Környezetbarát önerõsítéses polimer kompozitok

Hasonló dokumentumok
Powered by TCPDF (

ZÁRÓJELENTÉS OTKA F Címe: Környezetbarát, önerősítéses polimer kompozit szerkezeti anyag kifejlesztése

FRÖCCSÖNTHETŐ POLIPROPILÉN ALAPÚ ÖNERŐSÍTETT KOMPOZITOK

2008 Budapesti és Pest Megyei Mérnöki Kamara Diplomaíja, Mechanoplast Diplomadíj Pályázat különdíja

Tudományos Diákköri Konferencia POLIMERTECHNIKA SZEKCIÓ

POLIMERTECHNIKA SZEKCIÓ

Powered by TCPDF (

Polimer nanokompozit blendek mechanikai és termikus tulajdonságai

Szakmai önéletrajz. Személyes adatok: Tanulmányok, munkakörök: Nyelvtudás:

Tárgyszavak: kompozit; önerősítés; polipropilén; műanyag-feldolgozás; mechanikai tulajdonságok.

Szakmai önéletrajz Sikló Bernadett

SZÉN NANOCSŐ KOMPOZITOK ELŐÁLLÍTÁSA ÉS VIZSGÁLATA

Polimermátrixú hibrid nanokompozitok alkalmazása fröccsöntött termék előállítására (esettanulmány)

Kártolt elõgyártmányból melegpréselt bazaltszál erõsítésû polipropilén mátrixú kompozitok vizsgálata

Hosszú szénszállal erõsített PP, HDPE és EVA kompozitok

Mobilitás és Környezet Konferencia

A MÛANYAGOK ALKALMAZÁSA

Fröccsöntés során kialakuló szerkezet hatása eredeti és reciklált PET mechanikai tulajdonságaira

Budapesti Műszaki és Gazdaságtudományi Egyetem Szerves Kémia és Technológia Tanszék. TDK dolgozat

Nagynyomású csavarással tömörített réz - szén nanocső kompozit mikroszerkezete és termikus stabilitása

Azonos irányba rendezett kenderszálakkal erősített kompozitok 1

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerek. Üreges testek gyártása

Budapesti Műszaki és Gazdaságtudományi egyetem Gépészmérnöki Kar

Ciklikus butilén-tereftalát mint polimer alapanyag és polimer adalékanyag

Szakmai tevékenység az MTA TTK Polimer Fizikai Kutatócsoportjában és a BME Műanyag- és Gumiipari Laboratóriumában

PhD DISSZERTÁCIÓ TÉZISEI

Polimer nanokompozitok; előállítás, szerkezet és tulajdonságok

Anyagok az energetikában

Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok. Határfelület-kohézió-adhézió

Bazaltszállal erősített fröccsöntött poliamid kompozitok fejlesztése

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerek. Kalanderezés és extrúzió

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1

Kavaró dörzshegesztéssel készült polimer varratok szilárdsági elemzése

Anyagok az energetikában

Mágneses tulajdonságú polimerek fejlesztése és tulajdonságainak elemzése

Szálerõsített mûanyag kompozitok tulajdonságainak javítása

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, X. 18

MŰANYAGOK FELDOLGOZÁSA

KOMPOZITLEMEZ ORTOTRÓP

KARBON SZÁLLAL ERŐSÍTETT ALUMÍNIUM MÁTRIXÚ KOMPOZITOK AL/C HATÁRFELÜLETÉNEK JELLEMZÉSE

POLIMERTECHNIKA Laboratóriumi gyakorlat

Deák Tamás PhD-hallgató, Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépészmérnöki Kar, Polimertechnika Tanszék

Réz - szén nanocső kompozit mikroszerkezete és mechanikai viselkedése

HEGESZTÉSTECHNOLÓGIAI PARAMÉTERA LAK NAGYSZILÁRDSÁGÚ ACÉLOK HEGESZTÉSÉNÉL

ÜVEGSZÁL ERŐSÍTÉSŰ KOMPOZIT FÚRÁSÁNAK VIZSGÁLATA GYORSACÉL ÉS KEMÉNYFÉM SZERSZÁMMAL DRILLING OF GLASS-FIBER-REINFORCED COMPOSITE BY HSS AND CARBIDE

Új típusú anyagok (az autóiparban) és ezek vizsgálati lehetőségei (az MFA-ban)

A rostméret hatása a farost-erõsítésû polimer kompozitok tulajdonságaira

Kiváló minőségű ragasztott kötés létrehozásának feltételei

Polimerek vizsgálatai 1.

