1., 2., 3., 4. generációs atomerımővek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1., 2., 3., 4. generációs atomerımővek"

Átírás

1 1., 2., 3., 4. generációs atomerımővek Reaktorgenerációk Dr. Aszódi Attila igazgató, BME Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Budapest, február 12. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 1 I.: 1970-es évek elıtt, természetes uránnal mőködı reaktorok. II.: A 70-es évektıl kifejlesztett könnyővizes reaktortípusok, jelenleg is alkalmazzuk ıket. Zömük ra tölti ki tervezett élettartamát. III.: A jelenlegi reaktortípusok optimalizálása biztonsági és gazdaságossági szempontok szerint. Jelenleg készek a kereskedelmi forgalomra. IV.: Jelenleg fejlesztés alatt, 6 fı típus vizsgálata nemzetközi projektekben. Céljuk fenntartható energiaforrás biztosítása (villamos- és hıtermelés, tengervíz sótalanítás), illetve a hidrogéntermelés. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 2 EBR (Experimental Breeder Reactor) 1951-ben helyezték üzembe, a világ elsı reaktora, amivel áramot termeltek, de nem atomerımő! Gyorsreaktor, üa.: 94%-os dúsítottságú urán, hőtık.: folyékony Na-K. P th =1400 kw, P e =200 kw. A National Reactor Testing Station egy épületének világítását látták el vele. Elsı generációs atomerımővek július 27: Az Obnyinszki Atomerımő hálózatra kapcsolódik. Késıbbi RBMK-k atyja, grafitmoderálású, csöves, forralóvizes típus. Nettó 1 MW elektromos telj. (6-5 MW) ben állították le! ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 3 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 4

2 Elsı generációs atomerımővek Az 50-es, 60-as évek prototípus atomerımővi reaktorai Viszonylag kis egységteljesítmény (<250 MW) Kis darabszámú szériák, inkább prototípus (kivétel: Magnox) Biztonsági hiányosságok Többnyire természetes urán üzemanyag Egzotikus reaktortípusok is (FBR pl. Fermi I., GCR pl. Magnox, HWGCR pl. Monts D'Arree, SGHWR Winfrith) A Winfrith SGHWR leszerelése ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 5 Elsı generációs atomerımővek Elsı generációs atomerımővek Shippingport az USA elsı kereskedelmi atomerımőve 60 MW elektromos teljesítmény Nyomottvizes reaktorral (PWR) között üzemelt ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 6 Reaktorgenerációk Oldbury és Wylfa: ez a két elsı generációs blokk üzemel a világon (Nagy-Britannia) Magnox: szén-dioxid gáz hőtéső, grafitmoderátoros reaktorok (GCR), természetes urán üzemanyaggal Az elsı Magnox-ot (Calder Hall) 1956-ban indították, és 2003-ban állt le MWe teljesítmény Wylfa ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 7 I.: 1970-es évek elıtt, természetes uránnal mőködı reaktorok. II.: A 70-es évektıl kifejlesztett könnyővizes reaktortípusok, jelenleg is alkalmazzuk ıket. Zömük ra tölti ki tervezett élettartamát. III.: A jelenlegi reaktortípusok optimalizálása biztonsági és gazdaságossági szempontok szerint. Jelenleg készek a kereskedelmi forgalomra. IV.: Jelenleg fejlesztés alatt, 6 fı típus vizsgálata nemzetközi projektekben. Céljuk fenntartható energiaforrás biztosítása (villamos- és hıtermelés, tengervíz sótalanítás), illetve a hidrogéntermelés. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 8

3 Második generációs atomerımővek Második generációs atomerımővek A jelenleg üzemelı blokkok nagy része Kereskedelmi forgalomban kapható, nagy darabszámú szériák Fıleg könnyővizes blokktípusok (a jelenleg üzemelık kb. 88%-a) ill. nehézvizes reaktorok Type No. of Units Total MW(e) BWR FBR GCR LWGR PHWR PWR Total: ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 9 Reaktorgenerációk Elsı generációs reaktorokból továbbfejlesztve Csak a biztonságos, gazdaságos típusokat tartották meg (kivéve pl. RBMK) Egzotikus típusok erısen továbbfejlesztve ismét megjelennek (FBR, gázhőtéső, stb.) Bizonyos sztenderdizálás már megfigyelhetı, de a blokkok még számos egyedi paraméterrel rendelkeznek Példa: paksi atomerımő reaktortartályok (ötvözet változása) ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 10 Harmadik generációs atomerımővek I.: 1970-es évek elıtt, természetes uránnal mőködı reaktorok. II.: A 70-es évektıl kifejlesztett könnyővizes reaktortípusok, jelenleg is alkalmazzuk ıket. Zömük ra tölti ki tervezett élettartamát. III.: A jelenlegi reaktortípusok optimalizálása biztonsági és gazdaságossági szempontok szerint. Jelenleg készek a kereskedelmi forgalomra. IV.: Jelenleg fejlesztés alatt, 6 fı típus vizsgálata nemzetközi projektekben. Céljuk fenntartható energiaforrás biztosítása (villamos- és hıtermelés, tengervíz sótalanítás), illetve a hidrogéntermelés. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 11 Jelenleg piacra kerülı típusok, a második generációs erımővek továbbfejlesztett változatai. Továbbfejlesztés irányai: Gazdasági versenyképesség elérése elsısorban létesítési költségek csökkentése. Egyszerősítés, sztenderdizálás, moduláris blokkok, nagy méret, rövidebb építési idı stb. Nagyobb biztonság balesetek valószínőségét és következményeit is csökkenteni kell. Aktív és passzív biztonsági rendszerek fejlesztése. Non-proliferációs célok megvalósítása mőszaki vagy adminisztrációs eszközökkel ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 12

4 Harmadik generációs atomerımővek Fejlesztés a második generációs típusokhoz képest: evolúciós és innovatív reaktortípusok Evolúciós reaktortípusok: Továbbfejlesztett típus, létezı terv alapján, kis-közepes módosításokkal, igazolt koncepciók alapján. Mérnöki és tesztelési feladatokat igényel Innovatív reaktortípusok: Továbbfejlesztett típus, radikális újításokkal a tervezésben. Alapvetı K+F, megvalósíthatósági tanulmányok, prototípus/demonstrációs reaktor építése szükséges NAÜ osztályozás: Large-size designs: 700 MW(e) and larger Medium-size designs: MW(e) Small-size designs: below 300 MW(e). ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 13 Harmadik generációs atomerımővek Gazdasági versenyképesség elérése: költségek és építési idı csökkentése szükséges! Eszközök: Nagyságrendi megtakarítások Nagyobb blokkméret esetén a fajlagos elıállítási költség alacsonyabb Villamosenergia-rendszer, hálózat figyelembevétele, szabályozási problémák Racionalizált építési módszerek Építési idı csökkentése Építési idı alatt bevétel nélküli befektetés Optimálási folyamat: késıbbi idıveszteség nélkül Telephelyi munkák helyett lehetıség szerint elıre gyártott vagy moduláris berendezések alkalmazása Elızetes mőszaki tervezés és engedélyezés Megfelelı tervezés (pl. elrendezés optimalizálása számítógépes modellezéssel, mőszerek egyszerősítése) ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 15 Harmadik generációs atomerımővek Gazdasági versenyképesség elérése Atomerımő: villamosenergia-elıállítás költsége 45-75%-a az építés. Szénnél ugyanez 25-60%, földgáznál 15-40%. Kevésbé érzékeny az üzemanyag-ár változására Nagy építési költség miatt igen tıkeigényes, hosszú távú megtérüléssel kell számolni Tıkeerıs beruházók kellenek Szükség van megfelelı szabályozásra, hosszú távú garanciákra Teljes üzemanyagciklus költségét figyelembe kell venni Költségeket jelentısen csökkentheti a kapcsolt termelés (távhı, hidrogén, tengervíz sótalanítás) ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 14 Harmadik generációs atomerımővek Gazdasági versenyképesség elérése: költségek és építési idı csökkentése szükséges! Eszközök: Sztenderdizálás és sorozatgyártás Fejlesztési, engedélyezési, gyártási költségek szétosztása több azonos típusú blokk között Több blokkos telephelyek Két ugyanolyan blokk egy telephelyen: kb. 15%-kal alacsonyabb építési költség (munkaerı, engedélyezés, közös létesítmények) Hatékony beszerzés és szerzıdések Költség- és minıség-ellenırzés Hatékony projektmenedzsment Szoros együttmőködés a releváns szabályozó hatóságokkal Helyi vállalatok/munkaerı bevonása Hatsági munka racionalizálása ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 16

