Herman Hollerith és a lyukkártyavezérelt adatfeldolgozás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Herman Hollerith és a lyukkártyavezérelt adatfeldolgozás"

Átírás

1 Herman Hollerith és a lyukkártyavezérelt adatfeldolgozás A lyukkártya alkalmazásának amerikai úttörője Herman Hollerith ( ) volt, aki az Amerikai Statisztikai Hivatal alkalmazottjaként az 1890-es, 10. népszámlálás adatainak (közel 63 millió személyről és 150 ezer polgári körzetről) feldolgozására rendezőgépet dolgozott ki. Az első eredmény már egy hónap alatt megszületett. Minden adathoz egy lyukat, így minden polgárhoz egy lyukkombinációt rendelt, ezeket egy 1 dolláros méretű, összesen 204 lehetséges helyen lyukasztható kártyán rögzítette. A kártya bekerült egy rendezőgépbe, ahol elhaladt egy tűrendszer alatt. A lyukak alapján záródó tűk elektromágneseket hoztak működésbe, melynek hatására a körlapos számlálón a mutató egy egységgel előbbre lépett. A kártyák osztályozása félautomatikusan történt: amikor egy kártyáról az adatot a tabulátorba akarták vinni, egy külön osztályozó boksz előre meghatározott rekeszének fedele automatikusan kinyílt. A kezelő a kártyát a rekeszbe helyezte és a rekeszt kézzel zárta. Így a kártyák bármilyen szempont szerint gyorsan csoportosíthatóak voltak. Hollerith ismerte fel elsőként, hogy a gyors feldolgozás érdekében alapvető feladat a nagy mennyiségű adat kódolása. Hollerith gondolatát vitte tovább az 1911-ben létrejött első számítógép-felhasználó társaság, a Computer-Tabulator-Recording Company, vagy ismertebb nevén a CTR, amely nevét 1924-ben International Business Machinesre (IBM) változtatta. Az elektromosság terjedésével motorok kerültek a számológépekbe, majd a hadiipar sürgetésére elkezdték a feldolgozási sebességet növelni, és a mechanikus alkatrészeket elektromos jelfogókkal (relékkel) felváltani ben a német Hollerith Társaság egy dugaszoló tábla segítségével vezérelhető gépet hozott létre. 1. ábra Hollerith berendezésének számláló-, érzékelő- és rendezőegysége A kártyát behelyezték a tűket tartalmazó érzékelőberendezésbe, majd a tűket leengedve a lyukaknál a higannyal telt tárca zárta az áramkört. Ennek hatására a megfelelő számláló egyet lépett, valamint kinyílt a rendező egység egy rekesze. A kártyát kivéve az érzékelőből a bokszba behelyezték, a boksz fedelét zárták. Ezzel a kártya feldolgozása lezárult. Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 1

2 Az első elektronikus számítógépek 100 évre volt szükség Babbage gépének megvalósításához, mert az ő korában még a gyakorlatban nem állt rendelkezésre olyan eszköz, amivel ezt a gépet megbízhatóan és nem túl drágán el tudták volna készíteni. A mechanikus kapcsolókkal ezt a bonyolult feladatot gyorsan nem lehetett megvalósítani. A bütykös tengely, vezérlődob, lyukkártya után tehát újabb kapcsolóelemre volt szükség: az elektronikus kapcsolóelemre. Ez kezdetben a jelfogó volt, ahol a kapcsolásokat már az elektromosság végezte. Ilyen jelfogóval készítette el között Howard Aiken, a Harward Egyetem professzora az első, Babbage elvén működő számítógépet. Neve Mark I. 2. ábra Mark típusú számítógép. Gyártó: IBM A következő, Mark II típusú gép fejlesztése közben a számítógép egyik reléje elromlott, és a kutatók egy agyonütött molylepkét találtak az érintkezői között. Azt tartják, hogy ez az eredete az angol bug (bogár, programozásban a jelentése apró programhiba) és a debugging (hibakeresés) szakkifejezéseknek. A gép 760 ezer elemet és 800 km-nél több vezetéket tartalmazott. Fixpontos ábrázolású számokkal (10 jegy a tizedespont előtt, 13 jegy a tizedespont után) dolgozott. Az adatbevitel lyukkártyákkal történt. Az összeadás 1/3 s, a szorzáshoz 6 s időre volt szükség. A számítógép végül 1944-ben készült el. Lassan, de megbízhatóan működött. Továbbfejlesztett változatai: a Mark II 1948-ban készült el (lebegőpontos számábrázolással kiegészítve), a Mark III pedig 1950-ben elektroncsövek felhasználásával készült. Konrad Zuse 1938-ban (otthon, szülei lakásának nappali szobájában) építette Z1 néven az első szabadon programozható számítógépet, amely kettes számrendszerben, lebegőpontos ábrázolású számokkal működött. Az adatbevitelre billentyűzet szolgált, az adatkivitel pedig ugyancsak kettes számrendszerben, egy világító tábla (fénymátrix) segítségével valósult meg. A számolómű és a tároló telefonrelékből állt. A következő modell, a Z2 már lyukfilmes adatbeviteli egységet tartalmazott. Zuse 1941-ben fejezte be az első teljesen működőképes, szabadon programozható, programvezérlésű számítógépet (Z3). A teljesítményét jellemző adatok a következők: lebegőpontos számábrázolás, 22 bit szóhosszúság, 64 lebegőpontos szám tárolása; 1600 mechanikus relé a tárolóban, 400 relé a számolóműben, automatikus szorzás, osztás és gyökvonás. Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 2

3 Zuse 1945 elején mutatta be Z4 nevű számítógépét (32 bit szóhosszúság, 64 fixpontos adat tárolása, 5500 relé), amelyet kísérletképpen a repülőgép-tervezésben használtak fel. (1950-től a Z4 a Zürichi Műszaki Egyetemen működött, mint Európa egyetlen számítógépe óta Münchenben a Deutsches Múzeumban található.) De hogyan lehetne gyorsabb gépeket készíteni? A megoldás: gyorsabb kapcsolóelemeket kell készíteni. Az újabb kapcsolóelem neve elektroncső. Az elektroncső egy olyan üvegbúra, amelyben légritkított tér van. Ennek a térnek két pontja között képesek a töltések vándorolni, és ezt a töltésvándorlást képes egy, a csőben elhelyezett rács akadályozni, illetve teljesen elzárni, a rácsra kapcsolt feszültség segítségével. Így a rács segítségével lehet kapcsolni az elektroncsőre adott jelet. 3. ábra Elektroncső Harminc éven át a kötelező katonai titoktartás miatt nem tudhatta a világ, hogy a legelső, 1500 elektroncsövet tartalmazó, Colossus nevű számítógépet Max H. A. Newman professzor építette 1943-ban, hogy megfejtse vele a németek gyártotta Enigma rejtjelező gép elvét. A nagyon gyors bináris rendszerben dolgozó automata számítógép építését Alan Turning kezdeményezte elektroncsövet tartalmazott, kvarcvezérléssel, 5 khz-es órajellel dolgozott. 4. ábra A Colossus A gép 1946 júniusától 1955 októberéig volt üzemben. Továbbfejlesztett változata az első, kereskedelmi forgalomban is kapható számítógép, az UNIVAC (UNIVersal Automatic Calculator) volt. Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 3

