Számítógépes Hálózatok 2013

Hasonló dokumentumok
Szignálok, Adatok, Információ. Számítógépes Hálózatok Unicast, Multicast, Broadcast. Hálózatok mérete

Számítógépes Hálózatok 2008

Számítógépes Hálózatok ősz Fizikai réteg Alapsáv, szélessáv, moduláció, vezetékes és vezeték nélküli átvitel

Számítógépes Hálózatok Fizikai réteg Alapsáv, szélessáv, moduláció, vezetékes és vezeték nélküli átvitel

Alapsáv és szélessáv. Számítógépes Hálózatok Amplitúdó-moduláció. Szélessáv

Szignálok, Adatok, Információ. Számítógépes Hálózatok Hálózatok mérete. Unicast, Multicast, Broadcast. Információ. Unicast (pont-pont átvitel)

Szignálok, Adatok, Információ. Számítógépes Hálózatok Hálózatok mérete. Unicast, Multicast, Broadcast. Információ. Unicast (pont-pont átvitel)

Alapsáv és szélessáv. Számítógépes Hálózatok Egy digitális szélessávú átvitel struktúrája. Egy digitális alapsávú átvitel struktúrája

Szignálok, Adatok, Információ. Számítógépes Hálózatok Hálózatok mérete. Unicast, Multicast, Broadcast. Információ. Unicast (pont-pont átvitel)

Számítógépes Hálózatok 2010

Számítógépes Hálózatok 2011

Frekvencia tartományok. Számítógépes Hálózatok és Internet Eszközök. Frekvencia tartományok rádió kommunikációhoz

Számítógépes Hálózatok ősz Rétegmodell, Hálózat tipusok, Fizikai réteg -- digitális kódok, önütemező kódok

Az ISO/OSI Referenciamodell. Számítógépes Hálózatok ősz OSI versus TCP/IP. Az Internet rétegei - TCP/IP-rétegek

Számítógépes Hálózatok

Számítógépes hálózatok

Számítógépes Hálózatok

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek

Informatikai eszközök fizikai alapjai Lovász Béla

Számítógépes Hálózatok

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

Kommunikációs hálózatok 2

Vezeték nélküli helyi hálózatok

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

HÍRKÖZLÉSTECHNIKA. 2.ea. Dr.Varga Péter János

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN)

FIZIKAI SZINTŰ KOMMUNIKÁCIÓ

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

Optoelektronikai Kommunikáció. Az elektromágneses spektrum

Az LTE. és a HSPA lehetőségei. Cser Gábor Magyar Telekom/Rádiós hozzáférés tervezési ágazat

Számítógépes Hálózatok. 5. gyakorlat

Csomagok dróton, üvegen, éterben. Szent István Gimnázium, Budapest Tudományos nap Papp Jenő 2014 április 4

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

2011. május 19., Budapest UWB ÁTTEKINTÉS

HÍRADÁSTECHNIKA. Dr.Varga Péter János

Wireless technológiák Meretei Balázs

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0

Adatátviteli eszközök

A fizikai réteg. Hardver építőelemek. Az adat kommunikáció elméleti alapjai

Híradástechnika I. 3.ea

Számítógépes Hálózatok 2010

Hálózatok I. (MIN3E0IN-L) ELŐADÁS CÍME. Segédlet a gyakorlati órákhoz. 2.Gyakorlat. Göcs László

Wireless hálózatépítés alapismeretei

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése

1. A vezeték nélküli hálózatok rádiós szabályozása

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

Vezetéknélküli átvitelben használt modulációs eljárások

A kommunikáció evolúciója. Korszerű mobil rendszerek

Kialakulása, jellemzői. Távközlési alapfogalmak I.