Ejtési teszt modellezése a tervezés fázisában

A POLIPROPILÉN TATREN IM

PUBLIKÁCIÓS ÉS ALKOTÁSI TEVÉKENYSÉG ÉRTÉKELÉSE, IDÉZETTSÉG Oktatói, kutatói munkakörök betöltéséhez, magasabb fokozatba történı kinevezéshez.

MŰANYAGOK TULAJDONSÁGAI

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerfeldolgozás. Melegalakítás

HEGESZTÉSI SZAKISMERET

Polimerek fizikai, mechanikai, termikus tulajdonságai

PLATTÍROZOTT ALUMÍNIUM LEMEZEK KÖTÉSI VISZONYAINAK TECHNOLÓGIAI VIZSGÁLATA TECHNOLOGICAL INVESTIGATION OF PLATED ALUMINIUM SHEETS BONDING PROPERTIES

MŰANYAGOK TULAJDONSÁGAI

Ph.D. Tézisek. Juhász Péter. Propilén/α-olefin random kopolimerek kristályosodás-kinetikai és morfológiai vizsgálata. Témavezető: Dr.

Szénszál erősítésű kompozitok szívósságnövelése a határfelületi adhézió módosításával

Felkészülést segítő kérdések Polimertechnika (BMEGEPTAMT0) 2015 ősz

MŰANYAGOK TULAJDONSÁGAI

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

POLIMEREK KEMÉNYSÉGE

Polimerek vizsgálatai

H!vezet! polimerek az elektrotechnikában hibrid rendszer" tölt!anyagok alkalmazásának el!nyei

FÉMKOMPOZITOK KOPÁSÁLLÓSÁGÁNAK VIZSGÁLATA INVESTIGATION OF THE WEAR RESISTANCE PROPERTIES OF METAL MATRIX COMPOSITES

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés

MŰANYAGOK FELDOLGOZÁSA

T-M 5. Kompozitok BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE NEM LÁGYULÓ POLIMER MÁTRIXÚ KOMPOZITOK

3. modul 1 lecke: Kompozit definíció, jellemző mátrix anyagok és tipikus erősítőszálak

Bevezetés a lézeres anyagmegmunkálásba

A vasbetonszerkezet tervezésének jelene és jövője A tűzhatás figyelembe vétele.

Kárpitos Kárpitos

ANYAGOK, KOMPOZITOK, TERMÉKEK

ELŐADÁS CÍME. Polimer-kerámia-fém kompozit rendszerek tanulmányozása. Készítette: Bődi Szabolcs tanársegéd, doktorandusz

Az újrahasznosítás szempontjából kedvező tulajdonságú polipropilén kompozitok tervezése és gyártása

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

HOSSZÚ SZÉNSZÁLLAL ERİSÍTETT MŐANYAGKOMPOZITOK MECHANIKAI TULAJDONSÁGAI

MŰANYAGFAJTÁK ÉS KOMPOZITOK

Kis hőbevitelű robotosított hegesztés alkalmazása bevonatos lemezeken

HU ISSN

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Hajlítás BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK POLIMEREK HAJLÍTÓ VIZSGÁLATA

ANNOTÁCIÓ Műanyagalakítás (GEMTT080M) Dr. Kiss Antal Dr. Kovács Péter Kötelező irodalom: Ajánlott irodalom:

Homlokzati burkolókövek hőterhelése. Dr. Gálos Miklós Dr. Majorosné Dr. Lublóy Éva Biró András

Többfalú szén nanocső tartalmú polimer nanokompozitok előállítása és tanulmányozása

kettős falú lemezrendszer

Szakdolgozat / Diploma tájékoztató

A beton kúszása és ernyedése

Tárgyszavak: erősítőszál bazaltból; háromrétegű PP erősítőszál; különleges szénszálak; kompozitlogó.