4 A II. Világháború ballisztikai feladatainak megoldására vonatkozó igények sürgették az ENIAC (Electronic Numerical Integrator And Computer) megépítését. (Ez az eszköz elektroncsövet, kondenzátort, ellenállást és 6000 kapcsolót tartalmazott, 30 m hosszú, 3 m széles, 1 m magas volt, 220 m 2 alapterületet foglalt el, súlya kg és 800 kw-ot fogyasztott óránként.) Szédületes sebességével 5000 összeadást tudott elvégezni másodpercenként. 500-szor volt gyorsabb a Mark I-nél. Tervezői: John Mauchly és John Eckert. 5. ábra Az ENIAC Három nagyságrenddel gyorsabb volt, mint a relés számítógépek (az összeadást 0,2 ms, a szorzást 3 ms idő alatt végezte). Villamos csatlakozások útján feltételesen programozható volt. Nagy büszkeséggel közölték alkotói, hogy volt már olyan 12 órás műszak is, amelyben több órán keresztül hiba nélkül működött a gép. Programozása persze nagyon nehézkes volt, a régebbi telefonközpontokhoz hasonlóan huzalozásokkal, dugaszolásokkal kellett kialakítani a programot. Azt mesélik, hogy mikor bekapcsolták a számítógépet, a körzetben halványabban égtek a lámpák. Egy véletlen találkozás új irány adott a számítógépek fejlődésének. Neumann János 1944-ben találkozott Goldstine-nal, aki az újabb gép, az ENIAC építési munkáit irányította, és aki elkezdett mesélni neki az új számítógépről. Neumann rövidesen megtekintette az építési munkát. Rájött arra, hogy a számítások algoritmusát, az ún. programot ugyanúgy lehet tárolni a gépben, mint magukat az adatokat. A gép megtanítható arra, hogy ezeket megkülönböztesse egymástól. Neumann, Goldstine és Burks 1946-ban publikálták az elektronikus berendezések logikai szerkezetéről szóló elképzeléseiket (Neumann-elvek). Ezen elképzelések alapján a számítógépek mind a mai napig kettes számrendszerbeli számjegyekkel, ún. binárisan dolgoznak. Ezek a számjegyek a 0 és az 1. Ez a számítógépben, ha van jel egy vezetékben, akkor az például 1-et, ha nincs 0- t jelent. Egy ilyen 0-1 vagy jeljelhiány számjegynek a neve bit. 8 számjegy vagy bit értéke a tízes számrendszerben 256 ( = 256). Ez a 256 féle variáció már lehetőséget ad, hogy minden írásjel kapjon egy saját kódot. Ezt a nyolc bitet, amivel lekódolhatunk minden írásjelet, byte-nak nevezik. Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 4

5 Azért, hogy minden számítógép egységesen értelmezze a bitkombinációkat (ugyanaz a szám ugyanazt a betűt karaktert jelentse minden gépen), kidolgozták a kódtáblázatokat. A legelterjedtebb az ASCII kódtáblázat volt. E szerint a táblázat szerint egy egység úgy küld egy A betűt a hozzá tartozó 8 darab vezetéken egy másik egységnek, hogy az első és a hatodik vezetékében küld jelet a többiben nem ( = 65, ez a szám minden számítógép számára az "A" betűt jelenti). A számítógépben levő jelszállító vezetékköteg neve (adat-) busz. Az előbb ismertetett elgondolások alapján, a Pennsylvania Egyetemen 1949-re elkészítették az EDVAC-ot (Electronic Discrete Variable Automatic Computer). 6. ábra Neumann János és az EDVAC Hermann Heine Goldstein javaslatára az EDVAC logikai felépítése a következő volt: az aritmetikai egység (számolómű) végezte a számításokat, logikai műveleteket; a gép logikai vezérléséről a központi vezérlőegység gondoskodott; a programokat és az adatokat a gép memóriája (tár) tárolta; az adatok beolvasását az input (beviteli) egységek; kijelzését az output (kiviteli) egységek bonyolították le ben a Cambridge Egyetemen üzembe helyezték az EDSAC-ot (Electronic Delay Storage Automatic Calculator). Ez a gép egy másodperc alatt összeadást tudott elvégezni. 7. ábra Az EDSAC A számítógépek tárolókapacitását azonban növelni kellett. Az ekkor már ismert mágneses információtárolást (magnetofont) kézenfekvőnek tűnt felhasználni adatok, illetve programok tárolására. Kezdetben mágnesdobot használtak adatok rögzítésére, majd 1951-től mágnesszalagos egységet kapcsoltak a gépekhez. Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 5

6 Ezek a számítógépek voltak az ún. első generációs számítógépek. Legfontosabb áramköri elemeik az elektroncsövek voltak. E gépek terjedelmesek, megbízhatatlanok, lassúak voltak, sok áramot fogyasztottak. Az adatokat lyukszalagról vagy lyukkártyáról kapták. Az első generációs gépek általános jellemzői az alábbiak voltak: műveletvégzéshez elektroncsöveket használnak programozás nehezen megtanulható, gépi nyelven történik néhány tízezer művelet/s lehetséges nagy energia felhasználás jellemző gyakori hibák miatt költséges megjelent a külső programvezérlés, az első ilyen az EDVAC volt az első sorozatban gyártott számítógép az UNIVAC volt Második generációs számítógépek Az akkoriban működő számítógépek nem sokáig elégítették ki a kor igényeit. Megbízhatóbb, kisebb fogyasztású, gyorsabb gépekre volt szükség ben a Bell laboratóriumban három amerikai kutató, W. H. Brattain, J Barteen és W. Shockley feltalálta a tranzisztort, a számítástechnika új kapcsolóelemét. 8. ábra Tranzisztor A tranzisztor működési elve az elektroncsőéhez hasonló, csak a töltések légritkított tér helyett egy kristályban vándorolnak. A töltések vándorlását az egyik pontról a másikra, rács helyett, a két pont között elhelyezkedő ellentétes töltésű kristályanyag a rákapcsolt feszültség hatására akadályozza, vagy zárja el teljesen. További ismeretek: Tranzisztor 1953-ban építi meg a MIT (Massachusettes Institute of Technology) kísérleti jelleggel az első teljesen tranzisztorizált számítógépet, a TX-0-t ben Jay W. Forrester a MIT-nél kidolgozza a ferritgyűrűs memóriát, a második és harmadik generációs gépek jellegzetes operatív tárát. A ferritgyűrűs tár a számjegyek tárolására szolgált. Úgy működött, hogy minden bit (jel/jelhiány) értékét egy elektromágnes őrizte. Ha felmágnesezték a gyűrűt, akkor az az 1-es számjegyet jelentette, ha pedig lemágnesezték, akkor a 0- t. Nyolc kis mágnes segítségével lehetett egy ASCII kód szerinti írásjelet (byte-ot) tárolni. Képzeljük csak el, hány kis Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 6

7 mágnesgyűrűre volt szükség ahhoz, hogy egy levél írásjeleit tárolni tudjuk a számítógépben! A tranzisztorok és a ferritgyűrűs tár felhasználásával készült gépeket nevezzük második generációs számítógépeknek; ezekben az áramköröket már nyomtatott áramköri lapokra szerelték. Ezeknek a gépeknek a sebessége, tároló kapacitása ugyan nagyságrenddel nagyobb volt elődeiknél, és már nem volt szükség arra sem, hogy a programozó ismerje a gép bináris számrendszerben megadott nyelvét, de az időközben megnövekedett követelményeket már ezek sem elégítették ki. A népszerű gépek közé tartoztak pl. az IBM7090, 7070 és A második generációs gépek általános jellemzői az alábbiak voltak: az elektroncsövek helyett megjelenik a jóval kisebb dióda és tranzisztor kapcsolási idő, gépi méretek, energiaigény csökken 100 ezer művelet/s a tranzisztor révén sokkal megbízhatóbb gépek a nagy univerzális számítógépek ideje: az 1963-ban megjelent PDP 5 (DEC) gép volt az első, ami nagyjából elfért egy asztalon Harmadik generációs számítógépek Kezdetben két, majd egyre több és több tranzisztort helyeztek el egy-egy tokban. Megjelentek az első integrált áramkörök. Azt az alkatrészt, ami több kapcsolóelemet és azok összekötéseit is egy tokban tartalmazza, integrált áramkörnek vagy IC-nek (Integrated Circuit ) nevezzük. Az IC-kből és IC-s memóriából felépített számítógépek alkotják az ún. harmadik generációs számítógépeket. Az IC-s memória típusok a RAM (Random Access Memory) és a ROM (Read Only Memory). A RAM írható és olvasható tár, a ROM-ból csak olvasni tud a számítógép. A tár nagyságának mértékegysége a Kbyte (ma már inkább Mbyte). 1 Kbyte egyenlő 1024 byte-tal (azért 1024-gyel mert 2 10 ennyi. Ne feledjük, a számítógép kettes számrendszerben működik). Egy byte pedig 8 bit. Megjelent a monitor és a billentyűzet, a lyukkártya kezdett visszaszorulni. Továbbra is jellemző a gépekre a ferritgyűrűs operatív tár, de már megjelentek a félvezetős, ICkből felépülő memóriák: először csak a ferritgyűrűs tár kiegészítéseként, majd pedig teljes egészében a helyett. A mikroprogramozás széleskörűen elterjedt, és ezzel párhuzamosan egyszerűsödött a processzorok tervezése és növekedett rugalmasságuk. Széles körben elterjedtek az operációs rendszerek: a manchesteri egyetemen készített és 1961-ben üzembe helyezett ATLAS számítógép az egyik első olyan számítógép volt, aminek már igazi operációs rendszere volt. Terjedtek az időosztásos rendszerek is, amik lehetővé tették, hogy interaktív, párbeszédes üzemmódban egyidejűleg több felhasználó férhessen a számítógéphez. A korszak elejét továbbra is a nagyméretű számítógépek jellemzik. A tömegtermelés 1962-ben indult meg, az első integrált áramköröket tartalmazó számítógépek pedig Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 7