XII. PÁRHUZAMOS ÉS A SOROS ADATÁTVITEL

Híradástechnika I. 4.ea

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Szenzorok jelátvitele

Helymeghatározás hullámterjedés alapján - Áttekintés

Járműinformatika Multimédiás buszrendszerek (MOST, D2B és Bluetooth) 4. Óra

Elektronika Előadás. Modulátorok, demodulátorok, lock-in erősítők

A vizsgafeladat ismertetése: Válaszadás a vizsgakövetelmények alapján összeállított, előre kiadott tételsorokból húzott kérdésekre

HÍRADÁSTECHNIKA I. Dr.Varga Péter János

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik

Cellák. A cella nagysága függ a földrajzi elhelyezkedéstől és a felhasználók számától, ill. az általuk használt QoS-től! Korszerű mobil rendszerek

Dr.Varga Péter János HÍRADÁSTECHNIKA. 2.ea

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel

Beszédátvitel a GSM rendszerben, fizikai és logikai csatornák

6.óra Hálózatok Hálózat - Egyedi számítógépek fizikai összekötésével kapott rendszer. A hálózat működését egy speciális operációs rendszer irányítja.

3G / HSDPA. Tar Péter

Adatátviteli rendszerek Mobil távközlő hálózatok hozzáférési szakasza (RAN) Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel

Számítógépes Hálózatok ősz Adatkapcsolati réteg Hibafelismerés és javítás, Hamming távolság, blokk kódok

Adatkapcsolati réteg (Data Link Layer) Számítógépes Hálózatok Az adatkapcsolati réteg lehetséges szolgáltatásai

Számítógépes Hálózatok 2013

Számítógépes Hálózatok

Számítógép hálózatok gyakorlat

OPT TIKA. Hullámoptika. Dr. Seres István

SPECIÁLIS CÉLÚ HÁLÓZATI

Számítógép-hálózat fogalma (Network)

A teljes elektromágneses spektrum

Számítógépes hálózatok

Adatátviteli rendszerek Vezetékes kommunikációs interfészek. Dr. habil Wührl Tibor Óbudai Egyetem, KVK Híradástechnika Intézet

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András BME EISzK

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék tanév 1.

Digitális adattovábbítás, kommunikáció Az információs és kommunikációs technika gyorsuló ütemben fejlődik. Az elektromágneses hullámok néhány

Talián Csaba Gábor Biofizikai Intézet április 17.

Mobil Informatikai Rendszerek

Hálózati Technológiák és Alkalmazások

Híradástechnika I. 2.ea

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

Searching in an Unsorted Database

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

2016/11/29 11:13 1/6 Digitális átvitel

Választható önálló LabView feladatok 2013 A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat

NEPTUN-kód: KHTIA21TNC

Az Ampère-Maxwell-féle gerjesztési törvény

Digitális mérőműszerek

A kommunikáció evolúciója. Korszerű mobil rendszerek

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak

Zaj- és rezgés. Törvényszerűségek

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004

Jel, adat, információ

Átírás:

Számítógépes Hálózatok 2013 2. Alapfogalmak, Fizikai réteg: Digitális kódok, önütemező kódok, alapsáv, szélessáv, moduláció, vezetékes és vezeték nélküli átvitel 1 Szignálok, Adatok, Információ Információ Emberi interpretáció, pl. szép idő Adatok Formális prezentáció, pl. 28 Celsius, csapadékmennyiség 0cm, felhősödés 0% Szignál Adatok reprezentációja fizikai változók által, pl. áram a hőmérő szenzorban, Videoszignál a kamerából Példák szignálokra: áram, feszültség, hullámhossz, frekvencia A digitális világban a szignálok biteket reprezentálnak 2

Unicast, Multicast, Broadcast Unicast (pont-pont átvitel) pl. telefon Pontosan két résztvevő kommunikál egymással direkt Broadcast (egytől-mindekinek) pl. rádió, tv Egy adó küld szignálokat minden fogadóhoz Multicast (egytől-többnek) pl. telefonkonferencia, Video on demand Egy küldő küld fogadók egy kiválasztott halmazának 3 Hálózatok mérete (Tanenbaum) 4

Local Area Networks (LAN) Busz Gyűrű (Tanenbaum) 5 Metropolitan Area Networks (MAN) TV-kábel alapú hálózat 6 (Tanenbaum)

Wide Area Networks (WAN) LAN-ok összekapcsolása Subnet-tel 7 (Tanenbaum) Wide Area Networks Adatfolyam a WAN-ben 8 (Tanenbaum)

Fizikai Réteg 9 Fizikai réteg (Physical Layer) ISO-definíció A fizikai réteg definiál mechanikus, elektronikus, funkcionális és procedurális tulajdonságokat egy fizikai kapcsolat felépítéséhez, fenntartásáshoz és befejezéséhez. 10

