Feladat megoldások. 1.1 NRZ módú D/A (spektrum csillapítás) 1.3 (b) Frekvencia kompresszió ( alul mintavételezés) Kvantálási zaj csökkentés
|
|
- Ernő Lakatos
- 6 évvel ezelőtt
- Látták:
Átírás
1 Feladat megoldáok Fukcoál megotá. NRZ módú D/ (pektrum cllapítá). (b) Frekveca kompreó ( alul mtavételeé) Kvatálá aj cökketé. L-ed redű ajormálá (derecálá). SQNR max (, L, M paraméterű DSM) Elem átalakítók. MSH Ekö mőíté ( BC leve ) 4. D/ leartá (INL, DNL) 4.4 Haomá (ala) 4. (b) SNR beclé (FFT) rctektúrák (Nyqut rate). SR /D kotra cklku /D
2 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok. RZ (retur-to-ero: "RZ") módú D/ átalakító. Veeük le a ellépő ampltúdó-pektrum cllapítá rekveca üggéét, legye a tartá dő értéke: τ ( t ). Semlélteük a pecál ZOH ("NRZ mode"): τ t é HOH ("ero tug"): τ t/ eeteket. É m a elyet a áal? Megjegyé: a tartá traer üggvéyéek t oró aktora é a egyeletee mtavételeett dkrét dejű jel pektrumáak /t oró aktora kejt (!) egymát (eért ettől eltektetük). /t a mtavétel rekveca (adatríté gyakorág). domá NRZ mód ( ZOH) elemééek módere a példa. lépcő ullámormát geeráló eljárá émája: u(t)(ωt) aol u ( t) u( t) δ ( t t) U ( ) t U t [L. Dalto ] ( t), < t / t < H ( ) t SINC( t) e j π ( t / ) é eel u ZOH ( t) U ZOH ( ) U ( ) H ( ) U t SINC( t) e j π ( t / ) Burkoló ( roll-o: SINC(y) (πy)/πy ) típuú pektrum cllapítá lép el, é t/ kélelteté. (E utóbb emléletee belátató: a u ZOH (t) tartott értékeek köép-potjat öekötve rekotruáljuk a jelet, akkor a u(t) jel t/-vel eltolt váltoatát kapjuk.) ( ) ( ) π v SINC( v) : v,, π v db( v) : log SINC( v). db() db(.) -.9 db(.) -.9 db( v) Haoló a ámítá eljárá τ ( t) tartá dő eetére. 4 v
3 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok.(b) Peródku jel dő-kálááa (armóku kompoeek orred-tartó é aráyo átelyeée a alapávba: rekveca kompreó). Mutauk meg, ogy egy m m ( + δ), m,... kompoeekből álló jelet gyakorággal (alul)mtavételeve, a alapáv rekveca egmeből a dő-káláott (/δ peróduú) eredet jelorma vaállítató. Lád a 4.4 eladat megoldáát, a eltétel: legye m δ < /. Példa a orred-ordító é á-vertáló (!!) eetre: m m ( - δ) [ D:] // Matcad // Sgal: D: a : a :.9 a :. (ampltude) (gle perod) p : p :. p :. (pae) xt () : k ampled vero: a π D ( k ) t + p k k N : 6 : N :.. N (odd armoc) : x( ) "Negatve" ala xt () : k ( rom d Nyqut-oe), a tme-revered vero: a π D ( k ) t + p k k : x( ) D : gal () "egatve" ala () Note: or "potve" ala cage D to D ( rd Nyqut-oe) Elemeük a jeleéget a rekveca-tartomáyba (a et adatokkal, m )!
4 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok. djuk meg (rélete leveetéel) a L - ed redű aj-derecálá traer üggvéyét (é köelítéét) a olytoo dejű rekveca tartomáyba. Ábráoljuk a értelmeé tartomáyba LIN /é LOG (db)/ ampltúdó kálával, L,, paraméterrel. Mt tapataluk / /6 eeté? L-ed redű ajormálá (derecálá) dkrét dejű traer üggvéye NTF() (- - ) L, aol a kéleteté operátor a mtagyakorág recproka: t /. olytoo dejű rekveca tartomáyba (, /): [ NTF( ) j π t ] e L e Megjegyé: / /6 eeté (π/6) /. e jπ t L jπ t ( e jπ t L ( ( π / )) L ( ( π / )) a << / e jπ t ) L Elõredû ajormálá (L ) ( π x) 6 π x x L-ed redû ajormálá (L,, ) L 6 ( π x) ( ( π x) ) ( ( π x) ) 4 ao áv: << / L L x 4
5 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok. bte, L - ed redű, M túlmtavételeé aráyú ajormáló (DSM). Igaoljuk (a) a ao ávba elérető 'maxmál jel/aj aráy': SQNR max [db] ormuláját, é (b) a kétéle orma ekvvalecáját (mekkora K : 'truktúra üggő kota' értéke é mey a elbotá-övekméy?) Feltételeük, ogy a kvatálá aj éleávú, pektrála eér : P Q ( x) /. L-ed redű ormálá (derecálá) utá a kvatálá-aj pektrum L PQ P L Q S N ( ) [ ( π / ] (π / ) / /, << ( ) / így a aj-teljeítméy a ao ávba: P B B S N ( ) d P M Q / P Q L+ B (π / L π L + ) L d P aol M Q (π ) L+ ( / ) B L L+ B L + Maxmál, X FS / ampltúdójú uo jel (teljeítméye: P ((X FS /)/ ) (X FS ) /8) é bte elbotáú kvatáló (x X FS / ) eeté a maxmál jel/(kvatálá-)aj teljeítméy aráy SQNR [ db] log( P / P ) max B L π (L + ) log( M ) C( L), C( L) log L + C( L) ( L + ) ld( M ) K, K 6 ld : -e alapú logartmu. Praktkua a M túlmtavételeé aráy atváya, eért oká oktáv (x-e) egyégbe mér. btám övekméy L L L C(L) [db] K [bt] [M6 4 ] [M64 6 ] aol ( L + ) ld( M ) K [ bt] DELT [ bt ] é B << / L (cak túlmv.) M [ oktáv ] a elbotá max. btám-övekméye (elv lmt) a tábláatba rögített (M6 4 oktáv ll. M64 6 oktáv) túlmtavételeé aráyál. Megjegyé: a ábrából jól látató, ogy agyobb M értékél atáoabb L övelée. L.
