2016. január 28., csütörtök
|
|
- Nándor Hegedűs
- 9 évvel ezelőtt
- Látták:
Átírás
1 2016. január 28., csütörtök Felfedezés, Játék és Alkotás ÉLMÉNYMŰHELY ÚJSZÁSZON, A SZOLNOKI MŰSZAKI SZC RÓZSA IMRE KÖZÉPISKOLÁJA ÉS KOLLÉGIUMÁBAN Cím: 5052 Újszász Dózsa György út 23. Programunk a Nemzeti Tehetség Program NTP-MTTD számú pályázata keretében valósul meg.
2 >>> Az ÉlményMűhely Nemzetközi Mozgalom az Élményközpontú Matematika-oktatásért 2008-ban indult útjára az Ars GEometrica művészet- és tudományközi találkozók nemzetközi elismertségnek örvendő tudósai, művészei és pedagógusai összefogásával. Újszászon megrendezett ÉlményMűhelyünkre játszani és felfedezni hívjuk a diákokat. A célunk, hogy megmutassuk, hogy a matematika több is lehet, mint szigorú tudomány. A matematika számunkra a közös élmények, felismerések forrása, az örömteli alkotás eszköze. Az ÉlményMűhely szakmai eseményeken, konferenciákon és önálló kiadványaiban számol be eredményeiről. Az elmúlt időszakban megrendezett, országos érdeklődésnek örvendő programjainkon több mint általános és középiskolai tanuló, főiskolás, egyetemista diák, valamint több ezer pedagógus és közel ugyanannyi szülő vett részt. A közelmúltban az ÉlményMűhely Mozgalom tagságának összefogásával négy nemzetközi szerzőgárdával büszkélkedő kiadvány is napvilágot látott. A HIDAK: Matematikai kapcsolatok a művészetben, a tudományban és az élményközpontú oktatásban (2011), az Élményközpontúság és vizualitás a matematika és a természettudományok oktatásában (2012) című szakkönyvek, az Adventures on Paper! (2014) matematikai-művészeti programcsomag, valamint az angol és magyar nyelven is megjelent Vasarely és a matematika (2011) című művészeti-matematikai album. Kiadványaink annak a szemléletváltásnak a megalapozásához járulnak hozzá, amelyre az ÉlményMűhely tanárokból, tudósokból, képzőművészekből, muzsikusokból, kézművesekből, irodalmárokból, filozófusokból, színházi szakemberekből, szülőkből és gyerekekből álló, 2008 óta egyre bővülő közössége szövetséget kötött. CSATLAKOZZ HOZZÁNK TE IS! Ha pedagógusként, szülőként, diákként vagy szimpatizánsként érdeklődsz a tevékenységünk iránt, írj nekünk az info@elmenymuhely.hu címre és felvesszük Veled a kapcsolatot! KÖVESS MINKET A FACEBOOKON:
3 , , : GIGANTIKUS NANOTECHNOLÓGIA! ÓRIÁSÉPÍTÉS 4DFRAME KÉSZLETTEL Szabó Ildikóval, az ÉlményMűhely pedagógiai vezetőjével, matematika-fizika tanárral Mi a közös a focilabda és a 60 szénatomból álló fullerén molekula között? Vizsgáljuk meg a szerkezetüket, építsük fel őket és kiderül! A műhely során Platóntól és az általa leírt geometriai testektől elindulva bontjuk ki az matematikai, építészeti, kémiai, biológiai és nanotechnológiai felfedezések érdekes történetét, miközben elkészülnek a kézbevehető modellek is.
4 , , : JÁTÉK ÉS ALKOTÁS A TÖBBDIMENZIÓS KOCKÁK ÁRNYÉKÁBAN Dr. Vörös László egyetemi docenssel (Pécsi Tudományegyetem) A többdimenziós kockákból sík és térbeli mozaikok, lehetetlen vagy annak tűnő, illetve kétértelmű alakzatok építhetők. A műhely keretében megvizsgáljuk, hogyan hozható mindez összefüggésbe például Victor Vasarely, M. C. Escher, F. Farkas Tamás művészetével és a geometriával, de saját alkotásokhoz is felhasználhatók megismert összefüggések. Az elemek a játszva tanulás egyszerű és nagyszerű eszközei.