8 1964-ben kerültek kereskedelmi forgalomba. A számítógépek már több tevékenységet tudnak párhuzamosan végezni és előrelépések történtek a távadatátvitelben is. Az integrált áramkörök tovább csökkentették a számítógépek árát, méretét és meghibásodási gyakoriságát. Ez növelte a gépek iránti keresletet: az 1970-es évek elejére több mint nagyszámítógépet és ugyancsak több mint miniszámítógépet helyeztek üzembe. Az 1964-ben megjelent CDC Model 6600 volt az első üzletileg is sikeres szuperszámítógép. Ezt a gépet főleg a kutatólaboratóriumok vásárolták ben ezt követte a CDC 7600-as, majd utána a CYBER sorozat következett. A gépeknek több központi egységük volt, és mindegyik több független, egymással párhuzamosan dolgozó feldolgozó egységből épült fel. A szuperszámítógépekkel ellentétes irányzat volt az 1960-as évek közepén a miniszámítógépek tömeges előállítása. A miniszámítógépek gyökerei az MIT-en 1963-ban előállított LINC (Laboratory Instrument Computer) nevű gépig nyúlnak vissza. Ez a gép nagymértékben befolyásolta a PDP (Programmed Data Processor) gépcsalád tervezését a DEC-nél (Digital Equipment Corporation). Az 1963 novemberében megjelenő PDP-1 (más forrás szerint PDP-5) volt az első kereskedelmi forgalomban kapható miniszámítógép. Ezt a gépet 1965-ben váltotta fel az igen sikeres PDP ábra 10. ábra PDP-1 típusú számítógép PDP-8 típusú gépek Ezekkel az olcsó gépekkel a számítástechnika kisebb cégek számára is elérhetővé vált, egy új piaci szegmens nyílt meg. Lehetővé vált dedikált, állandóan csak egy feladat megoldására (például gyártásvezérlésre) szolgáló számítógépek alkalmazása is ben jelentik be az IBM System/370-es gépcsaládot, ami meghatározó volt a harmadik generáció végén, negyedik generáció elején. A család elnevezésében a hetvenes évekre utal, míg a korábbi 360-as gépcsalád az 1960-as évek számítógépe volt. A 370-es szervezése igen nagymértékben megegyezik a korábbi 360-as gépcsaládéval, de több teljesítményjavító megoldást is beleépítettek. A család hat különböző teljesítményű modellből állt. Ezek egymással kompatibilisek voltak mind a hardver, mind a szoftver terén. Így megtehette azt egy cég, hogy a legolcsóbb olyan modellt vásárolja meg, ami éppen megfelelt pillanatnyi igényeinek, és később az igények növekedésével bővítette a memóriát, nagyobb teljesítményűre cserélte a gépet vagy még több perifériát adott hozzá. A már kész programjait azonban változatlanul használhatta az új gépen is, legfeljebb a futásidő és a memóriaigény változott. A gépcsalád népszerűségére jellemző, hogy más gyártók is építettek velük kompatibilis számítógépeket: az Amdahl Corporation által készített 470-es sorozat és az Itel Corporation által készített AS (Advanced System) sorozat is ebbe a gépcsaládba tartozik. Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 8

9 11. ábra 4. ábra IBM 360-as gépek IBM 370-es gépek Több szempontból is a korszak legnagyobb hatású számítógépe volt az IBM 360-as, sok jellegzetessége gyakorlatilag szabvánnyá vált a számítógépiparban. Jelentős lépés volt az is, hogy ennél a gépcsaládnál választották szét először a hardvert és a szoftvert, és nem volt kötelező együtt megvásárolni őket. Ezt a politikát a többi cég is átvette. A számítógépek eladása ezután nemcsak egy működő gép átadását, hanem hardverből, szoftverből, oktatásból, karbantartásból, konzultációból álló komplex szolgáltatás értékesítését jelentette. A harmadik generációs gépek általános jellemzői az alábbiak voltak: megjelennek az integrált áramkörök a gépekben a gépek ára és mérete rohamosan csökken, megbízhatóságuk nő 1 millió művelet/s félvezető memóriát használnak megjelennek a korszerű operációs rendszerek Negyedik generációs számítógépek A negyedik generációs számítógépek igen nagy integráltságú (VLSI, Very Large Scale Integration) áramkörökből épültek fel. Általánossá vált a félvezetős, integrált áramkörökből készült memória is. Nem voltak alapvető változások a számítógépek szervezésében, a korábban már bevezetett megoldásokat tökéletesítették. Az új technológiának köszönhetően tovább csökkent a hardver ára, egy számítógéprendszer árának már akár 75%-a is lehetett a szoftver. A számítógépek programozása már szinte kizárólag magas szintű nyelveken történt. A távadatátvitel lehetővé teszi gyakorlatilag bármelyik két gép összekapcsolását. Elterjedt a mikroprocesszor alkalmazása, majd ezt felhasználva megjelent a személyi számítógép. A korszak meghatározó eseményei: 1972-ben elsőként jön ki az IBM 370-es család néhány tagja teljesen félvezetős memóriával ben megjelennek az első tudományos célú zsebszámológépek ban az R2E nevű francia cég bemutatja az első mikroszámítógépet, a MICRAL-t ben forgalomba kerül az első programozható zsebszámológép, a Hewlett- Packard által gyártott HP-65. Az 1970-es években jelenik meg az interaktív számítógépes tervezés ben megjelenik az első személyi számítógép, az Altair Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 9

10 1976-ban üzembe helyezik az első Cray-1 szuperszámítógépet ben készült el a VisiCalc, az első táblázatkezelő program ben jelenik meg az IBM PC. A számítógépek operatív tárának mérete jelentősen megnövekedett: egy közepes második generációs gép (IBM 1401) memóriájának mérete jellemzően 4 és 16 kbyte között volt, a negyedik generációs IBM 4341-nek már ezerszer akkora, 4-16 Mbyte volt a memóriája. A gépek mérete, energiafogyasztása és ára jelentősen csökkent, a teljesítményük és megbízhatóságuk nőtt (másodpercenként néhány millió utasítás végrehajtása volt jellemző). Általánossá váltak a közvetlen géphozzáférést lehetővé tevő perifériák: billentyűzetek, képernyők, fényceruzák, egerek, vonalkódolvasók. Az operációs rendszerek ennek a felhasználási módnak megfelelően fejlődtek tovább. Egyszerűbbé vált a gépek használata, elterjedtek az adatbázis-kezelők, táblázatkezelők, szövegszerkesztők. Az 1980-as évek közepére már több millió számítógépet használtak világszerte, és ezek nagy része személyi számítógép volt. A korszak legfontosabb eredményének tekinthetjük, hogy a számítástechnika és eszközei (az abakuszok után újra, de egy lényegesen magasabb technikai szinten) közkinccsé váltak. A világban használt számítógépek skálája a mikroszámítógépekkel tovább bővült: ma már mindenki szert tehet az igényeinek, feladatainak leginkább megfelelő gépi eszközre. Jellemző gépkategóriák Szuperszámítógép: legismertebb típus a CYBER és a Cray (a CYBER-t a CDC gyártja). A Cray a kiépítéstől függően akár millió dollárba is kerülhet. Speciális födém kell alá, hogy elbírja a súlyát. A vételi ár tartalmazza két teljes munkaidőben foglalkoztatott karbantartó mérnök díját is a gép egész élettartamára. 12. ábra Cray-2 szuperszámítógép Nagyszámítógép (mainframe): nagy cégeknél használják (bankok, kereskedő és gyártó cégek, kormányhivatalok), ezek végzik az adatfeldolgozás zömét. A jellemző áruk és dollár között van. Üzemeltetésük klimatizált helyiségben történik. Jellemző gyártók: IBM, Borroughs, Digital Equiptment Corporation (DEC), Control Data Corporation (CDC). Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 10