5 Harmadik generációs atomerımővek Gazdasági versenyképesség elérése: költségek és építési idı csökkentése szükséges! Eszközök: Modularizáció elıre gyártott elemek használata ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 17 Az EPR egy 3. generációs blokk Nyomottvizes reaktorral szerelt Termikus teljesítmény: 4200/4500 MW Elektromos teljesítmény: ~1600 MW Hatásfok: 36-37% Dupla falú hermetikus védıépület, nagy utasszállító repülıgép rázuhanására méretezve Biztonsági filozófia Megakadályozni a telephelyen kívüli következményeket Javítani a balesetek megelızését szolgáló rendszereket. Egyszerősítés, fizikai szeparáció, emberi hibák lehetıségének csökkentése. Zónasérülés valószínősége 10-6 / év, de a zónasérülés sem jelent nagy kibocsátást Súlyos balesetek esetén csökkenteni a következmények súlyosságát. Módszerek: konténment hőtése, zónaolvadék felfogása és hőtése, talapzat hőtése alulról ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 18 Biztonsági filozófia: megakadályozni a telephelyen kívüli következményeket Javítani a balesetek megelızését szolgáló rendszereket. Módszerek: egyszerősítés, fizikai szeparáció, emberi hibák lehetıségének csökkentése. Súlyos balesetek esetén csökkenteni a következmények súlyosságát. Módszerek: konténment hőtése, zónaolvadék felfogása és hőtése, talapzat hőtése alulról Duplafalú konténment külsı és belsı sérülések ellen (szellızı és szőrıberendezésekkel), konténmenten belül H2- rekombinátorokkal Zónaolvadék felfogására és szétterítésére szolgáló terület Végsı konténment hı elszállító rendszer (spray rendszer) ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 19 IRWST (Incontainment Refuelling Water Storage Tank): üzemzavari hőtırendszer ellátása, zónaolvadás esetén olvadék hőtése 4-szeres redundancia a fı biztonsági rendszereknél, fizikai szeparáció (pl. repülıgéprázuhanás vagy tőz esetére) ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 20

6 Finnország Olkiluoto 1-4 Olkiluoto-3, az elsı EPR 2002 május: a finn parlament 107:92 arányban jóváhagyja az 5. blokk létesítését szept.: kihirdetik a nemzetközi tendert MW-ra október: TVO kiválasztja a telephelyet (Olkiluoto) december - döntés: az AREVA-Siemens konzorcium építheti a finn EPR-t (1600 MW, 60 év tervezett üzemidı) 2004 február: megkezdıdtek a földmunkák áprilisában megkezdıdött a beton alaplemez készítés Épül az 5. finn blokk, Olkiluoto-3 (EPR-1600) április 25.: A TVO beadta az OL-4-re vonatkozó engedélykérelmet a parlament és a kormány elé Loviisaba is új nukleáris blokkot terveznek ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 21 Olkiluoto-3 építés néhány fotója ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 22 Olkiluoto-3 építés néhány fotója ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 23 Forrás: Forrás: ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 24

7 Olkiluoto-3 építés néhány fotója Olkiluoto-3 építés néhány fotója Forrás: ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 25 Flamanville (Franciaország), a 2. EPR Forrás: ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 26 Atomsztrojekszport VVER-2006 VVER-1000 RP B-320 VVER-1000 RP B VVER-1000 RP B-466 NPP-2006 RP B-491-gyel 4 sorozatgyártásban Módosított tervezés nagyobb biztonság és jobb költség / teljesítmény arány 2 Módosított tervezés európai és nemzetközi követelmények figyelembevétele (EUR és YVL) Módosított tervezés európai és nemzetközi követelmények figyelembevétele Hálózatra csatlakozás tervezett dátuma: május Atomerımővek Oroszországban, Ukrajnában, Bulgáriában és Csehországban Tianwan atomerımő, Kína Pályázat a finn 5. blokkra, a Shanmen és 1 Yangjiang kínai atomerımővekre ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 27 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 28

8 Atomsztrojekszport VVER-1200/491 Kettıs konténment Szeizmikus terhelés Tervezési vízszintes maximális gyorsulás: 0,12 g Szél terhelés A biztonsági rendszerek 30 m/s szélsebességre vannak tervezve, telephelyi sajátosságok alapján módosítható. (3-as fokozatú forgószélnek megfelelı) Repülıgép becsapódás Tervezési alap: repülıgép becsapódása (megfelel egy 5,7 tonnás, 100 m/s sebességő lövedéknek) Külsı robbanás Tervezési alap: külsı robbanás nyomáshulláma (30 kpa 1 s-ig) Hó és jég terhelés Tervezési alap: extrém hóterhelés (4,9 kpa) Típus, biztonság VVER-1000/428 Reaktor, K /3000 típusú turbina. 3,3x10-6 /reaktorév zónaolvadási gyakoriság. Szivárgásérzékelık minden fıvízköri vezetéken, csonkzónában. Az FKSZ hőtı- és kenırendszerének közege olajról vízre lett cserélve. Redundáns biztonsági rendszerek háromszorozás helyett négyszerezve kerültek beépítésre. (4 független rendszer.) Zónaolvadék-csapda, zónaolvadék hőtı, A konténmentben hidrogénkezelı rendszer. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 29 Tianwan atomerımő, Kína ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 30 Tianwan atomerımő, Kína ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 31 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 32

9 Tianwan atomerımő, Kína Tianwan atomerımő, Kína Hálózatra kapcsolódás: 1. blokk: blokk: ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 33 Tianwan atomerımő, Kína ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 34 Szimulátor központ, vezénylı ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 35 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 36

10 Mitsubishi APWR Reaktor 1500 MWe nagy teljesítmény Neutron reflektor SH SH Mérnöki biztonsági rendszerek ACC RV 3 ACC SH SH Egyszerősített elrendezés 4 mechanikus alrendszerrel 4 Konténmenten belüli RWSP (pihentetı medence) Továbbfejlesztett hidroakkumulátor APWR Gőzfejlesztő Nagy teljesítményő szeparátor Kompakt méretezés, növelt kapavitás 2 Irányítástechnika Digitális szabályozó és védelmi rendszerek RWSP Turbina 54 inches lapátok Integrált kisnyomású turbina rotorok Kompakt konzol ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 37 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 38 Mitsubishi - APWR Továbbfejlesztett építési módszerek csökkentett építési idı, jobb építési minıség Nagy teherbírású daru (nehéz komponensek beemelése, telephelyi összeszerelés csökkentése) 2 3 Konténment felsı rész 4 Mitsubishi APWR Vezénylıterem 70-es évek 80-as évek Fejlesztések TMI után Emberi tényezı szisztematikus vizsgálata 2000 Emberközpontú tervezés új technológiákkal Könnyő áttekinthetıség 3 az üzemeltetı személyzetnek Ellenırzı és üzemeltetı rendszerek koncentrálása kompakt konzolon 4 Digitális irányítástechnika 2 Nagy kijelzı 1 1 Blokkügyeletes konzol Kompakt operátor konzol ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 39 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 40

11 AP1000 Westinghouse AP1000 Nyomottvizes reaktorral (PWR), kéthurkos, 1117 MWe Passzív biztonsági rendszerek (dízel generátorra nincs szükség!) NRC 2005-ben hagyta jóvá a típustervet PSA szerint CDF=5,09*10-7 / reaktorév Moduláris szerkezet (szállítás vasúton vagy hajóval) Építési idı: 36 hónap 18 hónapos kampány 60 év tervezett üzemidı AP1000 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 41 Passzív biztonsági rendszerek: üzemzavart követıen 72 órán át nincs szükség operátori beavatkozásra Passzív Zónahőtı Rendszer (PXS) Passzív Konténment Hőtı Rendszer (PCS) Vezénylıterem vészhelyzeti használhatósági rendszere (VES) - 11 ember 72 órára! Konténment izoláció AP1000 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 43 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 42 Súlyos baleset kezelési koncepció: megelızni a reaktortartály meghibásodást zónaolvadás esetén AP1000 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 44