Műanyaghulladék menedzsment

MŰANYAGOK TULAJDONSÁGAI

3D számítógépes geometria és alakzatrekonstrukció

Átírás:

Környezetbarát önerõsítéses polimer kompozitok IZER ANDRÁS * PhD hallgató KMETTY ÁKOS * szigorló gépészmérnök hallgató DR. BÁRÁNY TAMÁS * egyetemi adjunktus Kompozitok 1. Bevezetés Napjainkban a szerkezeti anyagok újrahasznosítása kulcskérdéssé vált. Különösen igaz ez a polimer, illetve a polimer kompozit termékekre. A legnagyobb mûanyag felhasználó iparágban, a jármûgyártásban a mûanyag alkatrészek jelentõs hányada polipropilénbõl (PP) készül [1]. A PP önmagában tömegmûanyagként nem veszi fel a versenyt a mûszaki mûanyagokkal, ezért erõsíteni szükséges. Leggyakrabban üvegszálas erõsítést alkalmaznak a PP tulajdonságainak javítására, így azonban a kompozit már nehezen újrahasznosítható, mivel a megömlesztéssel történõ újrafeldolgozásnál, az üvegszálak tördelõdése miatt, jelentõs tulajdonságromlással kell számolni. Ezért az egyszerûen újrahasznosítható termoplasztikus kompozitok fejlesztése nagy jelentõséggel bír az egész világon. Erre egyik lehetõség az ún. önerõsítéses polimer kompozit [2]. Önerõsítéses kompozitok esetében mind az erõsítõszálat befoglaló mátrix, mind az erõsítõszál (orientált, nagy szilárdságú polimer szál) azonos polimer családba tartozik. Ez az alapja az egyszerû újrahasznosításnak, mivel a kompozit anyagának újra megömlesztésével (pl. fröccsöntéssel, extrudálással) jó minõségû termék készíthetõ. Ezen felül kitûnõ szál/ mátrix adhézió biztosított különbözõ felületkezelõ szerek hozzáadása nélkül, illetve az azonos geometriával rendelkezõ terméknél akár 30% tömegcsökkenés is elérhetõ az üvegszál erõsítéssel összehasonlítva. Az önerõsítéses polimer kompozitok gyártásához szükséges feldolgozási tartományt a mátrix és az erõsítõanyag olvadási hõmérséklet különbsége biztosítja. Elõállításukra három fõ módszer ismeretes: a kompaktálásos, a koextruziós és a rétegeléses (1. ábra). Mindhárom módszernél az elõgyártmányt préseléssel alakítják kompozit lemezzé. Fontos megjegyezni, hogy kettõs szalagprés (double belt press) alkalmazásával az önerõsítéses polimer kompozit lemezek termelékenyen, folytonosan elõállíthatók. A kompaktálásos eljárás (hot compaction) lényege, hogy a szálak héjfelülete terhelés és hõ hatására ömledék állapotba kerül, majd lehûtés során újrakristályosodva alkotja a mátrixot [3, 4]. E módszert elõször nagy molekulatömegû polietilén (UHMWPE) szálakra fejlesztették ki, majd fokozatosan áttértek PP szövetekre. Elméletileg minden olyan hõre lágyuló polimer anyagon alkalmazható, amelybõl szál készíthetõ. Elõnye, hogy a kompozit 100%-ban azonos polimerbõl épül fel, hátránya, hogy nagyon szûk feldolgozási tartomány lehetséges, a gyakorlatban 3 5 C. A PP szövetbõl készült kompozit a kereskedelemben is kapható Curv márkanéven (2. ábra). Koextrudáláskor a nagy szilárdságú erõsítõszálat egy alacsonyabb olvadáspontú mátrix anyaggal bevonják, majd nagy nyújtásnak vetik alá. E módszert PP-re fejlesztették ki. A szalagok felépítése mindig A/B/A, ahol a PP homopolimert (B) körbeveszi a random PP kopoli- 1. ábra. Különbözõ önerõsítéses kompozit gyártási technológiák * BME Polimertechnika Tanszék 2008. 45. évfolyam, 12. szám 463