5 , , : EGY CSOMÓ FURFANGOS CSOMÓ ÉS JOMILI ŐRÜLET Nyögéri Imre (ÉlményMűhely) matematikatanárral Nyögéri Imre trükkös csomói és ördöglakatjai szorosan kapcsolódnak a geometria különféle felületekkel foglalkozó ágához, a topológiához, azon belül is a csomóelmélethez, de mégsem teljesen topológiai elven működnek. Egyrészt térbeli, alak- és méretbeli megértést igényelnek, másrészt megoldásuk során átélhetjük azt a kivételes érzést, amikor sikerül egy elsőre lehetetlennek tűnő feladatot megoldanunk. A Jomili készletet Victor Vasarely festőművész művei és alkotói eljárásai ihlették. Számtalan kép és térbeli alkotás hozható létre a készlet nyolcféle, különbözőképpen megfestett kocka és hasáb elemeiből. A játék fejleszti a motorikus és kognitív képességeke, a kézügyességet, a térlátást, a kreativitást, a logikát.
6 AZ ÉLMÉNYMŰHELY UTAZÓ KIÁLLÍTÁSA (Kurátor: Dr. Fenyvesi Kristóf / Galériavezető: Szabó Ildikó) Az ÉlményMűhely Utazó Kiállítását 2010-ben hoztuk létre a világ legnagyobb matematikaiművészeti közössége, a Bridges Organization nemzetközi tagságának alkotásaiból. Egyre növekvő matematikai-művészeti gyűjteményünkben a világ művészetimatematikai élvonalának csaknem 100 alkotása található. A PROGRAM ZÁRÁSA A MŰHELYEKEN RÉSZTVEVŐ DIÁKOKKAL: ÉLMÉNYBESZÁMOLÓ A MŰHELYEK TAPASZTALATAI
7 Az ÉlményMűhely események szervezői: dr. Fenyvesi Kristóf (Jyväskyläi Egyetem, Finnország) az ÉlményMűhely és az Ars Geometrica elindítója és vezetője, a Bridges Organization (USA) közösségi eseményeinek igazgatója, a Nemzetközi Szimmetria Egyesület főtitkára fenyvesi.kristof@elmenymuhely.hu Szabó Ildikó (ANK-Pécs) matematika-fizika tanár és az ÉlményMűhely pedagógiai vezetője szabo.ildiko@elmenymuhely.hu Telefon: dr. Stettner Eleonóra (Kaposvári Egyetem) a Kaposvári Egyetem Matematika és Fizika Tanszékének vezetője és az ÉlményMűhely kutatási koordinátora dr. Lavicza Zsolt (Cambridge-i Egyetem, Nagy-Britannia) matematikus és az ÉlményMűhely oktatás-technológiai koordinátora Nyögéri Imre (Szabó Lőrinc Gimnázium, Budapest) matematika tanár, az ÉlményMűhely kreatív rendezvényvezetője CSATLAKOZZ HOZZÁNK TE IS! Ha pedagógusként, szülőként, diákként vagy szimpatizánsként érdeklődsz a tevékenységünk iránt, írj nekünk és felvesszük Veled a kapcsolatot! info@elmenymuhely.hu Facebook: Telefon:
2014. május 29. TEHETSÉGEK ÉS TEHETSÉGGONDOZÓK ÉlményMűhelye. Cím: Pécs, Boszorkány út 2., PTE PMMIK
és Informatikai Kar 2014. május 29. TEHETSÉGEK ÉS TEHETSÉGGONDOZÓK ÉlményMűhelye a Pécsi Tudományegyetem án Cím: Pécs, Boszorkány út 2., PTE PMMIK Építsd velünk a jövőd! Tehetségútlevél a jövő mérnökeinek
Részletesebben2013. június 5., Fülek. ÉlményMűhely a füleki Tudománynapokon MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN
2013. június 5., Fülek ÉlményMűhely a füleki Tudománynapokon MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN >>> Az ÉlményMűhely Nemzetközi Mozgalom az Élményközpontú Matematika-oktatásért
Részletesebben2015. november 16. Művészet, Matematika, Játék és Innováció: ÉlményMűhely a Debreceni Ady Endre Gimnáziumban
2015. november 16. Művészet, Matematika, Játék és Innováció: ÉlményMűhely a Debreceni Ady Endre Gimnáziumban 4024 Debrecen, Liszt Ferenc u. 1. PROGRAM ÓRIÁSFRAKTÁL ÉS FULLERÉN MOLEKULA ÉPÍTÉS 4DFRAME KÉSZLETTEL
Részletesebben2013. június 6., Ipolyság. ÉlményMűhely az ipolysági Tudománynapokon MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN
2013. június 6., Ipolyság ÉlményMűhely az ipolysági Tudománynapokon MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN >>> Az ÉlményMűhely Nemzetközi Mozgalom az Élményközpontú Matematika-oktatásért
Részletesebben2013. június 4., Királyhelmec. ÉlményMűhely a királyhelmeci Tudománynapokon MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN
2013. június 4., Királyhelmec ÉlményMűhely a királyhelmeci Tudománynapokon MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN >>> Az ÉlményMűhely Nemzetközi Mozgalom az Élményközpontú
RészletesebbenTERVEZD VELÜNK A JÖVŐD!
2015. október 16. TERVEZD VELÜNK A JÖVŐD! ÉlményMűhely a Pécsi Tudományegyetem Műszaki és Informatikai Karán Pécs, Boszorkány út 2., PTE MIK Ingyenes részvétel, regisztráció e-mailben» a programon való
RészletesebbenMŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN
MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ AZ ISKOLÁBAN ÉS A KIÁLLÍTÓTÉRBEN Az ÉlményMűhely Nemzetközi Mozgalom az Élményközpontú Matematika-oktatásért 2008-ban indult útjára a magyarországi Ars GEometrica
RészletesebbenMATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
Részletesebbenértelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
A Baktay Ervin Gimnázium alap matematika tanterve a 6 évfolyamos gimnáziumi osztályok számára 7. 8. 9. 10. 11. 12. heti óraszám 3 cs. 3 cs. 3 cs. 4 4 4 éves óraszám 108 108 108 144 144 120 (cs.: csoportbontásban)
Részletesebbenkülönösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenMŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ A MŰVELŐDÉSI HÁZBAN ÉS A KIÁLLÍTÓTÉRBEN
2013. február 8-9. Első Dombóvári ÉlményMűhely Művészeti-Matematikai JátékFesztivál MŰVÉSZET, TUDOMÁNY, JÁTÉK ÉS INNOVÁCIÓ A MŰVELŐDÉSI HÁZBAN ÉS A KIÁLLÍTÓTÉRBEN >>> Az ÉlményMűhely Nemzetközi Mozgalom
RészletesebbenMatematika. 5. 8. évfolyam
Matematika 5. 8. évfolyam 5. 6. évfolyam Éves órakeret: 148 Heti óraszám: 4 Témakörök Óraszámok Gondolkodási és megismerési módszerek folyamatos Számtan, algebra 65 Összefüggések, függvények, sorozatok
RészletesebbenRövid tantárgyi leírás. Előfeltétel. A tantárgy neve SZABV31 Szorobán. 2 3 m SZV I-VIII.
Rövid tantárgyi leírás SZABV31 Szorobán Cél: A hallgatók megismertetése a japán számolóeszköz történetével, használatával. A négy alapművelet tanítási módszereinek, lehetőségeinek elsajátíttatása. Felkészítés
Részletesebbenképességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenRátz Tanár Úr Életműdíj 2014 Matematika. Békefi Zsuzsa Kubatov Antal
Rátz Tanár Úr Életműdíj 2014 Matematika Békefi Zsuzsa Kubatov Antal BÉKEFI ZSUZSANNA 1967-ben kezdte középiskolai tanári pályáját matematika-fizika szakos tanári végzettséggel. Két évig a keszthelyi Vajda
RészletesebbenA pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag
A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 18 év pentominók adott tulajdonságú alakzatok építése szimmetrikus alakzatok egybevágó alakzatok
RészletesebbenVI.9. KÖRÖK. A feladatsor jellemzői
VI.9. KÖRÖK Tárgy, téma A feladatsor jellemzői A kör területe, arányok változatlansága sokszorozás esetén. Előzmények Cél A kör részeinek területe egyszerű esetben, szimmetriák, a négyzet és átlójának
RészletesebbenMATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása
RészletesebbenMATEMATIKA 1-2.osztály
MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani
Részletesebben2017. május 18. TERVEZD VELÜNK A JÖVŐD! ÉlményMűhely a Pécsi Tudományegyetem Műszaki és Informatikai Karán Cím: Pécs, Boszorkány út 2.