6 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok. Dgtál DSM két, kakád émáját váolja a ábra, aol D : delay (regter), K : a bemeet (mult-bt) é N(t) : a kmeet (data tream); a pecál alkalmaá: ' ractoal-n PLL' rekveca téél a N.K átlagértékű otáo a váltoó otáaráyú otó damku veérlée - e [Y. Fa, M&RF Dec. ] c c c Learált kvatáló modellel adjuk meg a ekvvale topológákat é a traer üggvéyeket Útmutatákét (a egyk émára): e a MSH topológa megelel a. eladat -MSH, L kakád átalakító alapváltoatak, aal a külöbéggel, ogy tt (a) a kélelteté (D) a vacatoló ágba va é módoított a előjel (lád jegyet.old), (b) a ba kvatáló (máodk okoat) bemeete: - e, így a aj koltáo (c dgtál derecáláa utá) öegé kell. Te metod o ractoal-n (FN) yte wa troduced a eort to mprove te reoluto v. badwdt relatop o te clacal PLL tructure by removg te retrcto tat N be a teger. Fgure llutrate t tecque, ad reveal tat oteger N value are produced by dterg betwee teger value. [M. Perrot 99] VCO PLL: pae locked loop PFD: pae/requecy detector VCO: voltage cotrolled ocllator (K) FN acve te extra reoluto by tataeouly modulatg te dvder betwee N ad N+. T duty cycle, wc a a value K/, determe te ractoal value. Te average ractoal dvo rato N +.F N + K/ Note: te ma problem o t mplemetato te pae perturbato troduced by te programmable requecy dvder, we wtcg rom N to N+. 6
7 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok 4. bte, upolár D/ átalakítóál jelölje [] a N adato tartoó aalóg értéket, amely a követleül mérető kmeetből ullapot é kála korrekcóval kapott (ormalált) érték, vagy [], [ -] U FS - é U FS / a átlago lépéagyág (a LSB értéke). Deícó ert, a LSB-be mért (relatív) derecál é tegrál leartá ba [ ] [ ] [ ] DNL [ ] é INL[ ] Igaoljuk a ekvvalecákat (amelyek a eleveéeket dokolják): DNL [ ] INL[ ] INL[ ], lletve INL[ ] DNL[ k] (a DNL a INL-oroat előredű derecája; a INL prolt kumulatív DNL alakítja k). Mutauk meg: a mde -re INL [ ] <. vagy ebből követkeőe DNL [ ] <, akkor a adott elbotáú átalakító mooto: övekvő bemeetre a kmeet övekk. (É e krtku pl. poícó beállítá vagy vacatolt abályoá kör eeté.) állítá megordítva em áll. Megjegyé: gyakor óaálat ert, a INL a leartá ba (a relatív potoág); míg em-ormalált adatokkal ámolt INL a abolút ba (TUE: total uadjuted error) Korrgált adat: Jelölje U[],,,,... - a aktuál upolár D/ adatokat. Normalált - vagy ullapot (oet; OE: oet error) é kála (ga; GE: ga error) korrekcóval módoított (!) - értékekkel é LSB ( ) egyégbe ámoluk. Végpotokra lletett jelleméél a elő (m, N bemeet) é utoló (max, N -) aktuál kmeet érték adja a (a korrekcóo ükége) bákat: U[] OE, U[ ] U[ ] U[] ( ) ( ) GE OE eeket elaálva, a korrgált érték U[ ] GE [ ] ( U[ ] OE ) GE OE Megjegyé: oká követleül a GE/( -) értéket "kála ba két tekte, é aoal []/ adatokkal ámol. Ekvvaleca: Egyerű átredeéel kapjuk a ekvvale ormákat, pl. [ ] [ ] [ ] [ ] DNL [ ] + ( ) Moototá: Ha INL [ ] <., akkor < INL[ ] INL[ ] <. Ebből, vagy a DNL [ ] < egyelőtleégből pedg a követkek, ogy [ ] [ ] < < [ ] > [ ] teát övekvő bemeetél a kmeet övekk. < [ ] [ ] < k < [ ] [ ] a két végpot leartá bája éru: ú. végpotokra lletett ("ed-pot") jellemé - e a koervatív emlélet a kalbrált "par(mérő)"-átalakítók jellegeteége ( embe a "kommukácó"-átalakítók ú. "bet-t ( leat-quare)" jelleméével, vagy a abolút eltérét mmaláló "m-max" móderrel ) a gyártók redert a max. adatot peckálják
8 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok Példa [ U[] - Wooley, ]: // Matcad // U FS : :.. U FS : 8 : U : U OE : GE: U U ( ) OE. GE.6 GE.. : U OE GE INL : INL INL k:.. k k DNL : k k DNL k DNL k k 8
9 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok Megjegyéek a korrekcóo: míg OE (oet error) mde pot (aktuál D/ kmeet érték) egyelete vertkál eltolódáát eredméye, addg GE a bemeő kóddal aráyo vertkál módoulát oko. U[]/U FS U[]/(. ) (GE) Correcto (x) α N Trgoometrku öeüggéel (OE korrekcó utá é egyégbe ámolva), a bemeő kóddal aráyo kála korrekcó: x ( tgα ) GE x GE leartá bák ámítááo ormalált - ullapot (OE) é kála (GE) korrekcóval módoított - adatokat aáluk. elő INL érték éru ( INL[] ), a máodk a elő DNL értékkel aoo ( INL[] DNL[] ), a követkeő a elő két DNL öegével egyek meg, tb. INL a DNL-oroat kumulatív öege ( tegrálja ). utoló INL érték té éru ( INL[ -] ). DNL a INL-oroat előredű derecájakét ámítató (eért c DNL[] adat). It would be ard to mage a 6-bt DC wt better perormace ta tat ow Fgure. Te LTC9 a extremely good learty or a 6- bt DC, ad te reult ow Fgure ould ot be take a repreetatve o all 6-bt DC. // Tere a mtake Fgure. Ca you pot t? I you ca, you kow a great deal about DC tetg. Te mtake doe ot volve te "o value" reult ow te Ga/Oet Error pael. (For tee error, "No Value" reported becaue te + V reerece could ot be meaured drectly by te tet etup.) Te "Stop Code" ow Fgure correct. It ould be 6, ( - ), ot 6,4 ( - ) //. [J. Hor, ] 9
10 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok 4.4 gyakorágú mtavételeéél, a,,... armókuok átlapolódáa a alapávba (a elő Nyqut óába, alag) kétéle módo ámítató. Igaoljuk a ormulákat! (a) mod( ) művelet ( ajtogatá ; oldg): mod, a ( <.,, ) ala a < / aol mod(a,b) : a/b otá maradéka, é (c,t,) : a c (eltétel) ga, akkor t; a c am, akkor. (b) rekveca átelyeé (keveré; beatg): k roud ala k < / aol roud ( ) : kerekíté művelet. Mért "veélye", a a umerku rekveca (/ J/M) pecála k egé ámok aráya (detructve alag)? Leet-e ao a átlapolódá jeleége (cotructve alag)? Suo jel (gle toe) /t gyakorágú mtavételeée követleül megmutatja a Nyqut-abály megértééek ( > /) követkeméyét. alapávba (a elő Nyqut-óába) kerül mde k ±, < / é k,, K rekvecájú kompoe, mert eekek a mta-értéke aooak (!!) egy ( ala) kompoe mtával: (π ( k ± ) t) t t (π k ± π ( ( ± π ( / ) ) / ) ) egatív előjel á-ordítát jelet. (E pl. a FFT ampltúdó pektrumba em látk!) roud ( ) művelet a meretle k értékét atároa meg, é eel a rekveca trapoícó: k. Megjegyé: k a átlapolódá redje (order o alag), a pektrum képmá(ok) - -re ormált - elyét jelöl. Má emlélettel: deícó ert, a rekveca a á-váltoáal aráyo ϕ, é t t (mta dőkö) alatt ϕ ±ϕ + k π á-váltoá lépet el, π t aol ϕ < π (a + é előjel a leetége kétéle elordulá ráyt jel a á íko), a uo jel pedg π ert peródku ( mod π ). Ebből ϕ ± + k ± + k, é < / π vagy t t dőköökre a k ± kompoeek á-váltoáa ( mod π ), é így a mta-értékek, aooak. mod( ) művelet válatja le k (egé ám) értékét, a ( ) művelet a előjel üggét ve gyelembe (vagy at, ogy a máodk ( >.): páro é orred-ordító, á-vertáló [ ] vagy a elő: páratla é orred-tartó [ + ] Nyqut-óába va-e a kompoe). Praktkua: / ávokra (Nyqut-óákra) elotott rekveca tegelye egy k kompoe, míg egy k + kompoe rekvecájú kompoekét jelek meg a alapávba ( < / ) ( x) ( x)
11 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok LPSÁV (/) k k / / / Nyqut óák "aomáok" a alapávba /.(/) - + a jel kompoeek "megértk" a Nyqut-abályt ( > /) [B. Brao et al., ] Példa: páratla armókuok átlapolódáa // Matcad // (a umerku rekveca k egé ámok aráya: /) uod requecy : KH ODD armoc :,.. : amplg rate : KH t metod: mappg by mod( ) operato Nyqut oe (, ) le te t Nyqut oe : mod, a : <,, ala : a d metod: tralatg by " mxg (beatg)" proce poto o mage (order o alag) k : roud le te t Nyqut oe ala : k KH ala KH 9 ala KH 9 k gal [ overlapped armoc tructure ] Tere a mave overlappg / rato o mall teger. Here te perodcty o ample N, ece requece wll duplcate a dex take o all odd value above. aomá (ala) jeleég kaáláára, példakét, lád a. eladatot.
