Passzív és aktív aluláteresztő szűrők



Hasonló dokumentumok
Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

Analóg elektronika - laboratóriumi gyakorlatok

Jelgenerátorok ELEKTRONIKA_2

Áramköri elemek mérése ipari módszerekkel

Elektronika II. laboratórium

ANALÓG ÉS DIGITÁLIS TECHNIKA I

Feszültségérzékelők a méréstechnikában

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

EGYENÁRAMÚ TÁPEGYSÉGEK

Áramkörök számítása, szimulációja és mérése próbapaneleken

Elektronika Előadás. Analóg és kapcsolt kapacitású szűrők

Zh1 - tételsor ELEKTRONIKA_2

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök

BMF, Kandó Kálmán Villamosmérnöki Kar, Híradástechnika Intézet. Aktív Szűrő Mérése - Mérési Útmutató

RC tag mérési jegyz könyv

ELEKTRONIKAI ALAPISMERETEK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató

Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata

DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE

ELEKTRONIKAI ALAPISMERETEK

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata

ELEKTRONIKAI ALAPISMERETEK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ELEKTRONIKAI ALAPISMERETEK

ANALÓG ÉS DIGITÁLIS TECHNIKA I

Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?

ELEKTRONIKAI ALAPISMERETEK

1. Visszacsatolás nélküli kapcsolások

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

ELEKTRONIKAI ALAPISMERETEK

RC és RLC áramkörök vizsgálata

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK

A/D és D/A konverterek vezérlése számítógéppel

2.Előadás ( ) Munkapont és kivezérelhetőség

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK

ELEKTRONIKAI ALAPISMERETEK

Elektronika Oszcillátorok

ÁRAMKÖRÖK SZIMULÁCIÓJA

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?

A felmérési egység kódja:

ELEKTRONIKAI ALAPISMERETEK

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

Jelkondicionálás. Elvezetés. a bioelektromos jelek kis amplitúdójúak. extracelluláris spike: néhányszor 10 uv. EEG hajas fejbőrről: max 50 uv

5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA

Mérés és adatgyűjtés

ELEKTRONIKAI ALAPISMERETEK

Nagyfrekvenciás rendszerek elektronikája házi feladat

ELEKTRONIKAI ALAPISMERETEK

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

Áramkörszámítás. Nyílhurkú erősítés hatása

Lehetővé teszi szűrőáramkörök tervezésekor az átviteli karakterisztika megvalósítását közelítő függvényekkel.

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

Számítási feladatok a 6. fejezethez

ELEKTRONIKAI ALAPISMERETEK

Logaritmikus erősítő tanulmányozása

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK

Ipari kemencék PID irányítása

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Villamosság biztonsága

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők

Tranziens jelenségek rövid összefoglalás

MŰVELETI ERŐSÍTŐK MÉRÉSE

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

1. ábra 1 (C 2 X C 3 ) C 1 ( R 1 + R 2 ) R 3. 2 π R C

ELEKTRONIKAI ALAPISMERETEK

Elektronika I. Gyakorló feladatok

ELEKTRONIKAI ALAPISMERETEK

MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)

Elektronikai műszerész Elektronikai műszerész

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK

Digitális szűrő méréshez (DF)

ELEKTRONIKAI ALAPISMERETEK

Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész

Átírás:

7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét. A jelátvitel és ázisorgatás rekvencia üggőségének tanulmányozása. Szűrőtipusok közti különbségek vizsgálata. Egy aktív szűrő tervezése és működésének szimulálása.. Elméleti bevezető Az aluláteresztő szűrők olyan áramkörök, melyek a kisrekvenciájú jeleket változatlanul átengedik, a nagyrekvenciájú jeleket pedig a rekvencia növekedésével arányosan csillapítja. A legegyszerűbb aluláteresztő szűrő egy ellenállásból és kondenzátorból áll, az 7.. ábrán eltüntetett kapcsolási módban. 7.. ábra Az erősítést megadja: U ki j C A (7..) U be R j RC j C Az erősítés abszolút értékét valamint a ázisorgatást megadja: A ; arctg( RC); (7..) R C A határrekvencia vagy vágási rekvencia: ; (7..) RC