11 13. ábra Nagyszámítógép (mainframe) Miniszámítógép: kisebbek, lassabbak és olcsóbbak a nagygépeknél. Nincs különleges környezeti működési feltételük, az iroda sarkában is állhatnak. Jellemző áruk néhány tízezer dollár. 14. ábra PDP-11 miniszámítógép (70-es évek) és IBM z9 (2007) Mikroszámítógép (személyi számítógép): Napjaink legelterjedtebb számítógépe. Önállóan asztalra helyezve személyi használatra alkalmas (hordozható változata: laptop, notebook). Nagygéphez vagy egymáshoz kapcsolva lehetővé teszik a munka megosztását. Mára alkalmazási területük a tudományos munkától az ügyvitelen, hivatali használaton át a játékig, szórakoztató-multimédiás felhasználásig mindenre kiterjed ábra (1) MICRAL, (2) Apple, (3) Commodore mikroszámítógépek (70-es, 80-as évek) Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 11

12 ábra (1) Az első IBM PC (1981), (2) IBM PC/XT (80-as évek), (3) IBM PC/AT (80-as és 90-es évek) ábra (1) Mai asztali PC, (2) notebook és (3) tablet PC ábra (1) Pocket PC és (2) PDA (Personal Digital Assistant) A negyedik generációs korszak jellemzői: csökkennek a számítógépek méretei nagy megbízhatóság jellemzi a gépeket Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 12

13 új, magas szintű programozási nyelvek jelennek meg mind a fejlesztésben, mind az oktatásban: PASCAL (1968, Wirth), LOGO nyelv: 1971, C, C++ programozási nyelvek, Object Pascal, Java az első mikroprocesszor: INTEL 4004, majd azt követő néhány processzorfajta: INTEL 8086, 8088 az IBM XT gépekben második generációs processzorok: INTEL az IBM AT gépekben harmadik generációs: INTEL 80386DX, 80386SX negyedik generációs: 80486DX, 80486SX, Am 5x86 ötödik generációs: Intel Pentium, AMD K5, Cyrix 6*86, hatodik generációs: Intel Pentium Pro, Pentium II, Celeron, AMD K6, Cyrix 6*86MX, Intel Pentium III, AMD K7, Pentium 4, AMD Athlon XP Ötödik generációs számítógépek 1991 A számítógépek ötödik generációjának fogalma szorosan összekapcsolódik a mesterséges intelligencia kutatásának, létrehozásának problematikájával. A világon ma alkalmazott számítógépek döntő többsége emberek által készített programokkal vezérelt gépezetek. A hardver működésének hatékonyságát, eredményességét a működtető szoftver színvonala határozza meg: a számítógép csak annyit és úgy tud, amennyit, és ahogyan a program tartalmaz. A program minősége a programot készítő ember (szoftverfejlesztő) képességeitől függ, a program (és így a számítógép is) csak annyira intelligens, amennyire a gépet és a programot készítő ember volt. Ezek a képességek persze nem kevesek; a számítógépek különösen a hozzá nem értők szemében már ma is szinte mágikus, majdhogynem gondolkodó, gondolatolvasó gépeknek tűnnek. Ezt bizonyítja az is, hogy megfigyelhető: a hétköznapi emberek sokszor majdhogynem egyenrangú partnernek tekintik a számítógépeket (egy régebbi felmérés szerint a számítógép-használók többsége beszél gépéhez, majdnem felük még fizikailag is bántalmazza, ha nem bír vele). A mai számítógépek és programok képességei azonban bármi is a látszat a készítők képességeit tükrözik, adják vissza, a beépített, beprogramozott tudáshoz nem tesznek hozzá semmit. Az elektronikus számítógépet megalkotóik már eleve arra szánták, hogy olyan műveleteket végezzen el, amelyeket az ember a fejével végez, ám életének első évtizedeiben csak arra volt képes, hogy a rutinszerű, könnyen algoritmizálható feladatokat végrehajtsa. A legjobb szakemberek már kezdettől fogva arra törekedtek, hogy komolyabb munkára fogják a számítógépeket. Warren Weaver 1946-ban felvetette a lehetőségét annak, hogy a számítógépet (nyelvi) fordításra használják. Ő és Donald Booth olyan módszerre gondolt, mint amilyennel a titkosírásokat fejtik meg. A betűk és szavak gyakorisága alapján, tehát pusztán formális alapon akarták megoldani a feladatot (Bonnet, 1984). Shannon pedig 1949-ben javasolt egy módszert sakkozóprogram kidolgozására. A mesterséges intelligencia kutatása önálló elméletként az ötvenes években jelentkezett. Megindultak az első intenzív kutatások és sikerült is némi a befektetett munkához képest igen csekély eredményt elérni. (Az első sakkozóprogram ben látott napvilágot, ezen kívül fordítóprogramokat is dolgoztak ki). A csekély eredmények miatt a téma iránti érdeklődés a hatvanas évekre igen lecsökkent. Az érdemi kutatások csak mintegy tíz év múlva indultak meg újra, a határtudományokban lélektanban, nyelvészetben, neurobiológiában elért eredményekre támaszkodva. Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 13