A rétegeléses (film-stacking) módszernél az erõsítõstruktúrát és a mátrix lapokat rétegesen egymásra helyezik, majd préseléssel egyesítik [6 10]. Nagy elõnye az anyagkombinációk (ezáltal elérhetõ nagy feldolgozási ablak) és azok arányainak választási szabadsága, a különbözõ erõsítõstruktúrák alkalmazásának lehetõségei. Az említett eljárások alapja a megfelelõ technológiai ablak megléte, amit a mátrix és az erõsítõanyag eltérõ olvadáspontja nyújt. Az olvadáspontok közötti különbség biztosítható a polimer fizika nyújtotta lehetõségek kihasználásával (kompaktálás), vagy kétféle anyagtípus (pl. random PP kopolimer/pp homopolimer) kombinációjának alkalmazásával (koextruzió, rétegeléses). A PP szál jelentõsebb orientáltsága szintén az olvadáspont növekedését eredményezheti. A mátrix olvadáspontja csökkenthetõ a PP polimorf tulajdonságában rejlõ lehetõségek kiaknázásával. Az izotaktikus PP homopolimer β módosulata (β-pp) szelektív β-gócképzõk segítségével elõállítható, amelynek az olvadáspontja 25 C-kal is alacsonyabb az általában használt α-pp-vel szemben. A β-pp tulajdonságai a szakirodalomban jól dokumentáltak [11 13]. A rétegeléses módszer során eltérõ erõsítõ struktúrákat (szõtt, nem szõtt) alkalmazhatunk, amellyel különbözõ erõsítõhatást érhetünk el. Munkánkban a rétegeléses módszerrel kifejlesztett, önerõsítéses polimer kompozitok gyártását és jellemzõit mutatjuk be. 2. Kompozit fejlesztés 2. ábra. Curv anyagból készített termékek (www.curvonline. com). a jármû alsó védõlemez, b bõrönd mer (A). A nagy szilárdságú szalagokból szövetet készítenek, amelyet préseléssel egyesítenek [5]. Elõnye a szélesebb feldolgozási tartomány (20 30 C), hátránya, hogy további technológiai lépést (koextruzió) igényel. A fenti anyagkombinációra kifejlesztett kereskedelemi termékek a Pure és az Armordon (3. ábra). 3. ábra. Pure termékek (www.purecomposites.com). a autóipari belsõ panelek, b védõ sisak 2.1. Elõgyártmányok elõállítása Az elõgyártmányok elõállítása két vonalon történik, nevezetesen a mátrix alapanyagból vékony fólia, az erõsítõszálakból megfelelõ struktúra készül. Mátrix anyagként a TVK NYRT. (Tiszaújváros) által gyártott, különbözõ folyóképességû (Tipplen R359, R959A) random PP kopolimert, illetve BOREALIS β-pp-t (Daplen1BE 61) alkalmaztunk. Az alapanyagokból 350 µm vastag fóliát állítottunk elõ lemezgyártó extrudersorral. Az erõsítõszál a STRADOM S.A. (Czestochowa, Lengyelország) által forgalmazott, erõsen orientált, nagy szilárdságú, 2200 dtex lineáris sûrûségû PP multifilament volt. Szálvizsgálatokat végeztünk 50 elemi szálon, amely alapján az átlagos szálátmérõ 40,2±1,8 µm, a szakítószilárdság 465±32 MPa, az olvadáspont, DSC vizsgálat alapján, 172 C volt. 2.2. Kompozit gyártása Az önerõsítéses kompozit lapokat rétegeléses módszerrel (a mátrix fóliát és az erõsítõ struktúrát váltakozva, rétegesen elrendezve), préseléssel készítettük. Elemeztük a préselési hõmérséklet és hõntartási idõ hatását, miközben a préselési nyomást állandó értéken (7 MPa) tartottuk. 3 mm vastag kompozit lemezeket sajtoltunk a 4. ábra szerinti technológiai program szerint. 4. ábra. A feldolgozási paraméterek 2.3. Vizsgálatok A kompozit lapokat MSZ EN ISO 521 szabvány szerinti szakító (σ t, E t ; 5 mm/perc), illetve dinamikus ejtõ- 464 2008. 45. évfolyam, 12. szám