Legegyszerűbb bitátvitel Bit 1: áram bekapcsolva Bit 0: áram kikapcsolva 1. réteg Bitből feszültség bit 1: kapcsoló - + felkapcsolva bit 0: kapcsoló lekapcsolva 1. réteg Feszültségből bit feszültség: bit 1 nincs feszültség: bit 0 Fizikai kapcsolat 11 Egy b betű átvitele A b karakterhez több bit szükséges pl. a b ASCII kódja bináris számként 01100010 A feszültség változása: feszültség idő 12

Szimbólumok és bitek Az adatátvitelhez bitek helyett más szimbólumokat is használhatunk Pl. 4 szimbólum: A,B,C,D, ahol A=00, B=01, C=10, D=11 Szimbólum Mértékegység: Baud Szimbólumok száma másodpercenként Adatráta Mértékegység: bit per másodperc (bit/s) Példa 2400 bit/s Modem megfelel 600 Baud-nak (16 szimbólumot használ) Symbol value 3 2.5 2 1.5 1 0.5 0 0 1 2 3 4 Tim e 0 1 1 0 0 0 1 0 13 Önütemező kódolások Mikor kell szignálokat mérni? Tipikusan egy szimbólum közepén Mikor kezdődik egy szimbólum? A szimbólum hossza szokásosan előre meghatározott. A fogadónak a bit-szinten szinkronizáltnak kell lenni a küldővel Pl. Frame Synchronization által 14

Szinkronizáció Mi történik, ha csak egyszerűen órát használunk a szinkronizáláshoz? Probléma Az órák másképp mennek (egyik kicsit gyorsabb, másik kicsit lassabb) Nincs két olyan (megfizethető) óra, ami szinkron marad Hiba szinkronizáció elvesztése miatt (NRZ): küldő: Fogadó (gyorabb órával) csatorna 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 15 A szinkronizáció megoldása Felügyelet nélkül nincs szinkronizáció Megoldás: explicit órajel Párhuzamos átvitelt igényel egy külön csatornán Szinkronizáltnak kell lennie az adatokkal Csak rövid átvitel esetén ésszerű Szinkronizáció kritikus időpontokban Pl. egy szimbólum vagy egy blokk kezdetén Egyébként teljesesen szabadon futnak az órák Megbízik abban, hogy az órák rövid ideig szinkron futnak Órajel a szimbólumok kódolásából 16

Önütemező kódok pl. Manchester kód (Biphase Level) 1 = magasról alacsonyra váltás az intervallum közepén 0 = alacsonyról magasra váltás az intervallum közepén Adatok Daten: Manchester 1 0 1 1 0 0 0 1 1 0 1 A szignál tartalmazza a szinkronizáláshoz szükséges információt 17 Digitális kódok Non-Return to Zero-Level (NRZ-L) 1 = magas feszültég, 0 = alacsony Non-Return to Zero-Mark (NRZ-M) 1 = váltás az intervallum elején 0 = nincs váltás Non-Return to Zero-Space (NRZ-S) 1 = nincs váltás az intervallum elején 0 = váltás az intervallum elején Return to Zero (RZ) 1 = négyszögimpulzus az interv. elején 0 = nincs négyszögimpulzus Manchester Code (Biphase Level) 1 = magasról alacsonyra váltás az intervallum közepén 0 = alacsonyról magasra váltás 18

Digitális kódok Biphase-Mark Minden intervallum elején váltás 1 = még egy váltás az intervallum közepén 0 = nincs váltás az intervallum közepén Biphase-Space Minden intervallum elején váltás 1/0 fordítva, mint a Biphase-Mark Differential Manchester-Code Minden intervallum közepén váltás 1 = nincs váltás az intervallum elején 0 = váltás az intervallum elején Delay Modulation (Miller) 1 = váltás az intervallum közepén 0 = Váltás az intervallum végén, ha 0 következik, nincs váltás, ha 1 következik Bipolar 1 = négyszögimpulzus az intervallum első felében, melynek iránya alternál (váltakozik) 0 = nincs négyszögimpulzus 19 Feladat Mely kódok önütemezők? 20