2017. május 18. TERVEZD VELÜNK A JÖVŐD! ÉlményMűhely a Pécsi Tudományegyetem Műszaki és Informatikai Karán Cím: Pécs, Boszorkány út 2. INGYENES RÉSZVÉTEL REGISZTRÁCIÓ E MAILBEN A programon való részvétel
RészletesebbenHELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok
HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
RészletesebbenEMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet
RészletesebbenMatematika. Padányi Katolikus Gyakorlóiskola 1
Matematika Alapelvek, célok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
RészletesebbenMATEMATIKA 5 8. ALAPELVEK, CÉLOK
MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
RészletesebbenMatematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok
Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
Részletesebbenértelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
Helyi tanterv matematika általános iskola 5-8. évf. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
RészletesebbenA Szekszárdi I. Béla Gimnázium Helyi Tanterve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika
RészletesebbenNIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra
NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra A matematikatanítás célja, hogy lehetővé tegye a tanulók számára a környező világ térformáinak, mennyiségi viszonyainak, összefüggéseinek
RészletesebbenMatematika. 5-8. évfolyam. tantárgy 2013.
Matematika tantárgy 5-8. évfolyam 2013. Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről
RészletesebbenMATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
Részletesebben5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenMatematika helyi tanterv,5 8. évfolyam
Matematika helyi tanterv - bevezetés Matematika helyi tanterv,5 8. évfolyam A kerettanterv B változatának évfolyamonkénti bontása Bevezető Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson
RészletesebbenAz ELTE Radnóti Miklós Gyakorló Általános Iskola és Gyakorló Gimnázium Pedagógiai Programja
Az ELTE Radnóti Miklós Gyakorló Általános Iskola és Gyakorló Gimnázium Pedagógiai Programja OM azonosító: 037802 1146 Budapest, Cházár András u. 10. Budapest, 2015. október 21. dr. Molnár Katalin igazgató
Részletesebbenkülönösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Részletesebbenkülönösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson amatematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenI. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
RészletesebbenGyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY
Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY KÉSZÍTETTE: Bartháné Jáger Ottília, Holndonnerné Zátonyi Katalin, Krivánné Czirba Zsuzsanna, Migléczi Lászlóné MISKOLC 2015 Összesített
RészletesebbenTanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
RészletesebbenMATEMATIKUS SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA. Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés
MATEMATIKUS SZAKMAISMERTETŐ INFORMÁCIÓS MAPPA Humánerőforrás-fejlesztési Operatív Program (HEFOP) 1.2 intézkedés Az Állami Foglalkoztatási Szolgálat fejlesztése MATEMATIKUS Feladatok és tevékenységek Mit
RészletesebbenMATEMATIKA. 5 8. évfolyam
MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni
Részletesebben2018. május 24. TERVEZD VELÜNK A JÖVŐD!
FELFEDEZÉS JÁTÉK MŰVÉSZET TUDOMÁNY INNOVÁCIÓ VÁLLALKOZÓI SZELLEM DESIGN 2018. május 24. TERVEZD VELÜNK A JÖVŐD! Továbbtanulási, felvételi előkészítő és tehetséggondozási lehetőségek ÉlményMűhelye a Pécsi
RészletesebbenMatematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály
Matematika 1 4. évfolyam Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi
RészletesebbenNyírbátori Református Általános Iskola Székhelye: Nyírbátor, Fáy András u. 17 sz.
