PRÓBAÉRETTSÉGI VIZSGA

Hasonló dokumentumok
MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA április január II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA ÍRÁSBELI VIZSGA május 5.

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Matematika PRÉ megoldókulcs január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

ÍRÁSBELI VIZSGA május 7. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 7. pontszám. pontszám. II. rész 70. I.

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA január 19.

PRÓBAÉRETTSÉGI VIZSGA február 16.

PRÓBAÉRETTSÉGI VIZSGA

3. MINTAFELADATSOR KÖZÉPSZINT

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Azonosító jel: ÉRETTSÉGI VIZSGA május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

ÉRETTSÉGI VIZSGA október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Időtartam: 45 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

PRÓBAÉRETTSÉGI VIZSGA

ÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA II Január 21. PRÓBAÉRETTSÉGI VIZSGA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA Január 21. STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA

Matematika kisérettségi

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Időtartam: 45 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI május EMELT SZINT. 240 perc

ÍRÁSBELI VIZSGA május 6. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 6. pontszám. pontszám. II. rész 70. I.

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

ÉRETTSÉGI VIZSGA október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 45 perc

PRÓBAÉRETTSÉGI VIZSGA január 18.

PRÓBAÉRETTSÉGI VIZSGA

2. MINTAFELADATSOR KÖZÉPSZINT

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 15. 8:00. Az írásbeli vizsga időtartama: 240 perc

MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc

EMELT SZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

1. MINTAFELADATSOR EMELT SZINT

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Matematika kisérettségi május 24. I. rész

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

Azonosító jel: ÉRETTSÉGI VIZSGA október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00

EMELT SZINTŰ ÍRÁSBELI VIZSGA

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

ÉRETTSÉGI VIZSGA május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

ÉRETTSÉGI VIZSGA május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május 6. MINISZTÉRIUMA május 6. 8:00 EMBERI ERFORRÁSOK

1. MINTAFELADATSOR KÖZÉPSZINT

Azonosító jel: ÉRETTSÉGI VIZSGA május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 240 perc

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA október 19. MINISZTÉRIUM NEMZETI ERFORRÁS október 19. 8:00

3. MINTAFELADATSOR EMELT SZINT

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

ÉRETTSÉGI VIZSGA május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

MATEMATIKA EMELT SZINT% ÍRÁSBELI VIZSGA október 14. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA. Az írásbeli vizsga idtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 16. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Az írásbeli vizsga időtartama: 240 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Azonosító jel: ÉRETTSÉGI VIZSGA október 17. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 240 perc

Átírás:

MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2013. április január 7. 19. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Pontszám 2013. január 19. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

Írásbeli próbavizsga, II. összetevő 2 / 16 2013. január 19.

Fontos tudnivalók 1. A feladatok megoldására 135 percet fordíthat, az idő leteltével a munkát be kell fejeznie. 2. A feladatok megoldási sorrendje tetszőleges. 3. A B részben kitűzött három feladat közül csak kettőt kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi négyzetbe! Ha a javító tanár számára nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor a 18. feladatra nem kap pontot. 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármilyen négyjegyű függvénytáblázatot használhat, más elektronikus vagy írásos segédeszköz használata tilos! 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár! 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetők legyenek! 7. A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasság-tétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, de alkalmazhatóságát röviden indokolnia kell. 8. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje! 9. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 10. Minden feladatnál csak egyféle megoldás értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 11. Kérjük, hogy a szürkített téglalapokba semmit ne írjon! Írásbeli próbavizsga, II. összetevő 3 / 16 2013. január 19.

A 13. Oldja meg az alábbi egyenleteket a valós számok halmazán! 2 a) x 3 = 2x 6x + 4 2 sin x 2 b) cos x = sin x cos x a) 8 pont b) 4 pont Ö.: 12 pont 14. Írásbeli próbavizsga, II. összetevő 4 / 16 2013. január 19.

Írásbeli próbavizsga, II. összetevő 5 / 16 2013. január 19.

Egy egyetemi kosárlabda csapatban felmérték a játékosok magasságát. Az adatok centiméterben mérve a következőek lettek: 178; 192; 187; 169; 199; 178; 179; 165; 211; 202; 203; 190. a) Adja meg és értelmezze a magasságok terjedelmét, móduszát és mediánját! b) Számolja ki a négy nevezetes középérték közül a legkisebb és a legnagyobb érték számtani átlagát! A kapott eredményt kerekítse egy tizedesjegyre! a) 5 pont b) 7 pont Ö.: 12 pont 15. Írásbeli próbavizsga, II. összetevő 6 / 16 2013. január 19.