14 A két legfontosabb irányzat közül az egyik az emberi (matematikai) gondolkodás szigorú logikán alapuló jellemzőit igyekszik utánozni, a másik irányzat pedig az idegrendszer működéséből indul ki, és mesterséges neuronhálózatok segítségével próbálja azt utánozni. Mindkét irányzat ért el eredményeket, de a gépek intelligens viselkedésének tényleges megoldása még hátra van. A japánok hirdették meg 1982-ben az Ötödik Generációs Számítógéprendszer Tervét (angolul: FGCS, Fifth Generation Computer System Project). Ez a monumentális, grandiózus terv egyben az információs társadalom megvalósításának terve. Míg az előző generációk számítógépei az elvi alapokat illetően nem különböztek egymástól (csupán a negyedik generáció gépeinél találkozunk új elképzelésekkel), az ötödik generáció tagjai elvi alapjaikban különböznek elődeiktől. A japánok nem is számítógépről, hanem ismeret- (tudás-) feldolgozó rendszerekről (KIPS, Knowledge Information Processing System) beszélnek. Mi a lényege ennek a megkülönböztetésnek? Eddig a számítógépek az adatok viszonylag durva, elsődleges feldolgozását végezték, aritmetikai-logikai módszerekkel. Az új nemzedék az ismeretek, a tudás intelligens feldolgozását fogja végezni az emberi gondolkodásmódhoz, érzékelésmódhoz közel álló mesterséges intelligencia módszereivel. A számítási eljárások helyét a logikus következtetés veszi át. Ami a hardver alapelemeit illeti, az ötödik generáció nem jelent forradalmat, nem hoz olyan gyökeresen új megoldást, mint amilyet a második vagy a harmadik generáció jelentett (áttérés az elektroncsőről a tranzisztorra, illetve az integrált áramkörre). Tovább nő az elemek, az áramkörök integráltsági foka, s előbb-utóbb eléri a felső határt. A gépek feldolgozási sebessége ezerszer, tárkapacitása tízezerszer lesz nagyobb a jelenleginél. A szilíciumlapkákon azonban nem csak az áramköri elemek száma lesz nagyobb, hanem struktúrájuk is bonyolultabbá, komplexebbé válik. Különböző feladatokra specializált logikai áramköröket fejlesztenek ki. Olyan tárolórendszereket alakítanak ki, amelyekben a logikai és memóriafunkciókat egyesítik, s egyes feladatokat közvetlenül a tárolón belül végeznek el. Valószínű, hogy már az ötödik generáció gépeiben megjelennek, egyelőre csak néhány eszközben, a szilícium alapú félvezetők helyett a galliumarzenid alapú és a Josephson-effektuson alapuló alkatrészek. Egyébként, ami az ötödik generációs gépeket gyökeresen megkülönbözteti az előzőktől, az éppen a felépítés, a struktúra. Általánossá válnak a sokprocesszoros, hierarchikus felépítésű számítógépek (az egyik japán konstrukcióban például 876 processzort kapcsolnak össze), melyek elsősorban adatáramlásos vezérléssel fognak működni, s ugyanúgy, ahogy a számítógép belsejét bonyolult hálózat alkotja, a gépek maguk is bonyolult hálózatokká kapcsolódnak majd össze. A rendszer fogalma kitágul, most már nem a számítógépet, hanem a hálózatot tekintik rendszernek. A japán projekt a hardver- és szoftverfejlesztést egységes egésznek tekinti, s célkitűzéseiben, a megvalósítandó rendszerekben a kettő szervesen öszszefügg egymással. Milyen témák szerepelnek a nagy tervben? Az alábbiakban csupán ízelítőül sorolunk fel néhány témát: gépi fordítás: olyan rendszer kialakítása, amely szótárában legalább szót tartalmaz, 90%-os pontossággal dolgozik, elvégzi a kisegítő tevékenységeket (szövegszerkesztés, nyomtatás stb.) és 70%-kal olcsóbb, mint az emberi fordítás; szakértői rendszerek és ilyeneket előállító rendszerek; alak- és színfelismerés: olyan adatbázis kiépítése, mely legalább visszakereshető alak- és képelemet tartalmaz; a rendszer képes legyen néhány másodperc alatt memorizálni egy alak vagy kép elemeit, és kb. 100 s alatt visszakeresni egy alakot vagy képet; beszédfelismerés: olyan rendszer felépítése, amely több száz ember beszédét megérti ; beszélő, beszédre fennhangon válaszoló gép: a kérdés megértése, a válasz összetett, komplex struktúrák alakjában, beszélgetés természetes nyelven. Hogy milyen igényeket támasztanak a géppel szemben ezek a feladatok, annak illusztrálására elegendő két adat: egy problémamegoldó rendszer MLIPS teljesítő-képességű Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 14

15 gépet kíván (1 MLIPS =1 Mega Logical Inference per Second = egymillió logikai következtetés másodpercenként). A mai szuperszámítógépek műveleti sebessége LIPS. Tehát a mesterséges intelligencia kutatása és az intelligens gépek megteremtése a számítógépipart a hardver szempontjából is hatalmas kihívás elé állítja. A jelenlegi műszaki megoldások ugyanis csak nagyon korlátozott gondolkodást képesek lehetővé tenni, a mai alkalmazott technológia adta lehetőségek gyakorlatilag a keresőrendszerek szintjén működő intelligens viselkedést képesek kiszolgálni. Ennek alapján ugyan mondhatjuk, hogy léteznek némi intelligenciával bíró számítógépes rendszerek (hardver és szoftver együttesek), de a valódi áttörés forradalmi technikai újításokat, eredményeket igényel még. További ismeretek: A mesterséges intelligencia Magyar mesterséges intelligencia bibliográfia A gépi intelligencia jövője Készítette: Centroszet Szakképzés-Szervezési Nonprofit Kft. 15

Az első elektronikus számítógépek

Az első elektronikus számítógépek Az első elektronikus számítógépek 100 évre volt szükség Babbage gépének megvalósításához, mert az ő korában még a gyakorlatban nem állt rendelkezésre olyan eszköz, amivel ezt a gépet megbízhatóan és nem

Részletesebben

1. Generáció( ):

1. Generáció( ): Generációk: 1. Generáció(1943-1958): Az elektroncsövet 1904-ben találták fel. Felfedezték azt is, hogy nemcsak erősítőként, hanem kapcsolóként is alkalmazható. A csövek drágák, megbízhatatlanok és rövid

Részletesebben

3. Az elektronikus számítógépek fejlődése napjainkig 1

3. Az elektronikus számítógépek fejlődése napjainkig 1 2. Az elektronikus számítógépek fejlődése napjainkig Vázold fel az elektronikus eszközök fejlődését napjainkig! Részletesen ismertesd az egyes a számítógép generációk technikai újdonságait és jellemző

Részletesebben

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta.

A fejlődés megindulása. A Z3 nevet viselő 1941-ben megépített programvezérlésű elektromechanikus gép már a 2-es számrendszert használta. Kezdetek A gyors számolás vágya egyidős a számolással. Mind az egyiptomiak mind a babilóniaiak számoló táblázatokat használtak. A helyiérték és a 10-es számrendszer egyesítése volt az első alapja a különböző

Részletesebben

Az informatika fejlõdéstörténete

Az informatika fejlõdéstörténete Az informatika fejlõdéstörténete Elektronikus gépek A háború alatt a haditechnika fejlõdésével felmerült az igény a számítások precizitásának növelésére. Több gépet is kifejlesztettek, de ezek egyike sem

Részletesebben

Fejezetek az Információ-Technológia Kultúrtörténetéből

Fejezetek az Információ-Technológia Kultúrtörténetéből Fejezetek az Információ-Technológia Kultúrtörténetéből Kezdeti elektronikus számítógépek kultúrtörténete ITK 7/58/1 Számológép - számítógép? Lady Ada Lovelace (1815-1852). Charles Babbage (1791-1871) ITK

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

erettsegizz.com Érettségi tételek

erettsegizz.com Érettségi tételek erettsegizz.com Érettségi tételek Az informatika fejlődéstörténete, jogi ismeretek Információ és társadalom Az informatika fejlődéstörténete a XX. Században, napjainkban Jogi ismeretek, szerzőjog, szoftver

Részletesebben

Jacquard szövőgépe, vezérlési modulok használata 1805 lyukkártyás vezérlés

Jacquard szövőgépe, vezérlési modulok használata 1805 lyukkártyás vezérlés Az emberek ősidők óta törekednek arra, hogy olyan eszközöket állítsanak elő, melyek könnyebbé teszik a számolást, ilyen pl.: kavicsok, fadarabok, zsinórokra kötött csomók, fák, földre vésett jelek voltak.

Részletesebben

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása Az Informatika Elméleti Alapjai Dr. Kutor László Számolás az ujjakon 2. (Kína- India) A számolás korai segédeszközei A korszerű számítógépek kialakulása http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév:

Részletesebben

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása

Az Informatika Elméleti Alapjai Dr. Kutor László. A számolás korai segédeszközei A korszerű számítógépek kialakulása Az Informatika Elméleti Alapjai Dr. Kutor László A számolás korai segédeszközei A korszerű számítógépek kialakulása http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1

Részletesebben

A számítástechnika történeti áttekintése

A számítástechnika történeti áttekintése A számítástechnika történeti áttekintése Források: Markó Tamás PHARE támogatással készült jegyzete Wikipedia Google képkereső Prohardver 1 Előzmények Ókor: abacus a képen kínai abakusz látható: szuan-pan

Részletesebben

ismerd meg! A PC vagyis a személyi számítógép

ismerd meg! A PC vagyis a személyi számítógép ismerd meg! A PC vagyis a személyi számítógép A számítógép elsõ ránézésre A PC az angol Personal Computer rövídítése, jelentése: személyi számítógép. A szám í- tógépek rohamos elterjedésével a személyi

Részletesebben

Számítógép architektúrák. Bevezetés

Számítógép architektúrák. Bevezetés Számítógép architektúrák Bevezetés Mechanikus számológépek Blaise Pascal (1642) Gottfried Willhelm von Leibniz báró (~1676) Összeadás, kivonás Mai négyműveletes zsebszámológépek mechanikus őse Charles