12 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok 4. (b) Egyerű "trükk" a jel/aj aráy vuál becléére: M m potámú adat-rekord FFT ábrájából "emrevételeéel" a aj-küöb értéke (aa egy aj "voal" átlago jel/aj aráya) Z [db], ebből SNR [db] Z - (m-). Igaoljuk a eljárát! Legye P egy átlago aj-voal teljeítméy, így a telje aj-teljeítméy: P, a ( M / ) P jel/aj aráy pedg [ ] log P P M SNR db log log Z[ db] ( m ) log P P?? [T. Rakoe, ] oter way o lookg at t to coder te FFT tel. Te FFT reult actually te output o a group o dgtal badpa lter. te data et doubled, te wdt o te lter reduced by ½, ad te average oe power wt tat lter' badwdt all by db. However, te total power rema te ame. I d tat te mot coug apect o te oe loor calculato to remember to ubtract oe rom m. I you look at Fgure, you ca ee tat te "average" oe loor aroud - db. Sce te pectrum baed o a 8K FFT, te oe loor 6 db lower ta te coverter' SNR, wc mut be -db + db * ( - ), or aroud 8 db. ctually, te coverter' SNR lgtly better ta t at aroud 89 db. However, te FFT plot a bee doe wt a arly tck le wdt, ad t omewat de te act tat te average oe loor lgtly lower ta ow Fgure. Stll, gettg wt db va a mple trck ot bad. [J. Hor, ] Frequecy Spectrum o a 6-bt, 4 kh DC Dgtg a 9.8 kh Iput gal
13 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok. Haolítuk öe a bte modult aáló cklku (R : rémaradékot recrkuláltató) /D ( ba kétereé) é a SR /D ( reereca eleé) truktúráját ( bt). Mey a umerku mta előállítááo ükége órajel ütem-ám? Leet-e SR /D eeté követleül oro adat-kmeetet előállíta? (a) SR /D ( reereca eleé): a k-adk bt (b k ) előállítáát megatároó eltétel ( b j )*, j,, L, ( k ) -karaktere X FS < x b j aol páruamo j b j j bk? : D/ átalakító, j ( k + ), L, (!!) mert(!) a rémaradék képé magja -bte páruamo D/ átalakító. D/ átalakítót veérlő adat-regter (SR) a kduláál előírt tartalmú é megatároott karakterkereé algortmut követ (lád b j ), külöbégképé é ulla-komparálá művelet adja - mde egye bt-beállítát ( tet ) követőe - a döté ormácót. lépéek áma:. oro adat-kmeet terméetee előáll. (b) Cklku (R : rémaradékot recrkuláltató) /D ( ba kétereé): rémaradék (x k ) oráal é okoato rémaradék képét aálva, egyetle bte modul mételt (cklku) elaáláával geerálató a mérőám, a MSB-vel (b ) kedve k k k X FS ( ) * X FS X FS x * * k x b j x b b L bk j j bte modul ( ub-coverter : comparator, reerece, ubtracto, multpler ) rémaradék orá X * Terméetee, a keletkeő rémaradékot tárol kell (!!) a követkeő bt-terácóo. (Erre pl. alkalma a x erőítő kapcolt kapactá realáláal.) lépéek áma:. Követleül cak oro adat-kmeet va. FS SR- ud yklcer DU ( alog-dgtal Umeter [Wadler] ) // DU Dgtal-alog Umeter// b [R. Kdt et al., ]
14 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok Példa: okoato érték-köelítéű /D, kapactív D/ elaáláával (carge redtrbuto SR DC) upolár bemeet: U < U re, bte elbotá:,,k, b bára úlyoott kapactáok: C C /, eek a bemeet (U), a öld (GND) ll. a reereca (U re ) potecálra kapcolatók, é a ö-kapactá értéke: CTOT C / + C / C U (wtc) C/ C/ b b b b (wegt) C (top p plate) (um) b U C/ b Z C/ - + GND MSB U re, b SR LSB Mtavétel (bemeetre kapcolt C TOT ) (: árt é : ytott), U [ V ] ; b,,k ( b : árt é b : ytott), a ö-kapactá (C TOT C) a bemeő eültégre töltődk: Q C U Tartá (tölté megtartáal öldre kapcolt C TOT ) ( : árt é : ytott), a váltoatla b,,k értékek éru potecálra kötk a kapactáokat; mvel a ö-tölté váltoatla ( Q Q ), eért U [V ] U Koveró (SR algortmu - tölté átredeéel realált úlyoott U re é U öegé, é eültég [potecál] előjel dkálá ulla komparáláal) elő lépé MSB (b ) tet: b (b : árt é b : ytott), a több bt váltoatlaul,,k. MSB kapactára kapcolt Ure eültég cak a U potecál b értékét módoítja: ( Q ) C U ( C C C U / ) C U / U + C re / ( U U re ) U U ( U / )) ( re Ha U > U re /, akkor U < é a komparátor logka értéket ad, eek megelelőe (b )* (b : árt marad) a aktuál bt érték. Ha U < U re /, akkor U > é logka értéket dkál a komparátor, amely módoítja a aktuál bt értéket: (b )* ( b : árt é b : ytott), a MSB kapactá vakapcolódk éru potecálra (é e marad a terácó követkeő lépéebe). máodk lépébe a C/ kapactára kapcoluk U re eültéget, é. t. 4