12 AP1000 További gyártók a piacon General Electric - Hitachi (USA - Japán): GE ESBWR AREVA & Mitsubishi ATMEA1 AECL (Kanada): ACR-1000 Új atomerımővi blokk építése esetén a környezeti hatástanulmány elkészítésétıl számítva minimum év szükséges az üzembe lépésig! Magyarországon 2020 elıtt nem tud új atomerımővi blokk belépni, de az elıkészítı munkákat már most el kell kezdeni! ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 45 Reaktorgenerációk I.: 1970-es évek elıtt, természetes uránnal mőködı reaktorok. II.: A 70-es évektıl kifejlesztett könnyővizes reaktortípusok, jelenleg is alkalmazzuk ıket. Zömük ra tölti ki tervezett élettartamát. III.: A jelenlegi reaktortípusok optimalizálása biztonsági és gazdaságossági szempontok szerint. Jelenleg készek a kereskedelmi forgalomra. IV.: Jelenleg fejlesztés alatt, 6 fı típus vizsgálata nemzetközi projektekben. Céljuk fenntartható energiaforrás biztosítása (villamos- és hıtermelés, tengervíz sótalanítás), illetve a hidrogéntermelés. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 47 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 46 Üzemanyagciklusok és fenntarthatóság Elırejelzések a mostani áramtermelés mellett (1): Legtöbb hulladék, bár még így is kevesebb, mint más energiaforrásoké. A hulladék mennyisége is limitálja ezt az opciót: néhány évtizeden belül több végleges tároló építése szükséges. Ez a források legkedvezıtlenebb kihasználása, a jövı század közepére a becsült forrásokat is kihasználjuk. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 48

13 Üzemanyagciklusok és fenntarthatóság Elırejelzések a mostani áramtermelés mellett: Zárt üzemanyagciklus (2-4): Jelentıs mértékben csökken a hulladék mennyisége. Transzmutáló berendezések használatával a hulladék mennyisége egy nagyságrenddel csökkenthetı. A hulladékfrakciókat elkülönítetten lehet kezelni. Nagy kihívás a költségek csökkentése. Fokozottabb veszély a proliferáció. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI Szuperkritikus vízhőtéső reaktorok Supercritical-Water-Cooled Reactor -- SCWR Hőtıközeg: könnyővíz. Üzemanyag: Hasonló a PWR üzemanyaghoz. Hımérséklet és nyomás a kritikus pont felett: >374 C, >22 MPa, nincsen forráskrízis; gızleválasztók, gızszárítók, gızfejlesztık feleslegesek. Termikus és gyors reaktor is. Jó hatásfok: 44% ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 50 Alapfogalmak Szuperkritikus folyadék Vízre: T C =373,95 C p C =220,64 bar Szuperkritikus fluidum Meredek anyagjellemzı változás a pszeudokritikus hımérséklet szők környezetében Alapfogalmak SCWR (HPLWR) Mőszaki nehézségek, nyitott kérdések: Extrém magas nyomás, magas hımérséklet anyagtechnológiai kérdések (szerkezeti anyagok); DHT (Deteoration Heat Trasfer) jelenség, a tömegáram fluxushoz képest relative magas hıfluxusok esetén a hıátadási tényezı eloszlás elfajulása Szerepe? p=240 bar; T pc (p)=381 C p=310,3 bar; T pc (p)=404,44 C ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 51 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 52

14 Alapfogalmak Az atomerımővi alkalmazás elınyei Az európai koncepció A HPLWR kazetta geometria Szendvics szerkezető fal. A koncepció elınye: a magas izobár fajhı csúcs miatt magasabb hőtıközeg entalpia növekedés azonos hőtıközeg tömegáram több hıt tud elvonni kevesebb hőtıközeg szükséges azonos blokkteljesítménynél és így kisebb szivattyúk, kisebb belsı átmérıjő primerköri csövek; ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 53 Az európai koncepció A HPLWR aktív zóna elrendezése T in h b = Tout Tin c p T out dt Helikális huzal távtartók. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI Ólomhőtéső gyorsreaktorok Három huzamú aktív zóna. Három huzamú aktív zóna elvi vázlata. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 55 Lead-Cooled Fast Reactor -- LFR Hőtıközeg: Pb-Bi, vagy Pb Üzemanyag: U/Pu fém, vagy nitrid, zárt üzemanyagciklus! Termikus teljesítmény: MW Hőtık hımérséklete: C Elektromos áram és ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 56

15 2. Ólomhőtéső gyorsreaktorok Tapasztalat: Szovjetunió, Alfa osztályú atom-tengeralattjárók BREST reaktorok (Oroszország, 600 MWe teljesítmény, tervezés alatt a BREST-1200) Ólom: nagyon jó hıvezetı, alacsony olvadáspont, magas forráspont Igen nagy felhajtóerı hat a hőtıközegbe merített testekre Megszilárdulása elkerülendı Erısen korrozív Többféle koncepció: kismérető moduláris (USA, 20 év kampányhossz, MWe, nagymérető reaktor (EU, 600 MWe) ELSY: European Lead Cooled System, 600 MWe ELSY paraméterei (2008 október) Villamos teljesítmény 630 MWe Erımő hatásfok 42 % Primer hőtıközeg Tiszta ólom Primerkör Kompakt, medence típusú Primer hőtıközeg cirkulációja (üzemi) Kényszerített Primerköri nyomásesés (üzem közben) ~ 1,5 bar Aktív zóna belépı hımérséklet ~ 400 C Aktív zóna kilépı hımérséklet ~ 480 C Üzemanyag MOX and nitridek (aktinidákkal vagy azok nélkül) Üzemanyag burkolat anyaga T91 (Fe-Al ötvözető köpennyel bevonva) Üzemanyag burkolat max. hımérséklet ~ 550 C Reaktortartály Ausztenites rozsdamentes magassága ~ 9 m acél, függesztett, Gızfejlesztık 8 db, a reaktortartályba integrálva Szekunder kör Víz túlhevített gız 180 bar, 450 C Primerköri szivattyúk 8 db, mechanikus Tartálybeli komponensek Eltávolíthatóak ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI Ólomhőtéső gyorsreaktorok ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI Ólomhőtéső gyorsreaktorok Gızfejlesztıbe integrált szivattyú. Spirál alakú hıcserélı a reaktortartályban A szivattyú és a hıcserélı kivehetı a reaktortartályból (könnyebb karbantartás). A főtıelem-kazetták felsı szerkezetbe vannak rögzítve a felhajtóerı által. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 59 8 spirális hıcserélı ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 60

16 2. Ólomhőtéső gyorsreaktorok Gızfejlesztı törésének következtében felmerülı problémák minimalizálása ELSY üzemzavari hőtırendszerekh Független, redundáns hurkok Reaktortartály hőtırendszer levegıvel (RVACS) 4 Közvetlen vizes hőtırendszer (W-DRC) 4 kondenzátor a fıgız körön.. 1. Tápvíz és gız kollektorok a tartályon kívül 2. Tápvíz-oldalon Venturi-csı és biztonsági szelep RVACS W-DRC ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 61 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI Nátrium hőtéső gyorsreaktorok Sodium-Cooled Fast Reactor -- SFR Üzemanyag: U/Pu fém vagy oxid tartalmú só, zárt üzemanyagciklus! Termikus teljesítmény: MW Hőtıközeg-hımérséklet: C Nyomás alacsony: 1 bar körüli Jó konverziós tényezı akár 1,3! ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 63 Fıként Franciaország fejleszti Phenix (Franciaország, 1961) Superphenix (Franciaország, 1976) ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 64

17 Nátrium: heves égési reakció vízzel, magas hımérsékleten, ezért három hőtıkörös megoldás szükséges A három hőtıkör miatt nagyobb beruházási költségek Jelenleg háromféle koncepció: hurok típusú, medence típusú, kismérető moduláris Medence típus Hurok típus ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 65 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 66 Hurok típusú Medence típusú Kismérető moduláris Villamos telj MWe 600 MWe 50 MWe Hıteljesítmény 3570 MWe 1525 MWe 125 MWe Erımő hatásfok 42 % 42 % 38 % Zóna kilépı T 550 C 545 C 510 C Zóna belépı T 395 C 370 C 355 C Gız T 503 C 495 C 480 C Gız nyomás 167 bar 165 bar 200 bar Kampány hossza Aktív zóna átmérı Aktív zóna magasság 2 év 1,5 év 30 év 5,1 m 3,5 m 1,75 m 1 m 0,8 m 1 m ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI Olvadt sós reaktorok Molten Salt Reactor -- MSR Hőtıközeg és üzemanyag: U/Pufluorid tartalmú sóolvadék, Th fertilis anyaggal, zárt üzemanyagciklus! Elektromos teljesítmény: 1000 MW Hőtıközeg hımérséklet: C Sóolvadék gıze nagyon alacsony nyomású. Elektromos áram és hidrogéntermelés egyaránt. Jó konverziós tényezı. Alkalmas aktinidák átalakítására, transzmutációra. ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 68