súlyos (E p ; maximális energia 229,1 J; dárda átmérõje las szerkezet miatt az egyedi szálak nagy molekuláris 20 mm; alátámasztás átmérõje 40 mm; dárda súlya orientáltsággal (a szálgyártás során a nagy nyújtás miatt) 23,6 kg; a dárda indulási magassága 1 m) vizsgálatokkal rendelkeznek, amely a nagy szilárdságot is biztosítja. jellemeztük. A kompozitok polírozott keresztmetszetérõl mikroszkópos felvételeket készítettünk. A vizsgála- molekuláris relaxáció intenzívebbé válik, így az orientá- Ezekben a szálakban a hõmérséklet emelkedésével a tokat az erõsítõszál irányában, szobahõmérsékleten végeztükszefoglalva, az önerõsítéses kompozitok gyártásánál úgy ció, és ezzel párhuzamosan a szilárdság is csökken. Ösz- kell elõállítani a minél jobb konszolidáltsággal rendelkezõ kompozit lapokat, hogy a bennük lévõ erõsítõszálak 3. A kifejlesztett kompozitok tulajdonságai Önerõsítéses kompozitok gyártásánál számos tényezõ befolyásolja a kialakuló lemez tulajdonságait. Amigyen. molekuláris relaxációja a lehetõ legkisebb mértékû lekor az elõgyártmány réteges felépítésû, az alapanyagok A fenti tényezõk közül a legjelentõsebb a préselési (mátrix, erõsítõanyag) tulajdonságai és azok arányai hõmérséklet, valamint az erõsítõszerkezet típusa és az mellett a legfontosabb jellemzõ a kialakult konszolidáltság mértéke. A konszolidáltság annál jobb, minél kevesebben is bemutatunk. A relaxációs hatást figyelembe erõsítõanyag aránya, amelyet az alábbiakban részletesebb szabad térfogat marad a keresztmetszet mentén véve a préselési nyomást és a hûtési sebességet a lehetõ (azaz megközelítjük a kompozit elméleti maximális sûrûségét). A legfontosabb tényezõk: A hõntartási idõt 1,5 és 20 perc között vizsgáltuk, azon- legnagyobb értékre választottuk (7 MPa és 20 C/perc). a mátrix típusa, tulajdonságai, ban jelentõsebb változást a mechanikai tulajdonságokban nem tapasztaltunk (a hosszabb hõntartás jobb kon- a mátrix anyag folyóképessége (MFI), az erõsítõ anyag típusa, tulajdonságai, szolidáltságot eredményezett, viszont az erõsítõszálak az erõsítõ szerkezet felépítése (pl. kártolt, szövet, molekuláris relaxációja valószínûsíthetõ). Az erõsítõanyag típusát a kereskedelemben kapható termékek köre kötött stb.), az erõsítõ anyag aránya a kompozitban, korlátozza, amelyek közül a lehetõ legnagyobb szilárdságú PP multifilamentet választottuk ki. Megfelelõ mát- a préselési hõmérséklet, a préselési nyomás, rix anyaggal biztosítható a kívánt feldolgozási tartomány, amely folyóképessége tapasztalataink alapján a hõntartási idõ, adott nyomás mellett, a hûtési sebesség. egy bizonyos határ felett (~5 g/10 perc, 230 C, 2,16 kg) A fenti tényezõk együttesen befolyásolják a kialakult már nem befolyásolja jelentékenyen a konszolidáltság kompozit konszolidáltságát. Megje- hatását. gyezzük, hogy hagyományos típusú, hõre lágyuló mátrixú kompozitok elõállításánál a préselési hõmérséklet növelésével a mátrix viszkozitása csökkenthetõ, ezáltal valószínûsíthetõ a kialakuló jobb konszolidáltság. A mi esetünkben azonban az erõsítõ anyag (szál vagy szalag formában) a mátrixszal azonos anyagcsaládba tartozik, de magasabb az olvadási hõmérséklete, így ez megszabja a préselési hõmérséklet felsõ határát. Továbbá, a szá- 5. ábra. A 150 és 170 C-on elõállított kompozitok keresztmetszeti csiszolati képe 2008. 45. évfolyam, 12. szám 465