15 Pápay: DTKONVERTEREK (a aalóg átjáró ) - Feladat megoldáok k-adk lépéél teát már mertek a megelőő k- lépébe megatároott, aktuál ( b )*,, Kk bt értékek, eek a C,,K k kapactáokat U re vagy éru potecálra kapcolják. Általáoa, a k-adk lépébe a tölté megolá: C U C b ( Q ) C U ( C C ) U + C ( U b U ), b ( b )*,, Kk k k k U re / re b k, teát a dötée (ulla komparáláo) kalakult U potecál értéke: U k U U b re valóba a rémaradék képée ükége páruamo D/ ukcó valóul meg, amely egybe a mtavevő erepét betölt (!) é a külöbégképé bee va. Ha < U, akkor kell e a bt : (b k )* (b k : árt marad); a pedg > aktuál bt érték (b )* (vaváltá - b k : árt)., U, akkor a utoló, -edk lépébe, a LSB (b ) tet utá, U ge köel kerül a éru potecálo. Megjegyéek:. a C p parata kapactá cak a eültég komparálá voyat rotja (potecál cllapítá), de em módoítja a /D ukcót!. pl. a utoló C/ értékű kapactát a tartá (é koveró) ába GND elyett -U re / potecálra kapcolva, +/ x eltolá (al-lsb oet) valóítató meg lád.6(d) eladat
Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára
Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)
ü ü ű ű ü ü ü Á ű ü ü ü ű Ü
ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü
Á Ö Ú Ü Á ő ü ű ö ő ő ö ü ö Á ö Ü ö ü ő ő ő ő ő ő ő ő ü ö ü ő ö ő ö ő ő ő ö ő ő
ő ö ű Á Ö Ú Ü Á ő ü ű ö ő ő ö ü ö Á ö Ü ö ü ő ő ő ő ő ő ő ő ü ö ü ő ö ő ö ő ő ő ö ő ő ö ő ő ő ü ü ő ö ő ö ü ő ő ö ö ö ü ő ö ü Ö ő ö Ü ű ö ö ö ő ö ü ö ö ö ö ü ő ő ö ü ö ő Á Ö Ű Á ö ö ü Á Ö Ú ő ő ö üő Ö
ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő ő Ö ő ü űő Ö ú ő ü ú ö ő ö ü ő ü ö ő ö ő Ő ő ü ő ö ü ő ü ö ő ő ű ö ő ö ö ö ü ö ú
ő ö ü ő ő Ó ő ü ü ő Ü ő ő ő ő ő ö ő É ö ő ő ö ö ü ő ü ü ő ő ő ü ü ő ő ü ő ü ö ő ő ő ö ö Ö ő ő ö ő ő Ó ö ö ü ű ő ő ü ő ő ő ő ü ő ő ü ü ö ő ő ü Ó ő ő ü ú ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő
ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú
ú ő ű ő ú ő ő ő ú ő ő ő ű ú ú ő ő ú ő ő ő ő Ú ú ő ű ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú ú ű ő ő ő ő ő ő ű ú ő ő ú ő ú Ü ú ú ű ő ő ú ő ő ú É ő ő ú ő ő ő ő
ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü
ű ő ő ü ű ő ő ő Ő ő őű ü ő Ü ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü ő Ú ő ő ő ő ő ő Ö ő ü ő ő Ő ő ő ő ő ő ő ő ő Ő ő ő ő ü ő ő ü Ó Ő ő ű ű ő ő ő ő Ó ü ő ű ő ő ü ü Ü Ó ő Ó ő ő ő Ő Ő ő ő Ü ő Ü
ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü
ü ö ü ü ü ö ö ö ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü ö Ö ö ü ü ű ü ö ö ö Ü ű Ü ű Í Í ü ú ü ö ú ö ö ö Á ö ű ö Ö ö ö Ö ö ü ö ö ü ö ü ü ö Í ű ü ü ö ö ö ö ö ö ö ű ö ö ö Ö ö ü ö ö ö ú
Í Ó É É É É Ó Ó ú ú Ó Ő Í Ó Ö Ó
ÍÍ Ó É Ó Ó ú Ó Ó Ó ú Ó É Í Ó É É É É Ó Ó ú ú Ó Ő Í Ó Ö Ó É ú Ö Ö Ó É Ó ú ú Á Ó Í Ó Á Ő Ó Ó ú Ó Ó Ó Ó Ó Ó ú Ó Í Í Ó Ő É Ó ú Ő Ő É Ó Ö Ó Ó Ó É Ó Ó É Ú Í Ö ú ú Ö Ö Ó ú ú Ó Ó Ó Ó Ó Ó Í Ó ú Ú Ó ú Í Ó Ó Ó Ó
Á ű Ü Á Ö É Á É É Á É Á ű Á Á ű Ö Ó ű Ó Ó ű Á ű ű ű ű ű ű ű ű É Ü ű ű É É É Ö Ü Ü ű Ü ű Ü É Ó Á Á Ü Ö ű Ü ű Ü Ó ű Ú Ü ű Ü Ü Ú Ü Ü ű Ö Ü Ü Ú Ö Ü ű Ü ű É ű Á ű É É Ú Á ű Á É Ü ű Ú Ó ű ű Ü É Ő ű ű ű Ú Ö
ö ö ö ö ö ő ú ü ő ö ü ő ú ő ő ő ö ő ö ü ű ö ü ő ú ő ő ő ű ű ö ő ő ü
Á Á Á Ú Ö Á Á É Á Á Á Ó É Á Ő É É Á Á Á Ö Ő Á Á Ó É Ő É ű Á Á Ü ö ú Ö Ú Ó Á Á Á Á Á Ó Á Á ö Ü ö ö ö ö ö ő ú ü ő ö ü ő ú ő ő ő ö ő ö ü ű ö ü ő ú ő ő ő ű ű ö ő ő ü ö ö ü ö ü ő ú ú ö ö ü ő ő ő ú ő ú ö ö ő
Ú ű Á ű
Ú ű Á ű ű ű ű ű Ü Ü Ü Ü Ü Ü Ü Ú Ü Ü Ü Ü Ü ű ű Ú ű ű ű ű Ü ű Ö ű ű Ó Ő ű Ö ű Ö Ü Ő ű ű Ü ű ű Á Á Á Á Á ű Á Ú Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á ű ÁÁ ű Á Á Á ű Á ű Á Á Á Á ű Á Á Á Á Á Á Á Á Á Á ű
ANALÓG-DIGITÁLIS ÉS DIGITÁLIS-ANALÓG ÁTALAKÍTÓK
F3 Bev. az elektroikába E, Kísérleti Fizika Taszék ANALÓG-IGITÁLIS ÉS IGITÁLIS-ANALÓG ÁTALAKÍTÓK Az A és A átalakítók feladata az aalóg és digitális áramkörök közötti kapcsolat megvalósítása. A folytoos
ö ő ő ú ő ó ű ő ő ó ö ű ú ü ó ő ú ő ő ő ű Ö ő Á Ö ő ő ő ő ó ü ő ő őő ö í ü Ó ö ő Ó Ö ü ö í ü ú Ö ő ú ó ő Ö Ó ő ő ő ő í ő í ó ő ő ú ó í ü ő ő ő ó ó í ő
ő ő ú ő ő ő í ú ö ü ü ú ö ú ő ő ú ő ő ő í ó ő ő í Ó ő ő ő ó ő ő ő ő ő ó ő ü í ú ő ő ő ó ú ó ö ó Á ő ő ó ú ő í ő ő ú ö ó ú ő ő ó ó Á ó ó Á ő ő ő ő ő ó ó ő í ü ő ö ő ö ö í ő ő ú í őő ó ő ő í Ó í ő ő ő ő
É É É é é é é é í ű ó é É ö á ó é ő ő í ó á ö ő é ö ö é ó í í ú í é é í íú ó í ó é ő é ö é í é é ó é á á é á á ó ő ű é é ő ő ő í ó é é é í é é ó á Ű é
É É É ű É ö á ő ő á ö ő ö ö ú ú ő ö á á á á ő ű ő ő ő á Ű á á á ű ö á á á Ű Á á áú ű á ú ő ü á á ő á á ü ő á á ú ö Á ő á á ő ő á ö á á ű á ü á á ö á á ü ő ü á ö á ö ű á á á ő ű ü á ö á ő á ü á ö ő á ő
ó í ó Í ó í É ö ó í ó ü ö ö ő í ö í ü ő ö ö ő ő ö ö ó ö ö ő ö ú ü ő ó í ó í ó ü ü ó ü ő ú í í ő ú ó í ü ö ö ö ó ó ö ö ö ő ö ü í ő ó ő ó ű ö ó Á ó ö í ó ö í ó ü í ó ü ó ü ö ü ő ő ó ű ü ú ö í ó ó ő ő ó
ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö
Á Á É é ö ö é ő ő ő é ö é é ő é é é é ő í é é é ó é é é ü ő ő ó é ő é ű ö ö ú é ü ö é é é é ó é é ü ő ö é ő é ő ü ő ő ö ö í é ő ó ó ő é ő é ó é é ő é ó é ű é é ü ö é Í ö é í é ő ó ö é ő é ú í ö é é é ö
Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!