Részletesebben

Az informatika fejlődéstörténete. A számítástechnika kezdetei

Az informatika fejlődéstörténete. A számítástechnika kezdetei Az informatika fejlődéstörténete A számítástechnika kezdetei A mechanikus számológépek a mechanikus golyós számológépek az abakusz i.e. 2000-től Fogaskerekes számológépek Schickard 1623 négy alapművelet

Részletesebben

Az informatika fejlődéstörténete

Az informatika fejlődéstörténete 1.2.1. Az informatika fejlődéstörténete A különböző számolási, számítási műveletek megkönnyítése és mechanizálása mindig is az emberiség fejlődésének kulcsfontosságú kérdése volt. Az abakusz az első számolóeszköz,

Részletesebben

A SZÁMÍTÓGÉP TÖRTÉNETE

A SZÁMÍTÓGÉP TÖRTÉNETE A SZÁMÍTÓGÉP TÖRTÉNETE A számolást segítő eszközök története egyidős az emberiség történetével. Az ősember az ujjait használta a számoláshoz. Később a számoláshoz köveket, fonalakat használtak, az eredményt

Részletesebben

A számítástechnika története

A számítástechnika története A számítástechnika története A számolás igénye már igen korán megjelent az emberiség történetében. Eleinte csak megszámlálásos feladatok léteztek. Például meg kellett számolni hány állat van a csordában,

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

Informatika érettségi vizsga

Informatika érettségi vizsga Informatika 11/L/BJ Informatika érettségi vizsga ÍRÁSBELI GYAKORLATI VIZSGA (180 PERC - 120 PONT) SZÓBELI SZÓBELI VIZSGA (30 PERC FELKÉSZÜLÉS 10 PERC FELELET - 30 PONT) Szövegszerkesztés (40 pont) Prezentáció-készítés

Részletesebben

Informatikai Rendszerek Alapjai. A számolás korai segédeszközei A korszerű számítógépek kialakulása

Informatikai Rendszerek Alapjai. A számolás korai segédeszközei A korszerű számítógépek kialakulása Informatikai Rendszerek Alapjai Dr. Kutor László A számolás korai segédeszközei A korszerű számítógépek kialakulása http://uni-obuda.hu/users/kutor/ 2015. ősz Óbudai Egyetem, NIK Dr. Kutor László IRA 9/37/1

Részletesebben

Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése

Alapfogalmak. Dr. Kallós Gábor A Neumann-elv. Számolóeszközök és számítógépek. A számítógép felépítése Alapfogalmak Dr. Kallós Gábor 2007-2008. A számítógép felépítése A Neumann-elv A számítógéppel szemben támasztott követelmények (Neumann János,. Goldstine, 1945) Az elv: a szekvenciális és automatikus

Részletesebben

A számítástechnika története

A számítástechnika története 27 A számítástechnika története A jegyzet a PHARE támogatásával készült. Összeállította: Markó Tamás Janus Pannonius Tudományegyetem Alkalmazott Matematika és Informatika Tanszék 1996 PDF formátum: Tipográfia,

Részletesebben

A számolás és a számítástechnika története. Feladat:

A számolás és a számítástechnika története. Feladat: A számolás és a számítástechnika története Kezdetektől, a huszadik század közepéig Feladat: Milyen eszközöket használtak a számoló/számítógépek megjelenése elo tt a számolás segítésére? Kik készítettek

Részletesebben

1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat

1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat 1. Milyen eszközöket használt az ősember a számoláshoz? ujjait, fadarabokat, kavicsokat 2. Mit tudsz Blaise Pascalról? Ő készítette el az első szériában gyártott számológépet. 7 példányban készült el.

Részletesebben

A számítástechnika fejlődése

A számítástechnika fejlődése A számítástechnika fejlődése Az 1600-as évektől kezdődően az emberek igyekeztek olyan gépeket építeni, melyek megkönnyítik a számolást. A számítógépek fejlődését nagy lépésekben követjük. Az egymástól

Részletesebben

A nulladik generációs számítógépek közé a különbözõ mechanikus mûködésû szerkezeteket soroljuk.

A nulladik generációs számítógépek közé a különbözõ mechanikus mûködésû szerkezeteket soroljuk. III. AZ INFORMATIKA FEJLÕDÉSTÖRTÉNETE K A számolás fejlõdése Az ember már az õskorban is számolt: megszámolta a zsákmányt, a társait, az ellenségeit. Egyszerû számításokat végzett: összeadott, kivont.

Részletesebben

Információs technológiák 1. Ea: Történelmese

Információs technológiák 1. Ea: Történelmese Információs technológiák 1. Ea: Történelmese 56/1 B ITv: MAN 2015.09.08 Témakörök A számítógép kialakulása A Neumann-elvek Testépítés A lélek útja tudattágítás Ellenőrző kérdések 56/2 Mi a számítógép?

Részletesebben

Ez egy program. De ki tudja végrehajtani?

Ez egy program. De ki tudja végrehajtani? Császármorzsa Keverj össze 25 dkg grízt 1 mokkás kanál sóval, 4 evőkanál cukorral és egy csomag vaníliás cukorral! Adj hozzá két evőkanál olajat és két tojást, jól dolgozd el! Folyamatos keverés közben

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL)

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP Olyan elektronikus berendezés, amely adatok, információk feldolgozására képes emberi beavatkozás nélkül valamilyen program segítségével. HARDVER Összes műszaki

Részletesebben

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév

Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Bevezetés az informatikába Tételsor és minta zárthelyi dolgozat 2014/2015 I. félév Az informatika története (ebből a fejezetből csak a félkövér betűstílussal szedett részek kellenek) 1. Számítástechnika

Részletesebben

A számítástechnika története a XX. században

A számítástechnika története a XX. században 1970 között. 1962-t)l a Román Akadémia levelez) tagja. A karotinoidokat és fenotiazinokat tanulmányozta. A cellulóz és a keményít) biokémiai lebontásáról közölt tanulmányokat. Több kézikönyvet írt. 1985-ben

Részletesebben

1. Fejezet: Számítógép rendszerek

1. Fejezet: Számítógép rendszerek 1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

1. Fejezet: Számítógép rendszerek. Tipikus számítógép hirdetés

1. Fejezet: Számítógép rendszerek. Tipikus számítógép hirdetés 1. Fejezet: Számítógép The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes.

6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. 6. óra Mi van a számítógépházban? A számítógép: elektronikus berendezés. Tárolja az adatokat, feldolgozza és az adatok ki és bevitelére is képes. Neumann elv: Külön vezérlő és végrehajtó egység van Kettes

Részletesebben

Informatikai alapismeretek földtudományi BSC számára

Informatikai alapismeretek földtudományi BSC számára Informatikai alapismeretek földtudományi BSC számára 2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@ludens.elte.hu Neumann János 1903-1957 Neumann János matematikus, fizikus, vegyészmérnök. Tanulmányok:

Részletesebben

IT - Alapismeretek. Megoldások

IT - Alapismeretek. Megoldások IT - Alapismeretek Megoldások 1. Az első négyműveletes számológépet Leibniz és Schickard készítette. A tárolt program elve Neumann János nevéhez fűződik. Az első generációs számítógépek működése a/az

Részletesebben

Számítógépek generációi

Számítógépek generációi Számítógépek generációi Dr. Bujdosó Gyöngyi Debreceni Egyetem Informatikai Kar 2012 Számítógépek generációi Első generáció: elektroncsövek (1943 1954) Második generáció: tranzisztorok (1954 1964) Harmadik

Részletesebben

Hardver ismeretek. Várady Géza, B144 varadygeza@gmail.com

Hardver ismeretek. Várady Géza, B144 varadygeza@gmail.com Hardver ismeretek Várady Géza, B144 varadygeza@gmail.com Bevezetés Informatika sokrétű Információk Információtechnika Szerzése Feldolgozása Tárolása Továbbítása Informatika a technikai eszköz oldalról

Részletesebben

Bepillantás a gépházba

Bepillantás a gépházba Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver

Részletesebben

Programozás alapjai. Wagner György Általános Informatikai Tanszék

Programozás alapjai. Wagner György Általános Informatikai Tanszék Általános Informatikai Tanszék Hirdetmények (1) Jelenlevők: műsz. informatikusok progr. matematikusok A tantárgy célja: alapfogalmak adatszerkezetek algoritmusok ismertetése Követelményrendszer: Nincs:

Részletesebben

KÖSZÖNTJÜK HALLGATÓINKAT!