Fizikai alapok Mozgó elektromosan feltöltött részecskék elektromágneses hullámokat keltenek Frekvencia f : oszcillációk száma másodpercenként mértékegység: Hertz Hullámhossz λ: távolság (méterben) két egymást követő hullámmaximum között Antenna által kelthető illetve fogható elektromágneses hullám Elektromágneses hullámok terjedési sebessége vákuumban konstans: fénysebesség c 3 10 8 m/s Összefüggés: λ f = c 21 Amplitudó ábrázolás Egy sinus-rezgés amplitudó ábrázolása A: Amplitúdó ϕ: Fáziseltolás f : Frekvencia = 1/T T: Periódus T -ϕ/2πf A t 22

Alapsáv és szélessáv Alapsáv (baseband) A digitális szignál direkt árammá vagy feszültségváltozássá alakítódik A szignál minden frekvenciával átvitelre kerül Pl. NRZ-vel (feszültség magas = 1, feszültség alacsony = 0) Probléma: Átviteli korlátok Szélessáv (broadband) Az adatok egy széles frekvencia-tartományban kerülnek átvitelre Lehetőségek: Az adatokat egy vivőhullámra tehetjük (Amplitúdó moduláció) A vivőhullámot megváltoztathatjuk (Frekvencia / fázis moduláció) Különböző vivőhullámokat egyidejűleg használhatunk fel 23 Egy digitális alapsávú átvitel struktúrája Forrás kódolás Redundáns vagy nem releváns információk eltávolítása Pl. vesztéssel járó tömörítéssel (MP3, MPEG 4) vagy vesztés nélküli tömörítéssel (Huffman-kód) Csatorna kódolás Forrásbitek leképezése csatorna szimbólumokra Esetleg redundancia hozzáadásával, amit a csatorna tulajdonságaihoz igazítunk Fizikai átvitel Fizikai eseményekké konvertáljuk adatforrás adatcél Forrás kódolás Forrás bitek Forrás dekódolás Csatorna kódolás Csatorna szimbólumok Csatorna dekódolás Fizikai átvitel Fizikai vétel Médium 24

Egy digitális szélessávú átvitel struktúrája MOdulation/DEModulation A csatornaszimbólumok lefordítása amplitudó modulációval fázis modulációval frekvencia modulációval vagy ezek egy kombinációjával adatforrás adatcél Forrás kódolás Forrás bitek Forrás dekódolás Csatorna kódolás Csatorna szimbólumok Csatorna dekódolás Moduláció Hullám formák véges halmaza Demoduláció Fizikai átvitel Fizikai vétel Médium 25 Szélessáv Ötlet: A közeg ideális Frekvenciáira koncentrálunk Egy sinus-görbét használunk mint vivőhullámot a szignáloknak Egy sinusgörbe nem tartalmaz információt Az adatátvitelhez a sinusgörbét folyamatosan meg kell változtatni (modulálni) spektrális bővítés által (több frekvencia a Fourier-analízisben) A következő paraméterek változtathatók meg: Amplitúdó A Frekvencia f=1/t T A t Fázis φ -ϕ/2πf 26

Amplitúdó-moduláció Az időben változó szignált s(t) a sinusgörbe amplitúdójaként kódoljuk: Analóg szignál: Amplitúdó-moduláció A szignál folytonos függvénye az időnek Pl. második hosszabb hullámjel (hanghullám) Digitális szignál: Amplitúdó keying A szignál erőssége egy diszkrét halmaz értékeinek megfelelően változik Speciális eset: diszkrét halmaz: {0,1} on/off keying 27 Frekvencia-moduláció Az időben változó s(t) szignált a sinus görbe frekvenciájában kódoljuk: Analóg szignál: Frekvencia-moduláció Az idő folytonos függvénye Digitális szignál Frekvencia-eltolás keying (frequency shift keying, FSK) Pl. egy diszkrét halmaz elemeihez (szimbólumaihoz) különböző frekvenciákat rendelünk 28