18 Sóolvadékos reaktor Molten Salt Reactor Experiment ( ) 10 MW (8 MW) 70,7% 7 LiF - 16% BeF 2-13% ThF 4-0,3% UF 4 (mol%) 93% U-235 Belépési hımérséklet: 635 C Kilépési hımérséklet: 663 C Molten Salt Breeder Reactor 2250 MWth, 1000 MWe 71,7% 7 LiF - 16% BeF 2-13% ThF 4-0,3% UF 4 (mol%) tenyésztési tényezı: 1,065 Sóolvadékos reaktor Homogén, egyterő koncepció Névleges paraméterek: 2500 MWth, 1000 MWe kg/s Belépési hımérséklet: 620 C Kilépési hımérséklet: 720 C Sóolvadék összetétele (primer): 66% LiF - 34% BeF 2 (mol %) Háromkörös szekunder: 92% NaBF 4-8% NaF (mol%) tercier: víz/vízgız ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 69 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 70 Sóolvadékos reaktor Többrégiós sóolvadékos reaktor és szubkritikus rendszer (BME NTI szabadalom: Csom, Aszódi, Szieberth, Fehér) Reaktor Gyorsítóval hajtott szubkritikus rendszer 5. Gázhőtéső gyorsreaktorok Gas-Cooled Fast Reactor -- GFR Hőtıközeg: He gáz Üzemanyag: UPuC/SiC, zárt üzemanyagciklus! Termikus teljesítmény: 600 MW Hőtıközeg hımérséklet: C Magas hımérséklet: jó hatásfokkal elektromos áram, vagy hidrogéngáz termelése, hatásfok: 48% ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 71 ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 72

19 6. Nagyon magas hımérséklető reaktor Very-High-Temperature Reactor VHTR A HTGR továbbfejlesztése. Gázhőtéső reaktor akár közel 1000 C-os hımérséklető hőtıközeggel. Elektromos áram és hidrogéntermelés. Hatásfok 50% felett. Elıd: magas hımérséklető tóriumos reaktor (THTR) ETE, Budapest, február 12. Dr. ASZÓDI Attila, BME NTI 73

Atomenergia a 21. században

Atomenergia a 21. században Atomenergia a 21. században Dr. Aszódi Attila igazgató, BME Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Atomenergiáról mindenkinek OAH TIT Stúdió Ismeretterjesztı konferencia Atomerımővi

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 7. előadás: Atomreaktorok, atomerőművek Prof. Dr. Aszódi Attila Egyetemi tanár, BME Nukleáris Technikai Intézet Budapest, 2019. március 26. https://kahoot.it/ az előző órai

Részletesebben

Atomenergia. Atomerımővi kapacitások. Atomenergetika - Európa. Finnország Olkiluoto 1-4. 2008. év elején

Atomenergia. Atomerımővi kapacitások. Atomenergetika - Európa. Finnország Olkiluoto 1-4. 2008. év elején Atomenergia Dr. Aszódi Attila igazgató, BME Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság 9. Energiapolitikai Fórum A Lévai örökség és a magyar energetika 2008 Atomerımővi kapacitások 2008.

Részletesebben

Második és harmadik generációs atomreaktorok

Második és harmadik generációs atomreaktorok Második és harmadik generációs atomreaktorok Atomerımővek Boros Ildikó BME NTI 2008. február 14. #01 / 1 Atomerımő-generációk Atomerımővek #01 / 2 Elsı generációs atomerımővek Az 50-es, 60-as évek prototípus

Részletesebben

AES-2006. Balogh Csaba

AES-2006. Balogh Csaba AES-2006 Készítette: Balogh Csaba Mit jelent az AES-2006 rövidítés? Az AES-2006 a rövid neve a modern atomerőműveknek amik orosz tervezésen alapszanak és VVER-1000-es típusú reaktorral vannak felszerelve!

Részletesebben

Atomenergia a 21. században

Atomenergia a 21. században Atomenergia a 21. században Dr. Aszódi Attila igazgató, BME Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Atomenergiáról mindenkinek OAH TIT Stúdió Ismeretterjesztı konferencia Miskolci

Részletesebben

A hazai nukleáris kapacitás hosszú távú biztosítása

A hazai nukleáris kapacitás hosszú távú biztosítása A hazai nukleáris kapacitás hosszú távú biztosítása Dr. Trampus Péter trampusp@trampus.axelero.net Linde Hegesztési Szimpózium Budapest, 2014. október 15. Tartalom Bevezetés Bővítés igény gazdaságosság

Részletesebben

Atomenergia a 21. században

Atomenergia a 21. században Atomenergia a 21. században 1 21. század a jelen Mi történik az atomenergiával a 21. század elején? Meglévő erőművek üzemidő-hosszabbítása 3. generációs erőművek fejlesztése, ilyenek már épülnek is 4.

Részletesebben

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA

FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA FENNTARTHATÓ FEJLİDÉS ÉS ATOMENERGIA 4. elıadás AZ ATOMREAKTOROK FIZIKAI ÉS TECHNIKAI ALAPJAI, ATOMERİMŐVEK 2009/2010. tanév ıszi féléve Dr. Csom Gyula professor emeritus TARTALOM 1. Magfizikai alapok

Részletesebben

Az atomenergia jelenlegi szerepe. A 3+ generációs atomerőművek nukleáris biztonsági és környezeti aspektusai. Prof. Dr.

Az atomenergia jelenlegi szerepe. A 3+ generációs atomerőművek nukleáris biztonsági és környezeti aspektusai. Prof. Dr. A 3+ generációs atomerőművek nukleáris biztonsági és környezeti aspektusai Prof. Dr. Aszódi Attila Egyetemi tanár, BME NTI 62. Országos Fizikatanári Ankét Debrecen, 2019. március 14. Az atomenergia jelenlegi

Részletesebben

Aktuális CFD projektek a BME NTI-ben

Aktuális CFD projektek a BME NTI-ben Aktuális CFD projektek a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2007. június 20. Hımérsékleti rétegzıdés szimulációja és kísérleti vizsgálata

Részletesebben

IV. generációs reaktorok kutatása. Czifrus Szabolcs BME NTI

IV. generációs reaktorok kutatása. Czifrus Szabolcs BME NTI IV. generációs reaktorok kutatása Czifrus Szabolcs BME NTI Az atomenergia jelenlegi helyzete a világon 435 atomerőmű működik (2015. február) 31 ország, összesen 375 000 MWe kapacitás 70 reaktort építenek

Részletesebben

Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben

Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben MTA SUKO-MNT-Óbudai Egyetem Kockázatok értékelése az energetikában Budapest, 2015.06.15. Hermetikus tér viselkedése tervezési és tervezésen túli üzemzavarok során a Paksi Atomerőműben Tóthné Laki Éva MVM

Részletesebben

MET 7. Energia műhely

MET 7. Energia műhely MET 7. Energia műhely Atomenergetikai körkép Paks II. a kapacitás fenntartásáért Nagy Sándor vezérigazgató MVM Paks II. Atomerőmű Fejlesztő Zrt. 2012. december 13. Nemzeti Energia Stratégia 2030 1 Fő célok:

Részletesebben

A Nukleáris Technikai Intézet és az atomenergetikai

A Nukleáris Technikai Intézet és az atomenergetikai A Nukleáris Technikai Intézet és az atomenergetikai képzések Budapest, 2012. április 24. A BME NTI Atomtörvény adta országos oktatási feladatok Az intézet két tanszékből áll: Nukleáris Technika Tanszék

Részletesebben

Harmadik generációs atomerőművek és Paks 2

Harmadik generációs atomerőművek és Paks 2 Harmadik generációs atomerőművek és Paks 2 Prof. Dr. Aszódi Attila A Paksi Atomerőmű kapacitásának fenntartásáért felelős államtitkár, ME / PTNM Egyetemi tanár, BME NTI aszodiattila.blog.hu Wigner 115

Részletesebben

A Nukleáris Technikai Intézet és az atomenergetikai képzések

A Nukleáris Technikai Intézet és az atomenergetikai képzések A Nukleáris Technikai Intézet és az atomenergetikai képzések Prof. Dr. Aszódi Attila egyetemi tanár, BME Nukleáris Technikai Intézet A Atomtörvény adta országos oktatási feladatok Az intézet két tanszékből