Nyírbátori Református Általános Iskola Székhelye: Nyírbátor, Fáy András u. 17 sz. végzettség szakképzettség Oklevél kiállítója Beosztás, megbízás Tanít Egyetemi-mester, orosz, könyvtár speciális, Orosz
RészletesebbenSzakképzettsége magyar, ének-zene szak tánc- és drámapedagógus népzene szak. műszaki tanár, mérnöktanár. gépész üzemmérnök, autógépész mérnöktanár
Szemere Bertalan Szakközépiskola, Szakiskola és Kollégium A pedagógusok iskolai, szakképzettsége a helyi tanterv tantárgyfelosztásához hozzárendelve Sorszám 1. 76165706141 főiskola magyar, ének-zene szak
RészletesebbenEMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára
EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet
RészletesebbenSzlávi Péter: Szakmai önéletrajz
Szlávi Péter: Szakmai önéletrajz Személyi adatok: Név: Szlávi Péter Születési idő: 1955. augusztus 6. Születési hely: Budapest Lakcím: 1118 Budapest, Gazdagréti tér 1. Telefon: 246 6137 Képzettség: Végzettség:
Részletesebbenközépiskolai tanár egyetem főiskola egyetem középiskolai tanár, egyetem, szakvizsga intézményvezetőhelyettes egyetem, szakvizsga középiskolai tanár
, munkaközösség-vezető, intézményvezetőhelyettes, szakvizsga, szakvizsga ,, szakvizsga ének-zene, szakvizsga , szakvizsga, szakvizsga, intézményvezetőhelyettes, szakvizsga intézményvezető, szakvizsga testnevelő
RészletesebbenTevékenységalapú nyílt oktatás DR. SIMÁNDI SZILVIA ESZTERHÁZY KÁROLY FŐISKOLA ANDRAGÓGIAI ÉS KÖZMŰVELŐDÉSI TANSZÉK
Tevékenységalapú nyílt oktatás DR. SIMÁNDI SZILVIA ESZTERHÁZY KÁROLY FŐISKOLA ANDRAGÓGIAI ÉS KÖZMŰVELŐDÉSI TANSZÉK Egész életen át tartó tanulás (LLL) - az idődimenzió mentén helyezi el a tanulás folyamatát,
RészletesebbenA továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
Részletesebbenhogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenHELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,
RészletesebbenMATEMATIKA A és B variáció
MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy
RészletesebbenSzámsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás
12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat
RészletesebbenHELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK
HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK 1 MATEMATIKA (4+4+4+4) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és mint sajátos emberi megismerési,
RészletesebbenMatematika. 1-4. évfolyam. tantárgy 2013.
Matematika tantárgy 1-4. évfolyam 2013. Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási,
Részletesebben9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
RészletesebbenMATEMATIKA 1-12. ÉVFOLYAM
MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési
RészletesebbenAz osztályozó vizsga tantárgyankénti, évfolyamonkénti követelményei
Herman Ottó Általános Iskola 1222. Budapest Pannónia u. 50. Az osztályozó vizsga tantárgyankénti, évfolyamonkénti követelményei Házirend 1. számú melléklet Takács Éva igazgató 1 T ART AL OMJEGYZ ÉK 1.
RészletesebbenGyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!
Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA
RészletesebbenTanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
RészletesebbenKaribi kincsek Dokumentáció
Dokumentáció 2010.03.24. Gyimesi Róbert Alapvetés Milyen célok elérését remélhetjük a programcsomagtól? Ezen oktatócsomag segítségével egy olyan (matematika)feladatot dolgozhatunk fel, oldhatunk közösen
RészletesebbenMATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
RészletesebbenA figurális számokról (I.)
A figurális számokról (I.) Tuzson Zoltán, Székelyudvarhely A figurális számok felfedezését a pitagoreusoknak tulajdonítják, mert k a számokat kavicsokkal, magokkal szemléltették. Sok esetben így jelképezték
RészletesebbenMATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
RészletesebbenApor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.