0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4
ö é é ú ö ú Ü ő ű ó ő é ó ú ó ó é é é ó ö é ó é ó é ő ő é ü é ó é ó ő ű é Ó é ü é ó é ü ó ó é ü ó é ő é
Á Á ö Á É Á É ú Á Á ö é é ú ó Á é ú é ó ú ő é é ú é ü é ó ó ó ő é ó ó ó é ó é é ó ó é é ó é ü ü ü ő ó é é Ó ő é é ö ö ő é é é é é ú ő ő é é ó ü ú ő é ö é ő ö ü é ő é é ú ő é ü é ü Ú é ö ö é é ü ó ö é é
ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á
Ö Ö ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á ü Á Ó Ü ű Ü Ó Ó ú Ü Ű ú ü Ó ú Ó Ü É Ü Ő Á Ó Ó É Ó ú Ó Á ü Á Ó Ü Ü Ó ú ü ü ü Ü ü Ü Ü ű Ó ű Ű Ó ú Ó Ü Á ü Ü É ű ü ű Ü ú ü ú ü ú Á Ü Ü Ö ü ü Ü ű ú ü ú É ü ú ú Ü Ü Ü ü ú
ü É ü ü ü ú ü Ú
Á Á Á Á Á Á Á Á ü É ü ü ü ú ü Ú ü ú ú ú ű ü ú ü ü ü ü ü ü ü ü ú ü ü ú ü ű ú ü ú ü ú ú ü ú ű ü ü ü Á ú ű ú ú ú ü ü ü ü ü ű Á ű ü ü ü ú ú ú ü ü ü ü ü ú ü ü ü ü ü ü ü ü ü ú ü ü ü ű ú ú ú ü ü ű ű ü ü ü ű ú
ú ü ő ú ú ü ő
É É ú ü ő ú ú ü ő ú ú ú ő ő ú ü ő Ö Ö Ó Ó É É ő É É É É É É É É É ő É É É É ű ű ő ő ú ú ü ú ő ő ő ü ő ú ő É ő ő ü ű ő ő ő ü ü ő ü ő ü ő Ö ő ő ű ü ő ő ő ő ő ő ő ő ü ú ü ő ü ü ő ü ü ő ő ü ő ő ő ő ü ő ő ő
Ö Ü ú ő ő Ö ő ő ő ő ő ő ő ő ő ő ű ő ő Ü Ü ő ő ő ő Ö ő ő ő ő ő Ü ő ő ú ő Ü Ö ő Ö ő ú ő ő
Ö ő ú É ő ú ú Ö ő ő ú Ö Ü ú ő ő Ö ő ő ő ő ő ő ő ő ő ő ű ő ő Ü Ü ő ő ő ő Ö ő ő ő ő ő Ü ő ő ú ő Ü Ö ő Ö ő ú ő ő ű Ú ú ő ú ő ú ő ő ő ő ő ú ő ű ú ő ő ő ő ú ő ő ő ő ő ő Ú ú ő ő ú É Ú ú ú ő ú ő ú ő ú É ú ő ő
Á ó ó ö ó ó ó ö ó ó ö ü ö ó ü ö ó ü ó ö ó ü ó űö ú ü ö ú ó ó ó ő ü ö ö ó ö ó ó ó ó ö ó ő ú ü ö ó ö Ú ü ó ü ő ö ü ö ö ó ó ü ő ő ó ő ü ó ó ó ö ű ő ő ű ü
Ü ö ő ó ó ó ü ö Ó ö ú ó ó ó ő Ü ó ó ú ü ő ó ó ő ö ó ó ó ö Á ú ó ó ö ó ó ó ó ö ó ó ó ó ö ö ö ó ü ö ó ú ű ó ó ö ö ú ő ó ó ő ö ü ó ó Ő ó ó ö ö ö ö ó ó ü ö ö ő ő ó ö ö ó ó ü ű ö ű ö ű ó ú ü ö ó ö ó ó Á ó ó
ü ő Á Á ö ö ő ő ő ö ü Á ő ü ü ü ü ü ő ü ö ü ő ö ő ú ú ö ő ö ő ő ö ö ő ö ő
ü ö ő ü ő Á Á ö ö ő ő ő ö ü Á ő ü ü ü ü ü ő ü ö ü ő ö ő ú ú ö ő ö ő ő ö ö ő ö ő Á Á ö ő ő ő ű ú ö ő ő ú Ó É ő ö ü ő ő ú ö ö Ü ö ü ö ü Ú ű ö ő ő ú ú ü ő ö Ü ő ü ö ő ő ü Ü ö ü ü ü ü ö ü ő ö ű ő ő ő ü ő ö
ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú
ú ú Á ö ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú ő ö ü ö ö ö ü ő ö ü ö ő ú ö ö Ú ő ö ö ő ö ű ő ő ű ü ü ő ő ő ő ő ő ő ő ő ü ű ű ü ő ü ü ő ö ú ű ö ö ő ü ő ü ü ő
A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö Ö Á Ó Ü Ó Ó Ö Ó Ó Ó Ö Ö Í Ó Ö Ó Ó Ó É Ü ű Ó ú
Á É É É Ü Á Ü Ü ű Í Ó Ü ű Ó Í Ú Ü Ó ű ú Ü ű ö Ó ö ű ű Ó Ó Ó Ő ű Ó Ö ö Ó Ö Ü Í Ü Ó Ü Á Í Ó ü Ú Ó ű ú Ó úü Ó Ú ü Í ű Í Ő Ó Ó Ó Ó Ü ú Í Í Í Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö
ó ó ö é í ó Ö é é í ó ö é é ü é é ó ó ó é ö é é ú ó é í é é é é í é ő é é ő é é í é í é ó ú ó é ó ü ö Ö é Ő í ő ó é í ó ő í é ö ő é í ó é é ú ó é í é
ö ö é í ö é é ö é ő é ó ű ö é ü é ü é é ö é ő ó é ü ő ö ő ö ü é é ö é ő é é í ö ő ö é é ö é ő é ó ű ö é ü é ü é é ö é ő é é é é é é é őé é é é í ő ö ü é é ö é ő é é ő í ű ő ö í ö é ö é é é ö ö Ö ő é é
ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú
ú É ú ü ú ü Í ü ú Ú ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú Í ú É Í Á Á Í É Á Á Á Í Á Ó Á Á É Á Á É É ű Á É É ú É É Á Á ú Á ü Á Á Á Á Ú É ü ú ú É É ú Ú Á Á É Á É Ó Ú ú Ú Í
ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü
Í ö ü ó ü ó ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü ó ö Í ó ö ó ü ó ó ó ö ö ü ü ö Ó Í Í ü ö ö ö ó ü ó ü ö Ö ö ü Ü ö ö ü ó Í ö ö ö ó Ü ö ö ö ó ó ó ó ü ó Ü ö Ü ó Á Á ö ö ö ó ó ó ó ó ó ö ó ű ó ö ö ö ö ü ú
é ú ó é í é é é é í é ő é é ő é é í é é é ó é í ó ö é ő ő ő é í ó Í ő í é ö ő é í ó é é ű ó é Ú é í é é í é í é ó é í é ö é ő é ó ó ó é ö é Ö ü é ő ö
é é í Í Í í ö é ő ó ö ü é ó é ü ő ö ő ö é é ö ő ö é ő é ó ö ü é é é é é é ő é é é é í ő ö é é ő í ű ő ö í í ö é é é ö é Ö ő é ő ü ö é é ő úő ö ö ő é é é é é é é é é é ü ú é ú ó é é ú ú é ő ó ó é ú é é
ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í
ú ö ű ö ő ö í Á Ü ú Á Á Á ö É É í É É Á ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í ö í Á Á Á ö É É í É Á Á Á Á ö ö ú ö ű ö ő ö ö ő í ö í ö í ő ö ü
é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü é ü é í é é é é í é ü é é ü ü é ü ű é é é ű ü é ü ü é ű é ü é éú é ü é ü ű é ü é éú é é é
é Ö é ü é é é ü é í é Ó é Ö é Ú Á é í í ü é é é é ü ü é é é ü é é é ü é ü é í ü é é ü é ü í ü é ü ű é ü ú ü é Í ú ú é ü é é é é í ü é é ü é é é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü
ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í
Á Á É ó Á ö ú ú ö ö Í ó ö ö í Á ó Á ü ú ü ö ó ú í ó ú í ó ű í ú ó Á ó Á ü ú ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í ö ö í ó ó í í ü ü í ó Á ü ü ü Í ö í ü ó í ű ö ó ó ó ö í ö ó í ó ü ó í
ű É ő ő ű ő Ü ő ű É ő ő ő ő ő ű ő ő ű É ű ő ű ő ő ű ő ő ő ő É ű ű
ő ű ő ő Ú Ú ű Ú É ÚÉ Ö Ö Ő Á Ú Ú ő ő É É Ü Ú Ú ű Ú Ú ő Ó Ú ű ő Ü ű ű É ő ő ű ő Ü ő ű É ő ő ő ő ő ű ő ő ű É ű ő ű ő ő ű ő ő ő ő É ű ű Á É É Á Á ő ő Ú ő ő ő ő ő ő ő Ú ő ű ő ő ő ű ő ű ő ő ő ő Ü ő Ú ő ő ő
ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í
Á É ö úú í ö ö í ű í ú ű Ő ű ű ű Ú ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í í ö ö í í í ö ö ü í ö ö ü í í ö í í í í ö ű í ö í í ü í ü ü í Í ű ü í ű
Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é
é é é Í Ó é é ü ő é é é ű ő ő ű é ő Í Ó ő ü é ő é ü é ő é é é é é é ú é ú Í Á é é é é é ű é é é é é é ú é ő é é é é ú é é é é é é é é é é é é é ő é é ő Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é
é é ö í Ü ö é ő é é Í Í é é é ű é ő é é ő í ő Ű é é é é ö í é ö ö é ö é é é é ő é ű ő é é Úé é ö ö é Ü ö é ő é éü Ú í í ő ö é é é é é í é é ő é é őé é
é é ö ő é é é ö é é é é ö ö ö Í Í é Í é ö é Í ö é é é é é ö é ü í é ű é é ö é ö é Í ö ö é é é ú ö ö Ú ö í é í é é í é ö é é é é é é ö í ű ű é é ű Í ö é é é éé é í é é í ö í é é Ü é ő é í é é é é ö í Ü
ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó
É ó ú ó ú ó Á ó ó ú ó ó ó ú ó ó ó ó ú ó ó ó ó ó ó ú ó ó ú ó ó ó ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó Ö ó ó ó ó ó ó ó ó ó ó ó ó Ü ó ű ú ú ó ó ó ó ó ó ó É ó É ó É ó ó ó ó ó ó É ó ú ó ó É ó ó ó ó É ó
Ó Ó ó ö ó
É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó
ű Ö ű Ú ű ű ű Á ű
ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű
ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É
Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű
Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű
Ú ű ű ű ű ű ű ű ű Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű É ű Ú Ú Ú Ú Ú ű Á Ú Ú Ú Ú ű Ú Ú ű É ű Ú Ú Ú Ú Ú Á ű Ó ű Ú É É Ú Ú ű É ű ű ű ű É ű Ő ű Ő ű ű ű ű ű É ű É Á ű ű Ü Á Ó ű ű ű Ú ű ű É ű ű Ú
ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü
ü ü É ű ű É É ű ü ű ü ü ü Á ü ü ü ü ü ű É ü ű É ű ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü Á ü ü ü ü ü Ú ü ü ű É ü ü ű ü ü ű ü ü ü ü É ü ü ü ü ü ü ü ü É ű ü Á ü ü ü ü ü Á Ö É ü ü ű Ú ü ü ü ű
Á Ó ű ű Á É ű ű ű ű Ú Ú
Ö ű ű Ö Ü ű ű ű ű ű Ó ű Ü ű Á Ó ű ű Á É ű ű ű ű Ú Ú ű ű Á Á Á É ű ű ű ű ű ű ű ű ű ű É ű Ö Ó Ú ű ű ű ű Ü Ó Ú ű É É Ó É É Ó É É É É Ó ű ű ű ű ű Ü ű Á ű ű ű ű ű Ü ű ű ű ű ű ű Á ű Ú Á Á Ö É Á Á Ö É Ü ű ű Ü
É Á Á Ö Á
É Á Á Ö Á Á É Á Ü ű Á É Ü ű Ú ű ű É É ű ű Á ű ű ű ű ű É ű ű ű Á É É É ű Á É É Á É Á É Ü Ü ű Á Á Á ű Á Á Á Á Á Á Á Á Ü ű Á ű Ü É É Á Á Á É ű ű ű ű ű ű ű ű ű ű ű ű ű Á Á É É ű É ű Ő ű É Ő Á É É ű ű Ú Á
Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö
ű É É Á Á Á É Ó É É Á ö ő ő ö ő ő ő Ó ő ö ő ö ő ú ő ü ö ő ü ö Á É ű Á É É É Ö ö Á É É ő ő ö Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö É É Á Ö ő ú ő ű Ö ü Ő É Ó É É Á Ó É Á É Ü É Á Ó É ő ő ö ö ő ö ö ö
ű Ú ű ű É Ú ű ű
ű ű ű ű Ú Á É Ú ű Ú ű ű É Ú ű ű ű Á ű ű ű ű ű Ü ű Á ű ű ű Á Á ű ű ű É ű ű ű Ú É ű ű ű ű ű ű ű ű Á É Á Ö Ü ű É ű ű Ö É Ü Ú ű Ó ű É Ó Ó Ó ű É Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű É ű ű Á Á ű Ú ű Ú ű ű Ó ű ű Ü Ü
Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő
É Ó Ű Á Ó É Ó Á É Ó Á ő ű Ó ú Ö ú é Ö Ó Ö ú Ó Ö ú Ó Ó Ó Ó ű é ű ű Ó Ó ú ű ű é é Ö ö Ö Ö Ó ű Ó Ö ü ű Ö Ó ő Ó ő Ó ú Ó ő Ó é Ó ű Ó Ó Ó Ó ú Ó Ó Ó Ó Ö Ó Ó ö ő ü é ü Ö é é é Á é Ó Ó ú ú ű é Ö é é é Ó é é Ó Ó
Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö
Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű
Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö
É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú
ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö
ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó
ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é
ö é ü ö ö Ö ú é ü ü é é é ó é é é é é ó é é Ö ö é é ó é é ó é é í é é ö ó ó ó ö ö ü é é ü é í ü é ö í é é é é é ü é ó é ü ö í í ó í ü Í é é é ü é é é ü é é ü ö ö ó ó é é í é é é é é é é Ö í ó é í ö é é
ű ű ű ű ű ű Ú Ú ű ű ű Ö ű ű ű ű ű ű
Ü É ű ű ű ű ű ű ű ű Ú Ú ű ű ű Ö ű ű ű ű ű ű Ö Ü Ú ű Ü Ö É Ü Ü ű ű ű ű ű ű É É ű É Ó É Ü ű Ó É É É Ő űű ű Ö ű Ú ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű ű Ü É ű ű ű ű Ú É É ű ű Ü É Ü ű ű ű Ü ű ű
ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú
ő ű ű ő ö ö Á ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ö Á Ó ő ő ü ú ő ő ő ő Á ő ú ű ő ő ő ü ú ő ő ő ő ő ő ő ő ö ü ú ő ő ő ő ű ű ő ő ö ű ü ő ő ő ö ö
ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á
ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö
é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é
Ó Ö é ü ó ö é é ü é é ó ö é ü ü é é ó é é é é é é ö é é é é é é é ó ö ü é é é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü
ü ú ú ü ú ú ú ú
ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á
1. Gyors folyamatok szabályozása
. Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál
ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é
ö é Ö é ő ü é ü ö é é ő é ü ö ö ö ő ü é ő ü é ö ó ö ö é é ő ö ő ó ő é ő Á é ő é ő ő é ő ő é í ő ó ö ő éé í ö ő é é ő í ő ö ő é í ő ó ö ö ő é ő é é é ő í é ő ő í é é ő í ó ő ö ő é í é í é é ő ő é é é ü
LEGYEN MÁS A SZENVEDÉLYED!