Részletesebben

Fogalmak a biztonságról

Fogalmak a biztonságról 13. elıadás Atomerımővek biztonsága Tartalom Fogalmak a biztonságról Atomerımő tervezés és üzemeltetés alapelvei Reaktorbalesetek fajtái TMI Dr. Aszódi Attila egyetemi docens Csernobil (következı elıadásban)

Részletesebben

Atomerőművek felépítése, tervezése

Atomerőművek felépítése, tervezése Atomerőművek felépítése, tervezése Atomerőművek 1. Prof. Dr. Aszódi Attila, Boros Ildikó, BME NTI Az atomenergia jelenlegi szerepe Forrás: WNA Az atomenergetika részesedése a villamosenergia-termelésben

Részletesebben

ALLEGRO: gázhűtésű gyorsreaktor Közép-Európában. Czifrus Szabolcs BME Nukleáris Technikai Intézet

ALLEGRO: gázhűtésű gyorsreaktor Közép-Európában. Czifrus Szabolcs BME Nukleáris Technikai Intézet ALLEGRO: gázhűtésű gyorsreaktor Közép-Európában Czifrus Szabolcs BME Nukleáris Technikai Intézet A nukleáris energiatermelés fő problémái Fenntarthatóság Radioaktív hulladékok és kiégett üzemanyag kérdése

Részletesebben

Atomreaktorok. Készítette: Hanusovszky Lívia

Atomreaktorok. Készítette: Hanusovszky Lívia Atomreaktorok Készítette: Hanusovszky Lívia Tartalom Történeti áttekintés - reaktor generációk Az atomenergia jelenlegi szerepe Reaktor típusok Egzotikus reaktorok 1. Első generációs reaktorok Az 1970-es

Részletesebben

Nagy Sándor vezérigazgató

Nagy Sándor vezérigazgató Az új atomerőművi blokk(ok) létesítésének előkészítése Nagy Sándor vezérigazgató 2012. november 22. Miért szükséges? Növekvő villamosenergia-igény 2030-ig 55 600-56 600 GWh Hosszú távú ellátásbiztonság

Részletesebben

Magyarországi nukleáris reaktorok

Magyarországi nukleáris reaktorok Tematika 1. Az atommagfizika elemei 2. Magsugárzások detektálása és detektorai 3. A nukleáris fizika története, a nukleáris energetika születése 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja

Részletesebben

ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai

ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai ALLEGRO gázhűtésű gyorsreaktor CATHARE termohidraulikai rendszerkódú számításai Takács Antal MTA EK Siklósi András Gábor OAH XII. Nukleáris technikai Szimpózium 2013 Gázhűtésű reaktorok és PWR-ek összehasonlítása

Részletesebben

Világ atomerőművi blokkjai. Statisztika

Világ atomerőművi blokkjai. Statisztika Világ atomerőművi blokkjai Üzemelő 3. generációs nyomottvizes blokkok technológiája Korszerű nukleáris energiatermelés Típus Blokkok száma Össz MW(e) BWR 72 71 102 FBR 3 1400 GCR 14 7720 LWGR 15 10 219

Részletesebben

Tóth csilla Műszaki igazgató

Tóth csilla Műszaki igazgató Az új atomerőművi blokk(ok) létesítésének előkészítése Tóth csilla Műszaki igazgató Paks, 2013. Március 21. Miért szükséges? Növekvő villamosenergia-igény 2030-ig 55 600-56 600 GWh Hosszú távú ellátásbiztonság

Részletesebben

A villamosenergia-termelés szerkezete és jövıje

A villamosenergia-termelés szerkezete és jövıje A villamosenergia-termelés szerkezete és jövıje A villamos energia speciális termék Hálózati frekvencia [Hz] 5 49 51 Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai

Részletesebben

A HINKLEY POINT C ATOMERŐMŰ GAZDASÁGI VIZSGÁLATA A RENDELKEZÉSRE ÁLLÓ ADATOK ALAPJÁN

A HINKLEY POINT C ATOMERŐMŰ GAZDASÁGI VIZSGÁLATA A RENDELKEZÉSRE ÁLLÓ ADATOK ALAPJÁN A HINKLEY POINT C ATOMERŐMŰ GAZDASÁGI VIZSGÁLATA A RENDELKEZÉSRE ÁLLÓ ADATOK ALAPJÁN Putti Krisztián, Tóth Zsófia Energetikai mérnök BSc hallgatók putti.krisztian@eszk.rog, toth.zsofia@eszk.org Tehetséges

Részletesebben

Magyarország energiaellátásának általános helyzete és jövıje

Magyarország energiaellátásának általános helyzete és jövıje Magyarország energiaellátásának általános helyzete és jövıje Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai Intézet Dr. ASZÓDI Attila, BME NTI 1 Társadalmunk mindennapjai

Részletesebben

INES - nemzetközi eseményskála. Fenntartható fejlıdés és atomenergia. INES - nemzetközi eseményskála. INES - nemzetközi eseményskála. 14.

INES - nemzetközi eseményskála. Fenntartható fejlıdés és atomenergia. INES - nemzetközi eseményskála. INES - nemzetközi eseményskála. 14. INES - nemzetközi eseményskála 14. elıadás Atomerımővek biztonsága A csernobili baleset Dr. Aszódi Attila egyetemi docens Dr. Aszódi Attila, BME NTI #14 / 1 Dr. Aszódi Attila, BME NTI #14 / 2 INES - nemzetközi

Részletesebben

A paksi kapacitás-fenntartási projekt bemutatása

A paksi kapacitás-fenntartási projekt bemutatása A paksi kapacitás-fenntartási projekt bemutatása Budapest, 2014.12.08. Horváth Miklós MVM Paks II. Zrt. Törzskari Igazgató Tartalom I. Előzmények II. Háttér III. Legfontosabb aktualitások IV. Hosszú távú

Részletesebben

Az SCWR-FQT tesztszakaszának CFD analízise: a be- és kilépő rész vizsgálata

Az SCWR-FQT tesztszakaszának CFD analízise: a be- és kilépő rész vizsgálata Az SCWR-FQT tesztszakaszának CFD analízise: a be- és kilépő rész vizsgálata Kiss Attila, Vágó Tamás és Prf. Dr. Aszódi Attila BME, Nukleáris Technikai Intézet kissa@reak.bme.hu XII. Nukleáris Technikai

Részletesebben

Zóna üzemzavari hűtőrendszerek PWR, BWR

Zóna üzemzavari hűtőrendszerek PWR, BWR Zóna üzemzavari hűtőrendszerek PWR, BWR Csige András BME Nukleáris Technikai Intézet Atomerőművek 2015. április 12. Tartalom Történelem Semiscale és LOFT Westinghouse PWR Babcock & Wilcox PWR GE BWR Mitsubishi

Részletesebben

Mi történt a Fukushimában? A baleset lefolyása

Mi történt a Fukushimában? A baleset lefolyása Mi történt a Fukushimában? A baleset lefolyása Dr. Petőfi Gábor főosztályvezető-helyettes Országos Atomenergia Hivatal XXXVI. Sugárvédelmi Továbbképző Tanfolyam 2011. május 3-5., Hajdúszoboszló www.oah.hu

Részletesebben

A VVER-1200 biztonságának vizsgálata

A VVER-1200 biztonságának vizsgálata A VVER-1200 biztonságának vizsgálata Boros Ildikó Egyetemi tanársegéd BME Nukleáris Technikai Intézet (BME NTI) 2015.05.28. TSO szeminárium 1 Tartalom Feladat Felhasznált források, anyagok A VVER-1200

Részletesebben

Atomenergia itthon és a világban

Atomenergia itthon és a világban Atomenergia itthon és a világban Sükösd Csaba BME Nukleáris Technikai Intézet 57. Fizikatanári Ankét Eger, 1 Tartalom Energia villamosenergia atomenergia Atomenergia Fukushima után Új építések Európában

Részletesebben

Háttér információk. A Paksi Atomerımő Üzemidı Hosszabbításának Környezeti Hatástanulmánya. A tanulmánykészítés specifikumai

Háttér információk. A Paksi Atomerımő Üzemidı Hosszabbításának Környezeti Hatástanulmánya. A tanulmánykészítés specifikumai A Paksi Atomerımő Üzemidı Hosszabbításának Környezeti Hatástanulmánya A környezeti hatástanulmány felépítése és legfontosabb megállapításai Bérci Károly Budapest, 2006. június 6. Háttér információk A hatásvizsgálatra