1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. alapján 1-4. évfolyam 2 MATEMATIKA Az iskolai matematikatanítás célja,
RészletesebbenMatematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
RészletesebbenMatematika tanmenet 2. osztály részére
2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:
RészletesebbenOktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
RészletesebbenJÓ GYAKORLATOK MEGOSZTÁSA
JÓ GYAKORLATOK MEGOSZTÁSA A jó gyakorlatok megosztása kiscsoportos munka keretében történt, az alábbi előre megadott témák mentén: Munkaerő-piaci igények, vállalati együttműködés, gyakorlati képzés Tanulási
RészletesebbenSzabadon szolgál a szellem
Világosság 2005/2 3. Eötvös Collegium mûhely Szabadon szolgál a szellem Sepsi Enikôvel, az Eötvös József Collegium igazgatóhelyettesével beszélget Fábri György Sepsi Enikő 1995-ben pályakezdőként lett
RészletesebbenHelyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
RészletesebbenNemzeti alaptanterv 2012 MATEMATIKA
ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Részletesebben4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK
71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.
Részletesebben2.2 Logisztorik (Gindilla Orsolya) 2012. szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet
Tartalomjegyzék Az Ön könyve tartalmazza Tartalomjegyzék Szerzők Használati útmutató A megjelenés dátuma A GONDOLKODÁSI MÓDSZEREK 2. Logika 2.1 Képes sudoku kezdőknek (Tariné Berkes Judit Katalin) 2.2
RészletesebbenMatematika az építészetben
Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:
RészletesebbenMATEMATIKA Emelt szint 9-12. évfolyam
MATEMATIKA Emelt szint 9-12. évfolyam évfolyam 9. 10. 11. 12. óra/tanév 216 216 216 224 óra/hét 6 6 6 7 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről
RészletesebbenHuszár Gál Gimnázium, Általános Iskola, Alapfokú Művészeti Iskola és Óvoda Pedagógiai Programja
II.2.5.2. KÉPZŐ- ÉS IPARMŰVÉSZETI ÁG " A múltat is alkotni kell, különben elvész, elmúlik, ha nem lesz belőle műalkotás " / Illyés Gyula / ÁLTALÁNOS BEVEZETŐ 1. Előzmények, eddigi eredmények - Iskolánk
RészletesebbenTIMSS 2011. Tanári kérdőív Matematika. online. 8. évfolyam. Azonosító címke
Azonosító címke TIMSS 2011 Tanári kérdőív Matematika online 8. évfolyam Oktatási Hivatal Közoktatási Mérési és Értékelési Osztály 1054 Budapest, Báthory u. 10. IEA, 2011 Tanári kérdőív Az Önök iskolája
RészletesebbenTisztelt Igazgató úr! Kedves Osztályfőnök kollégák!
Tisztelt Igazgató úr! Kedves Osztályfőnök kollégák! A kolozsvári Babeş Bolyai Tudományegyetem Magyar Tagozata Ismeretterjesztő, játékos előadásokat és foglalkozásokat hirdet középiskolásoknak 2015. április
RészletesebbenA Kari Tanács 8/2013. (V. 23.) sz. határozata Tanegységlisták módosításának támogatásáról
A 8/2013. (V. 23.) sz. határozata Tanegységlisták módosításának támogatásáról A 10 igen szavazattal, egyhangú szavazással támogatta Biológia tanár 4+1 és Biológia BSc; Informatikatanár (4+1); Földrajz
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenCsere-bere. 2. modul. Készítette: KÖVES GABRIELLA
Csere-bere 2. modul Készítette: KÖVES GABRIELLA 2 Csere-bere A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai A tudatos észlelés, a megfigyelés és a figyelem
RészletesebbenMatematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti
Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló
RészletesebbenApor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2.
1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2. alapján 9-12. évfolyam 2 Az iskolai matematikatanítás célja, hogy
RészletesebbenJOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül
LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...
Részletesebbenprojektív geometria avagy
A probléma eredete. Előzmények. Egy művészetből született tudomány, a projektív geometria avagy Hogyan lett a barackmagból atommag? Klukovits Lajos TTIK Bolyai Intézet 2015. november 17. A képzőművészeti
RészletesebbenTBL05A01 Bevezetés a matematikába. 2 7 m K I.