Fázis-moduláció Az időben változó s(t) szignált a sinus görbe fázisában kódoljuk: Analóg szignál: Fázis-moduláció Nagyon előnytelen tulajdonságok Nem használják Digitális szignál: Fáziseltolás keying (phase-shift keying, PSK) Pl. egy diszkrét halmaz elemeihez különböző fázisokat rendelünk 29 PSK különböző szimbólumokkal Fáziseltolódások nagyon könnyen felismerhetők a fogadó által Egy diszkrét halmaz különböző szimbólumainak a kódolása nagyon egyszerű Használjunk pl. π/4, 3/4π, 5/4π, 7/4π fáziseltolást (4 szimbólumhoz) Rika: 0 fáziseltolás (szinkronizáció miatt) 4 szimbólum esetén az adatráta kétszer akkora mint a szimbólumráta Ezen módszer neve Quadrature Phase Shift Keying (QPSK) 30

Amplitúdó- és fázis-moduláció Amplitúdó- és fázis-moduláció kombinálható Pl.: QAM-16 (Quadrature Amplitude Modulation) 16 különböző fázis-amplitúdó kombinációt használunk, minden szimbólumhoz egyet Minden szimbólum 4 bitet kódol (2 4 = 16) Az adatráta tehát négyszer akkora, mint a szimbólumráta 180 31 Digitális és analóg szignálok összehasonlítása Digitális átvitel Diszkrét szignálok véges halmaza Pl. feszültség értékek / áramerősség értékek véges halmaza Analóg átvitel Szignálok végtelen (folytonos) halmaza Pl. a szignál a feszültségnek vagy az áramerősségnek felel meg a vezetékben Digitális szignálok előnyei: Lehetőség van a vételpontosság helyreállítására és az eredeti szignál rekonstruálására Analóg átvitel esetén fellépő hibák önmagukat felerősíthetik 32

Bithiba gyakoriság és szignál-zaj arány Minél nagyobb a szignál-zaj arány (signal-to-noise ratio - SNR), annál kevesebb hiba lép fel Bithiba gyakoriság (bit error rate - BER) A hibásan fogadott bitek részaránya Függ a szignál erőségétől, a zajtól, az átviteli sebességtől, a felhasznált módszertől A bithiba (BER) tipikusan függ a szignál-zaj aránytól (SNR) Pl.: DPSK (differential phase-shift keying) 33 Fizikai médiumok Vezetékhez kötött átvitel Rézvezeték sodort érpár (twisted pair) Rézvezeték Koaxiális kábel Üvegszál Vezeték nélküli átvitel Rádióhullám Mikrohullám Infravörös Fényhullámok 34

Sodort érpár (Twisted Pair TP) (a) Category 3 UTP. (b) Category 5 UTP. 35 Koaxialkabel. 36

Optikai kábel (üvegszál) Snellius törvénye: Elhajlás és tükröződés a levegő/üveg határon különböző szögeknél A fény a tükrözödés miatt az üvegben marad teljesen 37 Üvegszál (a) Egy egyszerű szál oldalnézete (b) Egy hármas-üvegszálköteg metszete 38

Optikai hálózatok Üvegszál gyűrű aktív ismétlőkkel (repeater-ekkel) 39 Az elektromágneses spektrum Vezetékhez kötött átviteli technikák twisted pair koaxiális kábel optikai üvegszál Hz 10 3 10 5 10 7 10 9 10 11 10 13 10 15 hosszúhullámú rövidhullám rádio középhullámú TV rádió mikrohullám infravörös látható fény Nem vezetékhez kötött átviteli technikák 40

Frekvencia tartományok 41 LF (Low Frequency) = LW (Langwelle) = hosszúhullám MF (Medium Frequency) = MW (Mittelwelle) = középhullám HF (High Frequency) = KW (Kurzwelle) = rövidhullám VHF (Very High Frequency)= UKW (Ultrakurzwelle) = ultrarövidhullám UHF (Ultra High Frequency) SHF (Super High Frequency) EHF (Extra High Frequency) UV Ultraibolya fény X-ray Röntgensugár Frekvencia tartományok rádió kommunikációhoz VHF/UHF mobil kommunikáció Problémák az antenna hossza miatt SHF irányított antennák, Satellit-kommunikáció Vezetéknélküli (Wireless) LAN: UHF-tól SHF-ig Tervben: EHF Látható fény Kommunikáció Laser által Infravörös TV távirányító Lokális LAN zárt irodákban 42