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

Paksi kapacitás-fenntartás aktuális kérdései

Paksi kapacitás-fenntartás aktuális kérdései Paksi kapacitás-fenntartás aktuális kérdései Prof. Dr. Aszódi Attila Paksi Atomerőmű kapacitásának fenntartásáért felelős kormánybiztos Miniszterelnökség Egyetemi tanár, BME NTI MEE Vándorgyűlés Siófok,

Részletesebben

VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők)

VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők) VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők) Reaktor és fővízkör A főkeringtető kör névleges adatai Névleges hőteljesítmény A hőhordozó közepes hőmérséklete Megnevezés Névleges

Részletesebben

Aktuális CFD projektek a BME NTI-ben

Aktuális CFD projektek a BME NTI-ben Aktuális CFD projektek a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. szeptember 27. CFD Workshop, 2005. szeptember 27. Dr. Aszódi Attila,

Részletesebben

Sajtóközlemény a japán földrengés atomerımővekre gyakorolt hatásáról Dr. Aszódi Attila, BME NTI Budapest,

Sajtóközlemény a japán földrengés atomerımővekre gyakorolt hatásáról Dr. Aszódi Attila, BME NTI Budapest, Sajtóközlemény a japán földrengés atomerımővekre gyakorolt hatásáról Dr. Aszódi Attila, BME NTI Budapest, 0. 0.. www.reak.bme.hu/aszodi A Japánban 0. március -én bekövetkezett rendkívüli erejő földrengés

Részletesebben

9. FİKERINGTETİ SZIVATTYÚ KIESÉS TANULMÁNYOZÁSA 9.1. BEVEZETİ, A GYAKORLAT CÉLJA

9. FİKERINGTETİ SZIVATTYÚ KIESÉS TANULMÁNYOZÁSA 9.1. BEVEZETİ, A GYAKORLAT CÉLJA 9. FİKERINGTETİ SZIVATTYÚ KIESÉS TANULMÁNYOZÁSA 9.1. BEVEZETİ, A GYAKORLAT CÉLJA A PC 2 primerköri szimulációs program lehetıséget nyújt különbözı üzemzavari szituációk tanulmányozására is. Ezek közül

Részletesebben

Nagy létesítmények használati melegvíz készítı napkollektoros rendszereinek kapcsolásai

Nagy létesítmények használati melegvíz készítı napkollektoros rendszereinek kapcsolásai Dr. Szánthó Zoltán egyetemi docens BME Épületgépészeti és Gépészeti Eljárástechnika Tanszék Nagy létesítmények használati melegvíz készítı napkollektoros rendszereinek kapcsolásai Napenergia-hasznosítás

Részletesebben

HBI OSZTOTT RENDSZERŐ LEVEGİ/VÍZ HİSZIVATTYÚ. a HBI_E készülékbe épített vezérlı

HBI OSZTOTT RENDSZERŐ LEVEGİ/VÍZ HİSZIVATTYÚ. a HBI_E készülékbe épített vezérlı HBI OSZTOTT RENDSZERŐ LEVEGİ/VÍZ HİSZIVATTYÚ a HBI_E készülékbe épített vezérlı JELLEMZİK R410A hőtıközeggel Üzemmódok: hőtés főtés HMV készítés DC inverteres kompresszor a hatásfok maximalizálására, a

Részletesebben

A Paksra tervezett új blokkok fô jellemzôi

A Paksra tervezett új blokkok fô jellemzôi ÚJ BLOKKOK A PAKSI TELEPHELYEN RÉSZ Aszódi Attila A Paksi Atomerőmű kapacitás-fenntartásáért felelős kormánybiztos, Miniszterelnökség BME Nukleáris Technikai Intézet Boros Ildikó BME Nukleáris Technikai

Részletesebben

Paksi Atomerőmű BŐVÍTÉS Országgyűlés Fenntartható Fejlődés Bizottság ülése 2012. november 27.

Paksi Atomerőmű BŐVÍTÉS Országgyűlés Fenntartható Fejlődés Bizottság ülése 2012. november 27. Paksi Atomerőmű BŐVÍTÉS Országgyűlés Fenntartható Fejlődés Bizottság ülése 2012. november 27. Kovács Pál klíma- és energiaügyért felelős államtitkár PAKSI ATOMERŐMŰ - BŐVÍTÉS 2 PAKSI ATOMERŐMŰ BŐVÍTÉS

Részletesebben

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0 A paksi atomerőmű Készítette: Szanyi Zoltán RJQ7J0 Történelmi áttekintés 1896 Rádióaktivitás felfedezése 1932 Neutron felfedezése magátalakulás vizsgálata 1934 Fermi mesterséges transzurán izotópot hozott

Részletesebben

A blokkot irányító személyzet tartózkodó helye

A blokkot irányító személyzet tartózkodó helye A BV személyzet feladatai A Blokkvezénylık helye az atomerımővekben Túri Tamás PA Zrt. Irányítástechnikai Mőszaki Osztály turi@npp.hu Termelési feladatok A kívülrıl, ember-ember kommunikáció útján kapott

Részletesebben

235 U atommag hasadása

235 U atommag hasadása BME Oktatóreaktor 235 U atommag hasadása szabályozott láncreakció hasadási termékek: pl. I, Cs, Ba, Ce, Sr, La, Ru, Zr, Mo, stb. izotópok több mint 270 hasadási termék, A=72 és A=161 között keletkezik

Részletesebben

Tápvízvezeték rendszer

Tápvízvezeték rendszer Tápvízvezeték rendszer Tápvízvezeték rendszer A kutaktól a víztisztító üzemig vezetı csövek helyes méretezése rendkívüli jelentıséggel bír a karbantartási és az üzemelési költségek tekintetében. Ebben

Részletesebben

Energetikai szakember igények Magyarországon

Energetikai szakember igények Magyarországon Energetikai szakember igények Magyarországon Dr. Aszódi Attila igazgató, BME NTI elnök, MTA Energetikai Bizottság Budapest, 2008. április 15. Oktatás a BME NTI-ben Oktatás: Mérnök-fizikus (10 szemeszter,

Részletesebben

A Paksi Atomerımő Zrt. társadalmi, gazdasági vonatkozásai és legfontosabb beruházásai

A Paksi Atomerımő Zrt. társadalmi, gazdasági vonatkozásai és legfontosabb beruházásai A Paksi Atomerımő Zrt. társadalmi, gazdasági vonatkozásai és legfontosabb beruházásai Csanádi András gazdasági igazgató Óbudai Egyetem 2011. október 5. 2 Társadalmi és gazdasági hatások Társadalmi és gazdasági

Részletesebben

Felkészülés az új atomerőművi blokkok létesítésének felügyeletére

Felkészülés az új atomerőművi blokkok létesítésének felügyeletére Felkészülés az új atomerőművi blokkok létesítésének felügyeletére Országos Atomenergia Hivatal 1 1996. évi CXVI. törvény az atomenergiáról 7. (2) Új nukleáris létesítmény és radioaktívhulladék-tároló létesítését,

Részletesebben

A Paksi Atomerımő Üzemidı Hosszabbításának Környezeti Hatástanulmánya

A Paksi Atomerımő Üzemidı Hosszabbításának Környezeti Hatástanulmánya A Paksi Atomerımő Üzemidı Hosszabbításának Környezeti Hatástanulmánya A környezeti hatástanulmány felépítése és legfontosabb megállapításai Bérci Károly Budapest, 2006. június 6. Háttér információk A hatásvizsgálatra

Részletesebben

A japán földrengés és következményei Dr. Aszódi Attila. igazgató, BME Nukleáris Technikai Intézet Budapest, március 29.