TBL05A01 Bevezetés a matematikába 2 7 m K I. CÉL: A matematikatanítás feladatainak, lehetőségeinek megismertetése. A legfontosabb matematikai alapok felfrissítése, a hallgatók matematikai kompetenciájának
RészletesebbenAz V. Körmöczi János Fizikusnapokról
TÁJÉKOZTATÓ X. ÉVFOLYAM, 10. SZÁM 1999. OKTÓBER AZ ERDÉLYI MAGYAR MŰSZAKI TUDOMÁNYOS TÁRSASÁG KIADVÁNYA Emlékezés Fabinyi Rudolfra a kolozsvári egyetem egykori kémiaprofesszorára 150 éve született Fabinyi
RészletesebbenA Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója
1.sz. Függelék: A Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója Osztályfőnökök részére..tanév.. félév..osztály 1. A szakmai munka áttekintése: Statisztika Az osztály létszáma:. fő
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenTudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás
NTP-KKI-B-15 A köznevelés és kulturális intézményekben működő tehetséggondozó programok támogatása Tudomány és művészetek tehetséggondozó műhely záró foglalkozás és kiállítás Tudomány és művészetek tehetséggondozó
RészletesebbenELTE, matematika alapszak. Zempléni András oktatási igazgatóhelyettes Matematikai Intézet
ELTE, matematika alapszak Zempléni András oktatási igazgatóhelyettes Matematikai Intézet Matematika alapszak szerkezete 1. év NORMÁL Kb 60 fő (HALADÓ) Kb 50 fő INTENZÍV Kb 30 fő matematikai elemző 2. és
RészletesebbenAZ INFORMATIKA OKTATÁSÁNAK MÚLTJA ÉS JELENE A KOLOZSVÁRI EGYETEMEN
AZ INFORMATIKA OKTATÁSÁNAK MÚLTJA ÉS JELENE A KOLOZSVÁRI EGYETEMEN Kása Zoltán, kasa@cs.ubbcluj.ro Robu Judit, robu@cs.ubbcluj.ro Varga Ibolya, ivarga@cs.ubbcluj.ro Babes-Bolyai Tudományegyetem, Matematika
RészletesebbenSZÁMÍTÓGÉPES FOLYAMATMODELLEK AZ ELMÉLETI FIZIKÁBAN
SZÁMÍTÓGÉPES FOLYAMATMODELLEK AZ ELMÉLETI FIZIKÁBAN Bárdos Gyula, bardos@dtp.atomki.hu Elméleti Fizikai Tanszék, Kossuth Lajos Tudományegyetem Computer experiments in the education of theoretical physics
Részletesebben360 Ft. 10 990 Ft. 990 Ft. 29 900 Ft. 7 900 Ft. 2 690 Ft. 3 650 Ft. 7 490 Ft. www.taneszkoz.hu. Csak a készlet erejéig. Matematika
Minden, ami a színvonalas oktatáshoz kell! Balázs-Diák Kft. 1043 Budapest, Csányi László u. 34. email: info@taneszkoz.hu Telefon: +36 1/266-5140 Fax: +36 1/266-4644 Matematika Számlapok 1-100 ig Számlapocskák
RészletesebbenBiztosítás és társadalombiztosítás
Biztosítás és társadalombiztosítás Dr. FARKAS Szilveszter PhD, egyetemi docens Pénzügy Intézeti Tanszék farkas.szilveszter@pszfb.bgf.hu, http://dr.farkasszilveszter.hu Fő témakörök 1. Biztosítás fogalma
RészletesebbenSíklefedések Erdősné Németh Ágnes, Nagykanizsa
Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen
RészletesebbenÚtmutató a Matematika 1. tankönyv használatához
Útmutató a Matematika 1. tankönyv használatához ELŐSZÓ Kedves Tanító Kollégák! Ebben a rövid útmutatóban összefoglaljuk azokat a szerintünk alapvető tudnivalókat, amelyek az 1. évfolyam matematikaóráinak
Részletesebben