Írásbeli próbavizsga, II. összetevő 7 / 16 2013. január 19.

Az alábbi másodfokú függvényt a valós számok halmazán értelmezzük: f 2 ( x) = p( x + 16) + 4( p + 4) + 2x( x 3) a) Mely p paraméter érték mellett lesz a függvénynek egyetlen zérushelye? b) Milyen értéket kell adnunk p paraméternek, hogy a függvény ne metssze az x tengelyt? a) 8 pont b) 4 pont Ö.: 12 pont Írásbeli próbavizsga, II. összetevő 8 / 16 2013. január 19.

Írásbeli próbavizsga, II. összetevő 9 / 16 2013. január 19.

B A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe! 16. Egy egyenes, alapján álló körkúpba vizet töltöttünk. A vízszint a kúp magasságának felénél áll. A kúp alapkörének átmérője 32 cm, magassága pedig 30 cm. a) Készítsen ábrát a kúpról! b) Hány százalékát teszi ki a kúpban álló víz térfogata a kúp teljes térfogatának? c) A zárt kúpot felállítjuk a csúcsára. Ekkor milyen magasan áll a vízszint? A kapott eredményt kerekítse 2 tizedesjegyre! a) 2 pont b) 6 pont c) 9 pont Ö.: 17 pont Írásbeli próbavizsga, II. összetevő 10 / 16 2013. január 19.

Írásbeli próbavizsga, II. összetevő 11 / 16 2013. január 19.

A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe! 17. Egy 60 fős középiskolai közösséget vizsgálunk. Tudjuk, hogy a csoport kétharmada lány. A fiúk 18 ember kivételével nem szeretik a matekot. A lányoknak csupán az egynegyede nem szereti a matekot, a többiek imádják. Azon tanulók, akik nem szeretik a matekot, középszinten tesznek belőle érettségi vizsgát. A matekot kedvelő fiúk fele középszinten, a másik fele pedig emelt szinten szeretne érettségizni. A matekot szerető lányok egyharmada tervez középszintű vizsgát tenni, a többiek emeltre mennek. a) Összesen hány tanuló fog középszinten érettségizni matekból? b) Mekkora eséllyel megy egy véletlenszerűen kiválasztott fiú emelt szintű matematika érettségire? c) Mekkora eséllyel lesz egy véletlenszerűen kiválasztott tanuló középszinten érettségiző lány? d) Véletlenszerűen választunk két diákot a közösségből. Mekkora az esély arra, hogy mindketten szeretik a matekot, de középszinten érettségiznek? e) A százalékos arányokat tekintve a fiúk vagy a lányok szeretik jobban a matekot? a) 2 pont b) 4 pont c) 4 pont d) 4 pont e) 3 pont Ö.: 17 pont Írásbeli próbavizsga, II. összetevő 12 / 16 2013. január 19.

Írásbeli próbavizsga, II. összetevő 13 / 16 2013. január 19.

A 16-18. feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be a 3. oldalon található üres négyzetbe! 18. 2013. január elsején beteszünk a bankba 10 millió forintot, 8,5 %-os évi kamatra. Terveink szerint 2021 szeptemberében fogjuk egy összegben kivenni a pénzt. Az első kamat folyósítása a 2013-as év utolsó napján esedékes. A kamatot csak arra az évre írják jóvá, amely során a lekötött pénz kamatokkal együtt végig a bankban maradt. a) Mennyi pénzt fog termelni a befektetett összeg a végső kivételig? b) Amennyiben 2017 márciusában mégis kivennénk a kamatokból származó többletet, mennyi pénzt tudnánk kivenni az eredetileg rögzített, végső kivételkor? c) Legalább hány évig kellene a bankban hagynunk a pénzt, hogy egy 25 millió forintos lakásra elegendő összeg gyűljön össze? a) 4 pont b) 8 pont c) 5 pont Ö.: 17 pont Írásbeli próbavizsga, II. összetevő 14 / 16 2013. január 19.

Írásbeli próbavizsga, II. összetevő 15 / 16 2013. január 19.

a feladat sorszáma maximális pontszám elért pontszám összesen II. A rész II. B rész 13. 12 14. 12 15. 12 17 17 nem választott feladat ÖSSZESEN 70 maximális pontszám elért pontszám I. rész 30 II. rész 70 Az írásbeli vizsgarész pontszáma 100 javító tanár Írásbeli próbavizsga, II. összetevő 16 / 16 2013. január 19.