tükrözés, szimmetria, egyenlő szárú háromszög, egyenlő oldalú háromszög. 5. Statisztika, valószínűség 4 óra Adatgyűjtés, adatok lejegyzése, diagram leolvasása. Valószínűségi játékok, kísérletek, megfigyelések biztos, lehetetlen, lehet, de nem biztos állítások. Adatok gyűjtése, értelmezése, jellemzése. Valószínűségi játékok és kísérleteken keresztül a valószínűség fogalmának alapozása.