A japán földrengés és következményei Dr. Aszódi Attila. igazgató, BME Nukleáris Technikai Intézet Budapest, március 29. A japán földrengés és következményei Dr. Aszódi Attila igazgató, BME Nukleáris Technikai Intézet Budapest, 2011. március 29. Földrengés Március 11-én 14.46- kor (helyi idı szerint) 8,9-es földrengés (késıbb

Részletesebben

Az atomenergia nemzetközi helyzete és regionális fejlődési lehetőségei Fukusima után

Az atomenergia nemzetközi helyzete és regionális fejlődési lehetőségei Fukusima után Az atomenergia nemzetközi helyzete és regionális fejlődési lehetőségei Fukusima után Prof. Dr. Aszódi Attila Igazgató, Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet Magyar

Részletesebben

A tudomány az atomenergiában, az atomenergia Magyarországon

A tudomány az atomenergiában, az atomenergia Magyarországon A tudomány az atomenergiában, az atomenergia Magyarországon Dr. Aszódi Attila igazgató, BME Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Atomenergiáról mindenkinek Magyar Tudományos Akadémia

Részletesebben

ALLEGRO: Gázhűtésű gyorsreaktor Közép-Európában

ALLEGRO: Gázhűtésű gyorsreaktor Közép-Európában ALLEGRO: Gázhűtésű gyorsreaktor Közép-Európában 2013. október 3-án rendezte meg az Energetikai Szakkollégium a Jendrassik György emlékfélévének második előadását, melynek címe ALLEGRO: Gázhűtésű gyorsreaktor

Részletesebben

( t) Mag- és neutronfizika 10. elıadás Emlékeztetı: Láncreakció neutronokkal - - k 1

( t) Mag- és neutronfizika 10. elıadás Emlékeztetı: Láncreakció neutronokkal - - k 1 Mag- és neutronfzka 10. elıadás Emlékeztetı: Láncreakcó neutronokkal Láncreakcó dıbel változása: Késı neutronok, és szerepük! Késı neutron hányad: β Reaktvtás: k 1 ( t) Effektív n-sokszorozásn tényezı:

Részletesebben

NEGYEDIK GENERÁCIÓS REAKTOROK Keresztúri András, Pataki István, Tóta Ádám MTA Energiatudományi Kutatóközpont, Reaktoranalízis Laboratórium

NEGYEDIK GENERÁCIÓS REAKTOROK Keresztúri András, Pataki István, Tóta Ádám MTA Energiatudományi Kutatóközpont, Reaktoranalízis Laboratórium felfedezés idõpontja 3. ábra. Az üstökös abszolút fényességének változása 2011. szeptember 30-a és 2013. november 10-e között. A hullámzó fényesedés a kisméretû, az Oort-felhôbôl elôször érkezô üstökösök

Részletesebben

A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható

A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható Atomerőművek (n,f) reakciók, maghasadás (Otto Hahn): 235 U + n [ ] 236 U 3n+ 90 Kr+ 143 Ba A természetes uránnak csak 0.71%-a 235-ös izotóp, a többi 238-as, amely termikus neutronokkal nem hasítható 235-U

Részletesebben

Biztonsági dízel-generátorok

Biztonsági dízel-generátorok Biztonsági dízel-generátorok Adamek Árpád MEE Vándorgyűlés 2015 szeptember 17., Siófok Biztonsági dízel-generátorok az atomerőműben Kifejezetten villamos üzemzavari helyzetek áthidalására tervezett konstrukciók

Részletesebben

Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség

Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség Dél-dunántúli Környezetvédelmi és Természetvédelmi Felügyelőség mint I. fokú hatóság KÖZLEMÉNY környezetvédelmi hatósági eljárás megindulásáról Az ügy tárgya: A MVM Paks II. Atomerőmű Fejlesztő Zrt. által

Részletesebben

Atomenergetika 2007-ben

Atomenergetika 2007-ben Atomenergetika 2007-ben Boros Ildikó FINE hétvége, Veszprém 2008. február 16. Az év jellemző képe: Sarkozy EPR-t ad el 2008. február 15-én 439 atomerőművi blokk üzemelt, összesen 371.815 GW(e) beápített

Részletesebben

Paks 2 projekt a beruházás jelen állása

Paks 2 projekt a beruházás jelen állása Paks 2 projekt a beruházás jelen állása Prof. Dr. Aszódi Attila Paksi Atomerőmű kapacitásának fenntartásáért felelős kormánybiztos Miniszterelnökség Egyetemi tanár, BME MTA Korszerű Atomenergia Budapest,

Részletesebben

Sajtótájékoztató február 11. Kovács József vezérigazgató

Sajtótájékoztató február 11. Kovács József vezérigazgató Sajtótájékoztató 2009. február 11. Kovács József vezérigazgató 1 Témakörök 2008. év értékelése Piaci környezet Üzemidő-hosszabbítás Teljesítménynövelés 2 Legfontosabb cél: A 2008. évi üzleti terv biztonságos

Részletesebben

Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában

Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában Gyorsreaktorok szerepe az atomenergetika fenntarthatóságában Szieberth Máté Budapesti Műszaki és Gazdaságtudományi Egyetem () Nukleáris Technikai Intézet () MTA Sugár- és Környezetfizikai Albizottság tudományos

Részletesebben

Új megoldásokkal a fenntartható atomenergetika felé: harmadik és negyedik generáció, valamint kis és közepes méretű reaktorok

Új megoldásokkal a fenntartható atomenergetika felé: harmadik és negyedik generáció, valamint kis és közepes méretű reaktorok Új megoldásokkal a fenntartható atomenergetika felé: harmadik és negyedik generáció, valamint kis és közepes méretű reaktorok Pázsit Imre Chalmers University of Technology Nuclear Engineering MTA Tudományos

Részletesebben

PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR KÖRNYEZETTUDOMÁNYI INTÉZET

PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR KÖRNYEZETTUDOMÁNYI INTÉZET PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR KÖRNYEZETTUDOMÁNYI INTÉZET A jövő (2010-2030) újabb generációs atomerőművei S Z A K D O L G O Z A T Készítette: Agócs Ágnes biológia-környezettan tanárszakos

Részletesebben

Felkészülés az új atomerőművi blokkok létesítésének felügyeletére

Felkészülés az új atomerőművi blokkok létesítésének felügyeletére Felkészülés az új atomerőművi blokkok létesítésének felügyeletére Országos Atomenergia Hivatal 1996. évi CXVI. törvény az atomenergiáról 7. (2) Új nukleáris létesítmény és radioaktívhulladék-tároló létesítését,

Részletesebben

Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt.

Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt. Az atomenergia jövője Magyarországon Új blokkok a paksi telephelyen Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt. 2015. Szeptember 24. Háttér: A hazai villamosenergia-fogyasztás 2014: Teljes villamosenergia-felhasználás:

Részletesebben

Zóna üzemzavari hűtőrendszerek USA

Zóna üzemzavari hűtőrendszerek USA Tartalom Zóna üzemzavari hűtőrendszerek USA Semiscale és LOFT Westinghouse PWR Babcock & Wilcox PWR GE BWR Kitekintő Csige András BME Nukleáris Technikai Intézet Atomerőművek 2012. március 22. Atomic Energy

Részletesebben

Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet

Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet Fukusima: mi történt és mi várható? Kulacsy Katalin MTA KFKI Atomenergia Kutatóintézet Áldozatok és áldozatkészek A cunami tízezerszám szedett áldozatokat. 185 000 kitelepített él tábori körülmények között.

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

KÍSÉRLETEK AZ ANCARA MÉRŐKÖRÖN

KÍSÉRLETEK AZ ANCARA MÉRŐKÖRÖN KÍSÉRLETEK AZ ANCARA MÉRŐKÖRÖN Kiss Attila*, Balaskó Márton**, Horváth László**, Kis Zoltán**, Aszódi Attila* *, **Magyar Tudományos Akadémia, Energiatudományi Kutatóközpont XV. MNT Nukleáris Technikai

Részletesebben

6. helyzetelemzés a március 11-i japán földrengés Fukushima Daiichi atomer

6. helyzetelemzés a március 11-i japán földrengés Fukushima Daiichi atomer 6. helyzetelemzés a 2011. március 11-i japán földrengés Fukushima Daiichi atomerımőre gyakorolt hatásairól, következményeirıl Dr. Aszódi Attila, BME Nukleáris Technikai Intézet 2011. április 5. Sok levelet

Részletesebben

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek.

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. www.atomeromu.hu Paks déli részén a 6-os számú főút és a Duna között Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. Az urán 235-ös izotópját lassú neutronok

Részletesebben

Az atomoktól a csillagokig: Az energiaellátás és az atomenergia. Kiss Ádám február 26.

Az atomoktól a csillagokig: Az energiaellátás és az atomenergia. Kiss Ádám február 26. Az atomoktól a csillagokig: Az energiaellátás és az atomenergia Kiss Ádám 2009. február 26. Miért van szükség az energiára? Energia nélkül a társadalmak nem működnek: a bonyolult kapcsolatrendszer fenntartásához

Részletesebben

A fenntartható energetika kérdései

A fenntartható energetika kérdései A fenntartható energetika kérdései Dr. Aszódi Attila igazgató, Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Budapest, MTA, 2011. május 4.