KÖSZÖNTJÜK HALLGATÓINKAT! KÖSZÖNTJÜK HALLGATÓINKAT! Önök Varjasi Norbert: A digitális forradalom a kvarcóráktól a zsebben hordott mobil irodáig előadását hallhatják! 2010. április 7. Kempelen Farkas: sakkozó automata (1769) 2 A

Részletesebben

A számítástechnika rövid története

A számítástechnika rövid története Budapest XIV. Kerületi Németh Imre Általános Iskola, 1148 Bp. Lengyel u.23. számítástechnika - informatika oktatás A számítástechnika rövid története Tartalomjegyzék 1. A számolást segítő eszközök története,

Részletesebben

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

2.5. II. generációs számítógépek (tranzisztor)

2.5. II. generációs számítógépek (tranzisztor) I. Információ-technológiai alapismeretek 2.5. II. generációs számítógépek (tranzisztor) A sebesség kérdése mindig is nagyon fontos tényező volt a számítógépek világában. Babbage gépe egy másodperc alatt

Részletesebben

Architektúrák és operációs rendszerek: Bevezetés - Történelem

Architektúrák és operációs rendszerek: Bevezetés - Történelem Architektúrák és operációs rendszerek: Balogh Ádám Lőrentey Károly Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Tartalomjegyzék 1. 2. 3. 4. 5. 6. 7. 8. Bevezetés

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

Nemzetiség: Állampolgárság: Született: Elhunyt: Magyar Magyar 1903 1957

Nemzetiség: Állampolgárság: Született: Elhunyt: Magyar Magyar 1903 1957 Nemzetiség: Állampolgárság: Született: Elhunyt: 1903 1957 1944 1945 1946 NEUMANN JÁNOST A MODERN SZÁMÍTÓGÉP ATYJÁNAK TEKINTJÜK ENIAC EDVAC IAS IBM Neumann elvek 1944: első teljesen elektronikus, digitális

Részletesebben

IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK

IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK Irányítástechnika Az irányítás olyan művelet, mely beavatkozik valamely műszaki folyamatba annak: létrehozása (elindítása)

Részletesebben

Rövid történeti áttekintés

Rövid történeti áttekintés Rövid történeti áttekintés Informatikai rendszerek alapjai Horváth Árpád 2015. május 6. Tartalomjegyzék 1. Neumann János Neumann János (John von Neumann, 19031957) Született:

Részletesebben

Bevezetés az Információtechnológiába

Bevezetés az Információtechnológiába Dr. Kovács János Informatika Tanszék Bevezetés az Információtechnológiába MÉRNÖK- ÉS GAZDASÁGINFORMATIKA ALAPSZAK 2016 6. A TECHNIKA A TECHNIKA a számítógép történelem, jelen, jövő 2 Az információfeldolgozás

Részletesebben

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az

Részletesebben

A hardver fejlődése A mechanikus számítógépektől a szuperszámítógépekig 2. előadás

A hardver fejlődése A mechanikus számítógépektől a szuperszámítógépekig 2. előadás A hardver fejlődése A mechanikus számítógépektől a szuperszámítógépekig 2. előadás "Jósolni nagyon nehéz. Különösen a jövőre nézve. (Churchill) A Számítógépek története Három fontos korszak: 1. Mechanikus

Részletesebben

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA

ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA ELŐADÁS 2016-01-05 SZÁMÍTÓGÉP MŰKÖDÉSE FIZIKA ÉS INFORMATIKA A PC FIZIKAI KIÉPÍTÉSÉNEK ALAPELEMEI Chip (lapka) Mikroprocesszor (CPU) Integrált áramköri lapok: alaplap, bővítőkártyák SZÁMÍTÓGÉP FELÉPÍTÉSE

Részletesebben

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák)

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák) 1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs

Részletesebben

A számítógép egységei

A számítógép egységei A számítógép egységei A számítógépes rendszer két alapvető részből áll: Hardver (a fizikai eszközök összessége) Szoftver (a fizikai eszközöket működtető programok összessége) 1.) Hardver a) Alaplap: Kommunikációt

Részletesebben

2. Fejezet : Számrendszerek

2. Fejezet : Számrendszerek 2. Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College

Részletesebben

Processzor (CPU - Central Processing Unit)

Processzor (CPU - Central Processing Unit) Készíts saját kódolású WEBOLDALT az alábbi ismeretanyag felhasználásával! A lap alján lábjegyzetben hivatkozz a fenti oldalra! Processzor (CPU - Central Processing Unit) A központi feldolgozó egység a

Részletesebben

A számítástechnika rövid története

A számítástechnika rövid története A számítástechnika rövid története Számolást segítő eszközök 1. Ujj (digitus) digitális Kavics (calculus) kalkulátor Kipu (inkák) Rováspálca (magyarok) helyiértékes számolás Számolást segítő eszközök 2.

Részletesebben

Középszintű Informatika Érettségi Szóbeli Vizsgatétel Bottyán János Műszaki Szakközépiskola -2005-

Középszintű Informatika Érettségi Szóbeli Vizsgatétel Bottyán János Műszaki Szakközépiskola -2005- 3. TÉTEL Középszintű Informatika Érettségi Szóbeli Vizsgatétel 1. Információs társadalom 1.2. Információ és társadalom 1.2.1. Az informatika fejlődéstörténete főbb események a kezdetektől napjainkig, Neumann-elv,

Részletesebben

Informatikai rendszerek alapjai (Informatika I.) NGB_SZ003_1

Informatikai rendszerek alapjai (Informatika I.) NGB_SZ003_1 Informatikai rendszerek alapjai (Informatika I.) NGB_SZ003_1 1. előadás Történeti áttekintés Információelméleti alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Történeti áttekintés:

Részletesebben

2010-2011 Őszi félév. Heizlerné Bakonyi Viktória HBV@elte.hu

2010-2011 Őszi félév. Heizlerné Bakonyi Viktória HBV@elte.hu 2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@elte.hu Felmentés Tárgybeszámítási kérelemhez TO-ról tárgybeszámítási kérelem Régi index Régi tárgy tematikája Dr Zsakó László, ELTE IK Média és Oktatásinformatika

Részletesebben

Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel)

Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel) Pannon Egyetem Villamosmérnöki és Információs Rendszerek Tanszék Digitális Rendszerek és Számítógép Architektúrák (BSc államvizsga tétel) 1. tétel: Neumann és Harvard számítógép architektúrák összehasonlító

Részletesebben

A számítógépek felépítése. A számítógép felépítése

A számítógépek felépítése. A számítógép felépítése A számítógépek felépítése A számítógépek felépítése A számítógépek felépítése a mai napig is megfelel a Neumann elvnek, vagyis rendelkezik számoló egységgel, tárolóval, perifériákkal. Tápegység 1. Tápegység:

Részletesebben

Tartalom. 6.1.2. Jelátalakítás és kódolás... 10. 6.1.3. A számítógép felépítése... 10. 6.1.4. Alaplap... 11. 6.1.5. A központi egység...

Tartalom. 6.1.2. Jelátalakítás és kódolás... 10. 6.1.3. A számítógép felépítése... 10. 6.1.4. Alaplap... 11. 6.1.5. A központi egység... Tartalom 1. Információs társadalom... 2 1.1. Informatikai alapfogalmak... 2 1.2. A kommunikáció... 2 1.3. Számítógépes adatbázisok... 3 1.4. Keresés az interneten... 4 2. Információ és társadalom... 4

Részletesebben

Számítógép fajtái. 1) személyi számítógép ( PC, Apple Macintosh) - asztali (desktop) - hordozható (laptop, notebook, palmtop)

Számítógép fajtái. 1) személyi számítógép ( PC, Apple Macintosh) - asztali (desktop) - hordozható (laptop, notebook, palmtop) Számítógép Számítógépnek nevezzük azt a műszakilag megalkotott rendszert, amely adatok bevitelére, azok tárolására, feldolgozására, a gépen tárolt programok működtetésére alkalmas emberi beavatkozás nélkül.