E g y ü t t m z k ö d é s i a j á n l a t L E G Y E N M Á S A S Z E N V E D É L Y E D! 2. E F O P - 1. 8. 9-1 7 P á l y á z a t i t e r v e z e t 3. 0 ( F o r r á s : w w w. p a l y a z a t. g o v. h u
Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet
Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma
ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö
Ü É Ü Ú ö É ö ö É ö Ú ű ö Ö É ű É ö ö ö ö ö ö ö ö ű É ö ö Ú ö ö ö É É É ű ö É ö É Ú Ú É ű ö ö ű Ú É Ü ö Ü ö ű ű ö ö ö ö ö ö ö ö É Ö ű Ú ö ÉÉ ö Ü É ö ű Ú ű ö Üö Ó Ú É ö ű ö ű ű Ú ö ű ö ű Ú ö ö ű ö Ú ű ö
ö Ö ő Í ú ö ö ö ö ő ó ó Ö ú ó ü ó ö Ö ő ö ö ö ő ő ő ö ó ö ő ö ö ö őö ö őö ü ö ö ö ő ö ö ő ő ó ö ö Í ö ú ő ö ó ö ü ó ö ő ó ú ö őí ó ó ó ű ö ű ö ö ő ő ű
ö Ö ő ő ö ö ö ő ó ó Ó ú ó ó ő Í ó ö ő Á ő ő ó ó ő ó ő ö ö ú ő ó ó ó ó ó ő ó Í ő ü ö Ö ő Í ú ö ö ö ö ő ó ó Ö ú ó ü ó ö Ö ő ö ö ö ő ő ő ö ó ö ő ö ö ö őö ö őö ü ö ö ö ő ö ö ő ő ó ö ö Í ö ú ő ö ó ö ü ó ö ő
Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö
ü ú ö É Á ő ő ö é Ö ő ő é Ö ö ö Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö é ő é é í ó ó ó ö
í é ó í ö ö ő é é é é é é í é é é é í ő é é é é é ó í é é é é é é é ö ö é é é é é é é é é ö é é ó é ú é í í í é ö í é í ö é ő ú í ö é ö ú é í ö ő ú é
Á ó Á Á é ó ö ű é ö é ö ő ő ő é ö é é é ó ű ó ű ö é é ő é ó ó ó é Ó ö é é ö í é ó é í é é é é ő é ó é ó é é ű é é é é é é é é É é é é ő ö ö ő é ö ű é é é é é é é é ö é é é ó é é é é Ü é é é é é é ő é é
EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei
Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők
ADATKONVERTEREK (az analóg "átjáró")
DIGITÁLIS JELFELDOLGOZÁS ESZKÖZEI PÁPAY ZSOLT ADATKONVERTEREK (az aalóg "átjáró") Succeive approximatio * BME HIRADÁSTECHNIKAI TANSZÉK ADATKONVERTEREK (az aalóg átjáró ) Az adat koverter : az A/D vagy
á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí
é é í á é é á é ő é ú ó ő é é í ő á é ő ő é ö á á ó í ú á á á é é á é é í é é é ő á á á é ö é é é á é é í é á á é á é á á í é é á á é á é ö é é é é é ü é á é é ö á á á é é é é ő é é á ú ű é á é ő é é ü
é ü ü ő ü ő é ú é é é é é ő í é ő Í ő ü é é í é í é ő í ó é é í é é ő ó í ó é í í é ő Í ú ó ó í é ű í ó é í é ő é é í ó é í í óé í éé ő ó ü é ő úé é ú
é é ő ü é í ó é é ő Í Í é é é é óó ó é é Í Á é é í í é ő é é í é é é é é é ü é é ü é é é é ő é ő é é ő ü ü é é é é é é é í ő é é ű é é ü ü ő é é ő é é é ő é é ő ó ó é ő ü é Ú é ü é é ű é é í é í é é í
ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú
ú ű ú ú ű Ú ú ú ú ú É ű ű ú ű Á ű É ú ú ú ú É ú ú É ú ú ú É ú ú ú ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú Üú ű Á ű É É ű ú É Á ú Ú ú É ú ú ú ú É ú ú É É ú ú ű ű ű Ú ű É ű
íó ó ü ó ő ö ó í ö ó ő ö ö ó ű ó ó ó ő ő ú ó ó ő ó ú ó ö ő ó ő ó ó ő í ó ó ő ő í ú ú í í ó
Ó Ö ü ö Ö ó ó ő ü ü ő ö ö ó ő ó ú ó ó ü ő ó í ó ö ö ő ő ű ú ó ó ó ó ő ü ő ű ü ő Á ó ó ő ó ó ó ó ú ó ö ó ü ü ő ü Á ő í ö ő ó ó ú ó í Ö ó ő ö ó Ö ö ó í ó ó ó ö ő ő ő íó ó ü ó ő ö ó í ö ó ő ö ö ó ű ó ó ó
ξ i = i-ik mérés valószínségi változója
EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív
í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í ű í ű ö ö ö í ű ö ö ű ü ö ö ö í ú ü ű ö ú í ö ö í ü ö ö í í í í í í
É Á Ú Ö É É É É Ü É ú ö í ü ö ú ö í Ü ü ü ö ö Ő ú í ú ö í ü Á í ű Í í í ú ü ö í í ű í Í ű ü ű í ü ü í ű ú ö Á ö ö ú ö í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í
ú ü ü ú
Ú Á É Á É Í Á ú ú ú ú ü ü ú ú ű Á É Í Á Í Á É Í Á Á É Í Á Ó É Ú Ú Í Á Á É É É Ö Á Á É É É Á Í Í Á Á Á É Í Á Á É Ú Í Á Á É É É Ú ú ü ú ú ű ú ú ü ú Í Í Á É Í Á Ö É Ö Ú Ű Í Á Á É É ú ü ü ü Í ű ű Ü Á É Í Á
ö ú ö Ö ü ü ü ö Ö ú ü ü ü í í ó ó ö ö ü ö ü ó ó ó ö ó í í í ö í ö ö ö ö í ö ü ö ö í í í ö í ö í í í í ó í í í ö ö ö í í ö í í í í í í í í ó ó í í í ö
ö Ö ü ü í í ü í ü ö ú ö Ö ü ü ü ö Ö ú ü ü ü í í ó ó ö ö ü ö ü ó ó ó ö ó í í í ö í ö ö ö ö í ö ü ö ö í í í ö í ö í í í í ó í í í ö ö ö í í ö í í í í í í í í ó ó í í í ö ú íö ó ö í í ö í í ű í ó ö ü í í
É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó
Í Í Í Í ó ó ó ú ó ő É ú ö ü ú Á Ú ő ö ó ó ó ó ő ő ó ü ő Á ö ű ü É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó ő ó ú Á ő ü Á ő ú Í É ö Í ö Á Í Á ő ó ő ó ó Á ó ó ó ó ó Íő Á ü ö ó ó ő ó ó Í ö ó ő ú ó Í ö ő ö ó