Rádió hullámok terjedési tulajdonságai A vákuumban egyenes vonalon terjed Vétel erőssége 1/d² -tel arányosan csökken (vákuumban) A gyakorlatban magasabb kitevő szerint: d 4 vagy d 5 Korlátok: elnyelődés a levegőben (főleg HF, VHF) árnyékolás tükröződés szóródás kis akadályokon elhajlás az éleknél 43 Rádió hullámok terjedési tulajdonságai VLF, LF, MF-hullámok követik a föld görbületét (1000 km-ig VLF esetén) áthatolnak az épületeken HF, VHF-hullámok a talajban elnyelődnek az ionoszféra által 100-500 km magasan tükröződnek 100 MHz fölött a hullámterjedés egyenes vonalú az épületeken alig hatol át jó fókuszálás 8 GHz fölött az eső elnyeli 44

Rádió hullámok terjedési tulajdonságai Több úton terjedés (Multiple Path Fading) A szignál tükröződés, szóródás és elhajlás miatt több úton érkezik meg a fogadóhoz Ez az interferencia időbeli szétszóródásához vezet Hibás dekódolás Szignál gyengülés Mobilitásból adódó problémák Rövid idejű megszakadások (Fast Fading) más átviteli hullám Különböző fázishossz A vételi erőség lassú megváltozása (Slow Fading) A küldő és a fogadó közötti távolság csökkenése, növekedése miatt 45 A médium többszörös használata Tér-multiplexálás (SDM) Az átviteli csatornák párhuzamos és exklusiv használata Pl. külön vezetékek/cellák/irányított antennák Frekvencia-multiplexálás (FDM) Egy frekvenciatartományban több szignált viszünk át Különböző küldőkhöz különböző frekvenciát rendelünk Idő-multiplexálás (TDM) Különböző küldők időben eltolva küldik a szignálokat Hullámhossz-multiplexálás (WDM) Optikai frekvencia-multiplexálás üvegkábelen való átvitelhez Kód-multiplexálás (CDM) Csak mobil kommunikációban (UMTS): A szignálokat ortogonális kódokban kódoljuk, amelyeket egyszerre küldhetünk egy frekvencián Dekódolás átfedés esetén is lehetséges 46

Tér A tér felosztása (Space-Multiplexing) A távolságból adódó vétel gyengülésének kihasználása különböző cellák párhuzamos működtetéséhez celluláris hálózatok Irányított antennák használata irányított kommunikációhoz GSM-antennák irányított karakterisztikával Irányított átvitel parabolaantenával Laser kommunikáció Infravörös kommunikáció 47 Frekvencia A sáv felosztása frekvencia tartományokra (Frequency-Division) Csatornák kiterjesztése és hopping Direct Sequence Spread Spectrum (DSSS) XOR a szignálokon egy (magasabb adat rátájú) véletlen bitsorozattal mind a küldő mind a fogadó által (rokon a kódmultiplexálással) Idegen szignálok háttérzajként jelentkeznek Frequency Hopping Spread Spectrum (FHSS) Frekvenciaváltás pszeudo-véletlenszámok alapján Két verzió Gyors váltás (fast hopping): átviteli bitenként több frekvenciaváltás Lassú váltás (slow hopping): Több átviteli bit frekvenciánként 48

Idő Időosztás (Time-Division) A küldő-/fogadócsatorna időbeli felosztása Különböző résztvevők exkluzív időintervallumokat (time slot) kapnak a médiumon Pontos szinkronizáció szükséges Koordináció vagy merev felosztás szükséges 49 Kód CDMA (Code Division Multiple Access) pl. UMTS (Universal Mobile Telecommunications System) Ortogonalis chip kódok Példa: Résztvevő A chip kódja: u=(+1,+1) 0 : (-1,-1) 1 : (+1,+1) Résztvevő B chip kódja: v=(+1,-1) 0 : (-1,+1) 1 : (+1,-1) A küld 0-t, B küld 1-t: Eredmény: (0,-2) A kódjával: (0,-2)(+1,+1) = (-u+v)u = -uu = -2 B kódjával: (0,-2)(+1,-1) = (-u+v)v = vv = +2 ( A 0-t küldött) ( B 1-t küldött) 50