Ha A az erősítés ordítottan arányos a rekvenciával és RC uki ube dt integráló áramkörként működik. RC Ha, a kimeneti eszültség u ki, a bemeneti jel u be lineárisan átvitt és integrált részének lineáris kombinációja (összege). Ha akkor a kimeneti és bemeneti jel megegyezik u ki = u be. Bevezetjük a következő jelöléseket: p j ; P prc; Így a 7.. képlet a következő képpen alakul: p P j j A p (7.4.) Ha az igények meredekebb erősítés csökkenést kívánnak a vágási rekvencia közelében, akkor n aluláteresztő szűrőt kapcsolunk sorba, ekkor az erősítés képlete: A (7.5.) ( ap)( bp)( cp)... ahol a, b, c... pozitív valós együtthatók. Ha azonos vágási rekvenciájú üggetlen aluláteresztő szűrőket kapcsolunk sorba akkor a=b=c=..., ami a kritikus csillapításnak elel meg. Az aluláteresztő szűrő rekvencia menete általában a következő alakú: A A n (7.6.) c P c P c P... c n P c, c, c... c n pozitív valós együtthatók. Ilyen rekvenciaüggést passzív RC hálózattal nem lehet megvalósítani, tekercset is tartalmazó vagyis RLC hálózatra van szükség. Az induktivitások megvalósítása nehézségeket okoz, mert kis rekvencián nagy induktivitásra van szükség. Az induktivitások alkalmazását elkerülhetjük, ha aktív alkatrészeket, műveleti erősítőket használunk. Ezek az aktív szűrők. A szűrő típusától üggően (Butherworth, Csebisev vagy Bessel) a 7.6. képletben az együtthatóknak különböző értékük van. Ezt az alábbi táblázat adja meg. n (a szűrő okszáma) 7..táblázat a b b a szűrő típusa,5 - -,987 - -,48,69,8 - -,6 - -,756,477 Csebisev Bessel

A 7.. ábra egy elsőokú aluláteresztő szűrőt mutat be, ázisordító műveleti erősítővel. Az erősítés rekvencia-menete: u A u ki be 7.. ábra R R P R R (7.7.) Méretezéshez elvesszük előre a vágási rekvenciát az A egyeneszültségű erősítést és a C kapacitást. Ezt összehasonlítva bármely aluláteresztő szűrő rekvencia menetét megadó egyenlettel: A A ( c P c P )( b P b P ) (7.8.) melyben az a, a, b, b szűrőtípustól üggően adottak, megkapjuk az ellenállás értékeket ( a ): a a R ; R (7.9.) C C A A szűrőkarakterisztika meredekséget nagyobb okszámú szűrővel növelhetjük, melynek megvalósítására első és másodokú szűrőket kapcsoljuk sorba. A 7.. ábra egy harmadokú Buthrworth-típusú aluláteresztő szűrőt mutat be, melynek határrekvenciája =Hz. 7.. ábra Előre elvesszük az R =R =R =kω értéket, majd meghatározzuk a kapacitások értékeit: a C 59nF R b C 8nF Rb b C 79, 6nF (7..) 4 R 4 A 7.4. ábra egy egyszerűsített Butherworth-típusú szűrőt mutat be, =Hz, melyben az elsőokú szűrőt egy passz v aluláteresztő szűrővel cseréltűk el:

7.4. ábra Az ellenállások és kapacitások értékei: R =k, R =k, R =k, C =nf, C =564nF, C =,nf.. A mérés menete A Micro-Cap szimulációs program segítségével tanulmányozzuk a 7., 7., 7. és 7.4 ábrán eltüntetett aluláteresztő szűrőket. A szűrők már léteznek a program keretén belül, Szűrő.cir, Szűrő.cir, Szűrő.cir és Szűrő4.cir elnevezéssel. Előszőr a passzív aluláteresztő szűrőt (7..ábra, Szűrő.cir) vizsgáljuk. A bemenetre négyszögjel generátort kapcsolunk (Pulse Sourse, Model=Square), melynek rekvenciáját változtatjuk, úgy hogy szűrő vágási rekvenciájához viszonyítva a következő értékeket vegye el: < /, = és >. A kimeneti jel ormáját vizsgáljuk a három különböző rekvenciájú négyszögjelre. A négyszögjel periódusát a P 5 paraméter határozza meg. A P és P 4 paraméterek a négyszögjel magas ( ) illetve alacsony ( ) szintjének idejét adja. Mivel egyorma kitöltési tényezőjű négyszögjellel dolgozunk P =P 4 =P 5 /. A szűrőt alkotó ellenállás és kondenzátor értékek meghatározzák a szűrő vágási rekvenciáját (7. képlet). Ennek megelel a T =/ és ehhez viszonyítva határozzuk meg a négyszögjel periódusát (T >T, T =T, T <T /). A szűrő viselkedését a megadott bemeneti jelekre a Transient Analysis-el végezzük. A Transient Analysis Limits ablakban a következő paramétereket kell beáll tani: Time Range az időintervallum melyben a bemeneti és kimeneti jeleket vizsgáljuk, és egyenlő kell legyen - bemeneti jel periódus időtartamával. X Expression = T az idő üggvényében ábrázoljuk a mért (szimulált) mennyiségeket. Y Expression azokat a pontokat adjuk meg, melyekben a jel ormáját vizsgáljuk, ez esetben a szűrő bemenetén és kimenetén a eszültség változást, tehát [v(a) és v(b)]. A kapott kimeneti jelormákat minden esetben lerajzoljuk vagy lementjuk. A passzív szűrő rekvenciamenetének meghatározásához AC Analysis-t végzünk. Az AC Analysis Limits ablak paraméterei: Frequency Range az a rekvencia tartomány melyben a szűrő viselkedését tanulmányozzuk. Előszőr a rekvencia sáv első, majd alsó határértékét adjuk meg, melyeket vesszővel választunk el. X Expression = F a rekvencia üggvényében ábrázoljuk a mért mennyiségeket. Y Expression a szűrő kimeneti jelének amplitudó változását (csillapítást db-ben) és ázisának változását (ázisorgatást) vizsgáljuk, tehát [db(v(b)) és ph(v(b))]. A jelormákat lementjük, bejelölve az vágási rekvencián a csillapítás és ázisorgatás értékét. Hasonló módon járunk el a 7.. ábrán eltüntetett elsőokú aktív szűrő esetében is (Szűrő.cir). A jelormákat lerajzoljuk, vagy lementjük.

A 7.. ábrán bemutatott harmadokú Butterworth-tipusú szűrő esetében is hasonló módon járunk el (Szűrő4.cir). A kapott jelormákat lementjük. A 7.. táblázatban megadott együtthatókkal alakítsuk át a Butterworth-tipusú szűrőt Csebisev vagy Bessel tipusura (7. képletek), meghagyva a vágási rekvencia értékét ( =Hz). Végezzük el a szimulációt és a jelormákat mentsük le, majd hasonlítsuk össze a Butterworth-tipusú szűrő jelormáival! A Filterlab program segítségével hasonlítsuk össze a különböző szűrő típusok áramköri rajzait, rekvenciamenetét ugyanarra a vágási rekvenciára! Figyeljük meg hogyan módosul a rekvenciamenet, ha változik a szűrő okszáma ugyanazon szűrő-típus esetén! A MEGÁLLAPÍTÁSOKAT, KÖVETKEZTETÉSEKET ÍRJUK LE! 4. Kérdések, megjegyzések 4.. Milyen szerepeket töltenek be az aluláteresztő szűrők a mérőműszerekben? 4.. Mi a különbség az aluláteresztő szűrők és elüláteresztő szűrők között? 4.. Hogyan kapunk sávszűrőt és milyen esetben, hol használhatók a mérőműszerekben? 4.4. A 7.. ábrán aluláteresztő szűrő rajza látható. Rajzoljuk meg az ennek megelelő elüláteresztő szűrőt! 4.5. Hogyan kapunk magassabb okszámú szűrőt? 4.6. Hasonlítsátok össze egy elsőokú és egy harmadokú aktív szűrő kapcsolási rajzát és rekvencia menetét!