ő ö ő ü ö ő ú ö ö ö ő ú ö ö ö ö ö ő ö ö ú ö ö ö ö ú ö ő ő ö ű ö ő ö ö ö ő ő ö úő ö ö ő ö ü ö ö ő ö ő ö ü ö ö ö ü ö ö ö ő ü ő ö ü ö ő ú ű ö ü ü ö ü ő ő
Á Á Ó É ö ü ü ö ő őü ö ö ö ö ő ú ö ő ő Ü ő Ö ö ő ö ő ő ö ö Ö ú ü ü ű ö ö ö ő ö ö ú ú ú ö ö ú ő ő Á Á ö ő ö ö ő ú ö ő ű ö ö ő ő ö ö ö ü ö ö ö ú ö ö ö ö ö ú ö ö ö ő ö ü ö ö őü ő ő ö ö ö Ü ő ö ö ö Ü ö ö ü
ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í é ü ő é í ü é ó é é é ő ű ő ü é Ö é é é é ő é Ö é é é é é é é é Ö ü ü é ü é é ó é ü é ü é é ű ü Ő é
ó é é ő ü é ü é é ő é ó ó é Ö é ő ü é é é ó ó ó é é é é é é é é ő é ő ü é ú ü ú í í ü é ú í ü é í í ó é é é ő ő ő é ü ü é í ó é ő ó ó ü é é ű í ó é é í ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í
ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű
í ö ö ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű ö ö ö ú ü ö ö í í í ö Á ö ö ö ö ö ö ö í ö ö ö ö ö ö ú Ő ö ö ö í ú ú ö ö í ö ö í ű í ö ö ö ö Á ü ö ü ö ü ű ö ö ö í ö í ü í ű í í ö ö Á
ű ó Ó é é é é ó ő ü é é ü ú é é é é Ú ő ú é é é ú é é é ő Ö é ó é Ö ó é ő é é ü ő é ú é é ő é ü é é é é ó é ü ű é ó é ű é é Ö é ű é ó é é ű é é ó ő é
é ú é ú é ő ő é ú é é ú ő ő ó ú é é é ű é é é é é ó é ú é ő ő é ó é é é é é é é Ó é é Ó ó ő é ó ó é ő ő é é ü ú é é ő é ó é é Ó é ú é ú é é ú é ő é é é ó é é é ú é é é é é ó ű ó Ó é é é é ó ő ü é é ü ú
ű Í ő ű ü ő ő ú ő ű ü
Ó Á É ú ű ű ő ú ő ü ő ü ő ü Ö ű ő ű ő ő ő ű ű Í ő ő ű ű ő Í Í ő Í ő ő ő ú ü ű Í ű ú Í ű Í ő Í Í Í ú ú ű ú ű Í ő ű ü ő ő ú ő ű ü ú ő ű Í ű ű ű ü ő ő ő ő ü ü ő ő Íű ő ő ű ő ü ő ű ü ü ő ő ő ü ő ü ő ő ő ú
ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó ü ú ü ü ö í ó Ő Ü ó
ö ö Á É ü Ő Ö í ü í ü í ó ó ó í í ó í ö ú ü ü ö ö ű ó í ó ó ü ú ü ü ö í ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó
ö Ú ö Í ö ö ú ö Í ö ö ö ö ö ö ö ö ö ö ú ö Í ö ö ö ú ö ö ö ö ö Ó ö É ö ö Ö ö
ű Ü É ú ö ű ö ö ö ö ö ö ú ú ú Ö ö É É ö Ú ö Í ö ö ú ö Í ö ö ö ö ö ö ö ö ö ö ú ö Í ö ö ö ú ö ö ö ö ö Ó ö É ö ö Ö ö Ö ö ú ö ö ö ö ö ö ö ú ö ö ö Í ö ú Í ú ö ú ú ú ö ö ö ö ö ö ö ú ú ö ö Ö É É ö ö ö ö ö ö ö
Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í
Ö ü Ü Ö Ö ü ü ü ó ó ó ü í í ó í Ö í Á í Ü Ó í ó Ö í Í ü ú Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í ó ó í í ú í ü ó
Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú í űö ü Í ö Ö ü ö Ö ü ú ü ó ú ó
ö ü Ö ü ü ó í í ö ö í ü ú ü ó ü ó Ö ö í ú ü ó ó í ó ü ó ü ö Ö ü ö Ö ü ü ü ó Ö ö í ú ó ó ó ó ü ó Ö ö í ó ö ó ö ö í í Ü ö Á ö Ö ü ö Ö ü ó í í ö ü ü ö ó ü ú ű ó ó í ú ó Ó í ó ó ü í ó ó í ó í í ú ú ű ó í ú
Képletgyűjtemény a Gazdaságstatisztika tárgy A matematikai statisztika alapjai című részhez
Buaet űzak é Gazaágtuomá Egetem Gazaág- é Táaalomtuomá Ka Üzlet Tuomáok Itézet eezmet é Vállalatgazaágta Tazék Tóth Zuzaa Ezte Jóá Tamá Kéletgűtemé a Gazaágtatztka tág A matematka tatztka alaa című ézhez
Heart ra te correc ti on of t he QT interva l d ur i ng e xercise
Heart ra te correc ti on of t he QT interva l d ur i ng e xercise Gáb or Andrássy, Attila S zab o, 1 Andrea Duna i, Es zter Sim on, Ádá m T a hy B u d a p e s t i S z e nt Ferenc Kó r há z, K a r d io
HASZNÁLATI ÉS TELEPÍTÉSI ÚTMUTATÓ
HSZNÁLTI ÉS TELEPÍTÉSI ÚTMUTTÓ INTEGRÁLT RENDSZERSZBÁLYZÓ 3.0211522 MD11029-2011-10-20 TRTLOMJEGYZÉK 4 5 10 12 14 16 18 22 IR 7 1 2 3 4 5 6 1. 2. 3. 5. 1. 2. 3. 5. HMV 08: 50 VE 10/06/11 M01 U: 00. 0
í Á Á í ÉÉ Á í í
í Á Á í ÉÉ Á í í í í Ő í í í ú í í Á í í Á Á Ú ú Á Á Á É Á Á Ó Á ű í Á í í í í í í í í ú í í í í Ó Á í Ó É í í í Á Í í í í Á í í íí í í í í í í Ú í Á í í É Ö ÖÉ É Ö Ű íí í í Ü í í í í í í í Ü Í í í íű
ü ö ű ö ű ö Ö ö ú ü Á ü ü ö
ü ö ű ö ű ö Ö ö ú ü Á ü ü ö ö Í ú ö ú Ó ü ö ö ű ü ű ö ü ö Í Í ö ö ű ö ö ű ű Á Á Ő Á Á ú ú É Íö Í Í ö ö Í ö ü ö Í ö ö Í ö ö ö ű Í Í ö Í ű Á É Á ú É ü Á Á É ü Á Á É ü ö ö ö ö ö ö ű ú ö Í ö ö ű ö ö ü ö ö
ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü
ö ü Ő Ö ü ö ü ó ü ü í ü ó ö ö ö ü ö ö ü í ü ü ü ö ó ü ö ü ú ö ö ö Ö ö ó í ó ü ö Ö ó ü ó ü ü ó ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü ü ö ö ö Ö ü í ü ö