Részletesebben

Vélemény a Mohi Atomerőmű harmadik és negyedik blokkja megépítésével kapcsolatos előzetes környezeti tanulmányról

Vélemény a Mohi Atomerőmű harmadik és negyedik blokkja megépítésével kapcsolatos előzetes környezeti tanulmányról Vélemény a Mohi Atomerőmű harmadik és negyedik blokkja megépítésével kapcsolatos előzetes környezeti tanulmányról Készítette: Perger András 2009. május 8. 2 A mohi atomerőmű harmadik és negyedik blokkjának

Részletesebben

Egyéb reaktortípusok. Atomerőművi technológiák. Boros Ildikó BME NTI

Egyéb reaktortípusok. Atomerőművi technológiák. Boros Ildikó BME NTI Egyéb reaktortípusok Atomerőművi technológiák Boros Ildikó BME NTI 2016.03.23. A forralóvizes reaktor (BWR) Egykörös atomerőművi kapcsolás a turbinára jutó gőz az aktív zónában termelődik a korszerű energetikai

Részletesebben

Az atomenergetika nemzetközi helyzete

Az atomenergetika nemzetközi helyzete Az atomenergetika nemzetközi helyzete Prof. Dr. Aszódi Attila Igazgató, BME Nukleáris Technikai Intézet Magyar Energetikai Társaság Energia Műhely 2012. december 13. Dr. Aszódi Attila 1 Atomenergetika

Részletesebben

Ermvek energetikai folyamatai

Ermvek energetikai folyamatai Ermvek energetikai folyamatai Budapesti Mszaki és Gazdaságtudományi Egyetem Budapesti Ermvek 2008/09 I. f.év 2009 október 1. Katona Zoltán zoltan.katona@eon-energie.com Tel.: 06-30-415 1705 Katona Z, 2008.

Részletesebben

A Célzott Biztonsági Felülvizsgálat (CBF) intézkedési tervének aktuális helyzete

A Célzott Biztonsági Felülvizsgálat (CBF) intézkedési tervének aktuális helyzete A Célzott Biztonsági Felülvizsgálat (CBF) intézkedési tervének aktuális helyzete XII. MNT Nukleáris Technikai Szimpózium, 2013. dec. 5-6. Vilimi András 71 A paksi atomerőmű látképe 500 MW 500 MW 500 MW

Részletesebben

MEE Szakmai nap Hatékony és megvalósítható erőmű fejlesztési változatok a szén-dioxid kibocsátás csökkentése érdekében.

MEE Szakmai nap Hatékony és megvalósítható erőmű fejlesztési változatok a szén-dioxid kibocsátás csökkentése érdekében. MEE Szakmai nap 2008. Hatékony és megvalósítható erőmű fejlesztési változatok a szén-dioxid kibocsátás csökkentése érdekében. Hatvani György az Igazgatóság elnöke A hazai erőművek beépített teljesítőképessége

Részletesebben

Az atomerımővi kiégett üzemanyag hosszú felezési idejő komponenseinek transzmutációja

Az atomerımővi kiégett üzemanyag hosszú felezési idejő komponenseinek transzmutációja Az atomerımővi kiégett üzemanyag hosszú felezési idejő komponenseinek transzmutációja Fehér Sándor Budapesti Mőszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet fehers@reak.bme.hu 1. Bevezetés

Részletesebben

Különbözı típusú üzemzavari hőtırendszerek A védelmi mőködések összefoglalása

Különbözı típusú üzemzavari hőtırendszerek A védelmi mőködések összefoglalása Atomerımővek Különbözı típusú üzemzavari hőtırendszerek A védelmi mőködések összefoglalása Dr. Aszódi Attila igazgató, BME NTI 2008. május 8. Tartalomjegyzék Üzemzavari hőtırendszerek Passzív zóna üzemzavari

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A paksi atomerőmű hosszú távú szerepe a magyar villamos kapacitásmérlegben

A paksi atomerőmű hosszú távú szerepe a magyar villamos kapacitásmérlegben A paksi atomerőmű hosszú távú szerepe a magyar villamos kapacitásmérlegben Prof. Dr. Aszódi Attila Paksi Atomerőmű kapacitásának fenntartásáért felelős kormánybiztos Miniszterelnökség Egyetemi tanár, BME

Részletesebben

A negyedik generációs reaktortípusok tórium-urán üzemanyagciklusban való alkalmazhatóságának vizsgálata

A negyedik generációs reaktortípusok tórium-urán üzemanyagciklusban való alkalmazhatóságának vizsgálata A negyedik generációs reaktortípusok tórium-urán üzemanyagciklusban való alkalmazhatóságának vizsgálata Tézisfüzet György Hunor Sándor Témavezető: Czifrus Szabolcs Budapesti Műszaki és Gazdaságtudományi

Részletesebben

A világ atomerőművei körkép 2004

A világ atomerőművei körkép 2004 BME OMIKK ENERGIAELLÁTÁS, ENERGIATAKARÉKOSSÁG VILÁGSZERTE 44. k. 11. sz. 2005. p. 41 46. Energiatermelés, -átalakítás, -szállítás és -szolgáltatás A világ atomerőművei körkép 2004 A 2004-es adatok nemzetközi

Részletesebben

ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium

ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium ALLEGRO Reaktorral Kapcsolatos Reaktorfizikai Kihívások XV. MNT Szimpózium 2016.12.08-09. Pónya Petra BME NTI Czifrus Szabolcs BME NTI ALLEGRO Hélium hűtésű gyorsreaktor IV. Generációs prototípus reaktor

Részletesebben

Nukleáris energetika. Kérdések 2015 tavaszi félév

Nukleáris energetika. Kérdések 2015 tavaszi félév Nukleáris energetika. Kérdések 2015 tavaszi félév 1. Előadás: Alapismeretek energetikából, nukleáris fizikából NE-1.1. Soroljon fel energia mennyiségeket tartalmazó összefüggéseket a mechanikából, a hőtanból,

Részletesebben

A víz kondicionálása. Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. 2008. 03. 13. Atomerımővek BME NTI

A víz kondicionálása. Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. 2008. 03. 13. Atomerımővek BME NTI A víz kondicionálása Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. 2008. 03. 13. Atomerımővek BME NTI Tartalom 1. Lúgos vízkémia. 2. Semleges vízkémia 3. Kondicionáló vegyszerek. 3.1. Ammónia.

Részletesebben

TELEPÜLÉSI SZENNYVÍZISZAP HASZNOSÍTÁSÁNAK LEHETİSÉGEI 3.

TELEPÜLÉSI SZENNYVÍZISZAP HASZNOSÍTÁSÁNAK LEHETİSÉGEI 3. TELEPÜLÉSI SZENNYVÍZISZAP HASZNOSÍTÁSÁNAK LEHETİSÉGEI 3. 1 2. 1. 4. JELENLEGI HELYZET A települési szennyvíziszap Magyarországi mennyisége évente megközelítıen 700.000 tonna Ennek 25-30%-a szárazanyag

Részletesebben

Mini Atomerőművek. Dr. Rácz Ervin. Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar, Villamosenergetikai Intézet

Mini Atomerőművek. Dr. Rácz Ervin. Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar, Villamosenergetikai Intézet Mini Atomerőművek Dr. Rácz Ervin Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar, Villamosenergetikai Intézet Tartalom Csoportosítás Kezdetek - az első mini atomerőművek Mai, vagy a jövőben elképzelt

Részletesebben

Új reaktortípusok fogják fellendíteni az atomenergia-ipart

Új reaktortípusok fogják fellendíteni az atomenergia-ipart ENERGIATERMELÉS, -ÁTALAKÍTÁS, -SZÁLLÍTÁS ÉS -SZOLGÁLTATÁS 2.5 4.4 Új reaktortípusok fogják fellendíteni az atomenergia-ipart Tárgyszavak: atomenergia; hatékonyság; versenyképesség; villamos energia; hidrogéntermelés,

Részletesebben

Major Ferenc részlegvezető ACIS Benzinkúttechnika kft.

Major Ferenc részlegvezető ACIS Benzinkúttechnika kft. Kompresszor állomások telepítésének feltételei, hatósági előírások és beruházási adatok. Gázüzemű gépjárművek műszaki kialakítása és az utólagos átalakítás módja Major Ferenc részlegvezető ACIS Benzinkúttechnika

Részletesebben

Melegvíz nagyban: Faluház

Melegvíz nagyban: Faluház Használati melegvíz elıállítás napkollektoros rásegítéssel társasházak részére Urbancsok Attila Mőszaki igazgató A kiindulás: Távfőtéses panel épület Sorház pontház Sőrőn lakott környék lakótelep közepe

Részletesebben