Részletesebben

Számítógép-generációk. Első generáció (kb.: 1940-es évek) (1946-1954) Második generáció (kb.: 1950-es évek) (1954-1964)

Számítógép-generációk. Első generáció (kb.: 1940-es évek) (1946-1954) Második generáció (kb.: 1950-es évek) (1954-1964) Informatika szintmérő-érettségi tételek 2015. február 1.oldal (3) A számítógépek fejlődése 1940 és 1990 között Számítógép-generációk A számítógépek fejlődésének főbb állomásai: Első generáció (kb.: 1940-es

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az

Részletesebben

A számítógép története (olvasmány)

A számítógép története (olvasmány) A számítógép története (olvasmány) A számítógép szóról általában a számítás, a számolás jut elsőként az eszünkbe. A számítások gépesítésének története megelőzi a számítógép történetét. Számolást segítő

Részletesebben

A Számítógépek felépítése, mőködési módjai. A Számítógépek hardverelemei

A Számítógépek felépítése, mőködési módjai. A Számítógépek hardverelemei Mechatronika, Optika és Gépészeti Informatika Tanszék Kovács Endre tud. Mts. A Számítástudomány alapjai Szemelvények az Elméleti Számítástudomány területérıl A Számítógépek felépítése, mőködési módjai

Részletesebben

Szoftver-technológia I.

Szoftver-technológia I. Szoftver technológia I. Oktatók Sziray József B602 Heckenast Tamás B603 2 Tananyag Elektronikus segédletek www.sze.hu/~sziray/ www.sze.hu/~heckenas/okt/ (www.sze.hu/~orbang/) Nyomtatott könyv Ian Sommerville:

Részletesebben

Adattárolók. Így néz ki egy lyukkártya

Adattárolók. Így néz ki egy lyukkártya Adattárolók KEZDETEK Az első informatikai vonatkozású gépet 1890-ben egy Hermann Hollerith nevű ember találta fel, aki az Amerikai népszámlálási hivatalban dolgozott. Ez az eszköz a lyukkártya. Működésének

Részletesebben

1.generáció: között Jellemzői: elektroncsövek 2. generáció: között Jellemzői: tranzisztorok 3. generáció: között

1.generáció: között Jellemzői: elektroncsövek 2. generáció: között Jellemzői: tranzisztorok 3. generáció: között IEFA, 2016.02.17. 1.generáció: 1946-1958 között Jellemzői: elektroncsövek 2. generáció: 1959-1965 között Jellemzői: tranzisztorok 3. generáció:1965 1972 között Jellemzői: integrált áramkörök 4.generáció:

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Számítógép architektúra

Számítógép architektúra Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Számítógép architektúra Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Irodalmi források Cserny L.: Számítógépek

Részletesebben

elektronikus adattárolást memóriacím

elektronikus adattárolást memóriacím MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása

Részletesebben

Infokommunikációs hálózatépítő és üzemeltető

Infokommunikációs hálózatépítő és üzemeltető A 12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 481 03 Infokommunikációs hálózatépítő és üzemeltető Tájékoztató A vizsgázó az

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Adatbázis rendszerek. dr. Siki Zoltán

Adatbázis rendszerek. dr. Siki Zoltán Adatbázis rendszerek I. dr. Siki Zoltán Adatbázis fogalma adatok valamely célszerűen rendezett, szisztéma szerinti tárolása Az informatika elterjedése előtt is számos adatbázis létezett pl. Vállalati személyzeti

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Számítógépes alapfogalmak, számítógép generációk 2. A számítógép felépítése, hardver, A központi egység 3. Hardver

Részletesebben

Tudásszint mérés feladatlap

Tudásszint mérés feladatlap Tudásszint mérés feladatlap 9. évfolyam Útmutató: Semmilyen segédeszköz nem használható! A feladatlap kitöltésére 40 perc áll rendelkezésedre! Gondold át válaszaidat! Név:... Dátum:... Iskola:... Osztály:...

Részletesebben

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix

5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix 2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.

Részletesebben

A., BEMENETI EGYSÉGEK

A., BEMENETI EGYSÉGEK Perifériák A., BEMENETI EGYSÉGEK Használatával adatok jutnak el a környezetből a központi feldolgozó egység felé. COPYRIGHT 2017 MIKECZ ZSOLT 2 1., Billentyűzet Adatok (szövegek, számok stb.) bevitelére

Részletesebben

Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat

Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat 1 2 3 Első sor az érdekes, IBM PC. 8088 ra alapul: 16 bites feldolgozás, 8 bites I/O (olcsóbb megoldás). 16 kbyte RAM. Nem volt háttértár, 5 db ISA foglalat XT: 83. CPU ugyanaz, nagyobb RAM, elsőként jelent

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László A korszerű számítógépek kialakulása Az informatika magyar úttörői http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea jelszó: IEA07 IEA 5/1

Részletesebben

A szoftverfejlesztés eszközei

A szoftverfejlesztés eszközei A szoftverfejlesztés eszközei Fejleszt! eszközök Segédeszközök (szoftverek) programok és fejlesztési dokumentáció írásához elemzéséhez teszteléséhez karbantartásához 2 Történet (hw) Lyukkártya válogató

Részletesebben

Mi van a számítógépben? Hardver

Mi van a számítógépben? Hardver Mi van a számítógépben? Hardver A Hardver (angol nyelven: hardware) a számítógép azon alkatrészeit / részeit jelenti, amiket kézzel meg tudunk fogni. Ezen alkatrészek közül 5 fontos alkatésszel kell megismerkedni.

Részletesebben

Számítógép egységei. A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése.

Számítógép egységei. A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Számítógép egységei A mai számítógépek túlnyomó többsége a Neumann-elvek alapján működik. Ezeket az elveket a számítástechnika történet részben már megismertük, de nem árt ha felelevenítjük. Neumann-elvek

Részletesebben

2. rész BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA. Az információ elérésének és felhasználásának képessége.

2. rész BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA. Az információ elérésének és felhasználásának képessége. 2. rész BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA 1. INFORMÁCIÓS ÍRÁSTUDÁS Az információ elérésének és felhasználásának képessége. - leggyakrabban számítógép és / vagy Internet használat - IKT technológiák alkalmazásának

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Kérdések a témakörhöz Melyek a Neumann-elvek? Milyen főbb részei vannak a Neumann-elvek alapján működő számítógépeknek? Röviden mutasd be az egyes részek feladatait! Melyek a ma

Részletesebben

BEVEZETÉS AZ INFORMATIKÁBA. Háber István ihaber@pmmik.pte.hu

BEVEZETÉS AZ INFORMATIKÁBA. Háber István ihaber@pmmik.pte.hu BEVEZETÉS AZ INFORMATIKÁBA Háber István ihaber@pmmik.pte.hu Bevezetés Informatika sokrétű Információk Szerzése Feldolgozása Tárolása Továbbítása Információtechnika Informatika a technikai eszköz oldalról

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Számítógépes alapfogalmak 2. A számítógép felépítése, hardver, A központi egység 3. Hardver Perifériák 4. Hardver

Részletesebben

BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA

BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA BEVEZETÉS A SZÁMÍTÓGÉPEK VILÁGÁBA Ismeretterjesztő előadás 2. Rész Előadó:Pintér Krisztina etanácsadó aniszirk@gmail.com INFORMÁCIÓS ÍRÁSTUDÁS Az információ elérésének és felhasználásának képessége. leggyakrabban

Részletesebben

A számítástechnika története

A számítástechnika története A számítástechnika története Tárgya: a matematikai és logikai műveletek elvégzését segítő eszközök tervezésének, gyártásának, működésének és célszerű használatának ismeretei. Számolás, számolást segítő

Részletesebben