4. A vizsgálati eredmények 4.1. Préselési hõmérséklet hatása A préselési hõmérséklet növekedésével a kompozit lapok konszolidáltsága javul. Viszonylag kis (0,3 g/ 10 perc) és viszonylag nagy (45 g/10 perc) folyóképességû mátrix, valamint ~50 tömeg% arányú kártolt és tûnemezelt paplan erõsítés esetében a kialakult szerkezetet az 5. ábrán látható keresztmetszeti csiszolatok fénymikroszkópos felvételei mutatják be. A 6. és 7. ábra a szakítószilárdságot (szálirányban), illetve a perforációs energiát jellemzi a préselési hõmérséklet függvényében. Megfigyelhetõ, hogy kis folyóképességû mátrixnál a kompozit konszolidáltsága fokozatosan javul, de a réteges szerkezet mindvégig megmarad. Nagy folyóképességû mátrixnál már alacsonyabb hõmérsékleten is jó a konszolidáltság, a réteges szerkezet is fokozatosan eltûnt és az erõsítõszálak egyenletes eloszlása figyelhetõ meg. A konszolidáció javulása tükrözõdik a szakítószilárdság növekedésében, illetve a perforációs energia (energiaelnyelõ képesség) csökkenésében. 4.2. Erõsítõszerkezet hatása Korábban fõleg kártolt és tûnemezelt [8 10], valamint vetülék befektetéssel erõsített kötött kelmét vizsgáltunk [14]. Az eredmények alapján, a kvázi unidirekcionális kártolt paplan esetében értük el a legnagyobb szilárdsági tulajdonságokat (keresztirányban közel mátrix szilárdság tapasztalható, a cross-ply elrendezés egy késõbbi vizsgálat tárgya), míg a legkisebb az erõsítõhatás a vetülék befektetéssel erõsített kötött kelménél. Ha figyelembe vesszük, hogy az erõsítõstruktúrából csak a vetülék befektetett szálak növelik a szilárdságot, akkor belátható, hogy a valós erõsítõanyag tartalom jelentõsen kisebb, így kb. 50 50%-os kötött kelme/mátrix aránynál a valós erõsítõszálak aránya 38% a kötött kelmében. Tehát, ha az elõállított kompozitot vizsgáljuk, akkor az 50%-os kötött kelmével történõ erõsítésnél ennek mindössze 38%-a, azaz 19%-a fog erõsíteni. Ezt figyelembe véve, a rossz mechanikai eredmények már nem meglepõek. 4.3. Száltartalom hatása A 8. ábra a préselési hõmérséklet és a névleges száltartalom hatását mutatja be a szakítószilárdságra. Megfigyelhetõ, hogy a száltartalommal együtt a szilárdság is nõ, illetve a konszolidáció javulásával az egyes száltartalmú kompozitok közötti különbségek nõnek. A perforációs energia a hõmérséklet növekedésével csökken, a száltartalmaknál a legalacsonyabb hõmérsékleten vannak a legnagyobb különbségek, valamint a száltartalom növelésével a perforációs energia is nõ. 6. ábra. A szakítószilárdság a préselési hõmérséklet függvényében különbözõ mátrixú kompozitoknál 8. ábra. A préselési hõmérséklet és a névleges száltartalom hatása a szakítószilárdságra kártolt paplan erõsítés és random PP kopolimer mátrix esetében 7. ábra. A perforációs energia a préselési hõmérséklet függvényében különbözõ mátrixú kompozitoknál 5. Összefoglalás Önerõsítéses polipropilén kompozitok gyártási lehetõségeit, illetve tulajdonságait vizsgálva megállapítottuk, hogy ezeket leginkább a konszolidálási hõmérséklet, az erõsítõ szál tartalma, illetve az alkalmazott erõsí- 466 2008. 45. évfolyam, 12. szám

tõstruktúra befolyásolja. Ezek a kompozitok, tulajdonságaik alapján, megfelelõ alternatívái az üvegszállal erõsített polipropilén kompozitoknak, akár 30%-os súlycsökkenés mellett. A cikk megjelenését az Országos Tudományos Kutatási Alap (OTKA F60505 és NI62729), a Magyar Tudományos Akadémia Bolyai János Kutatási Ösztöndíja és az MTA-INSA kutatócsere pályázata támogatta. Irodalom [1] Czigány, T.; Czvikovszky, T.: Polimerek és kompozitjaik jármûipari alkalmazása áttekintés, Mûanyag és Gumi, 43, 45 50 (2006). [2] Pegoretti, A.: Trends in composite materials: the challenge of single-polymer composites, Express Polymer Letters, 1, 710 (2007). [3] Ward, I. M.; Hine, P. J.: The science and technology of hot compaction, Polymer, 45, 1413 1427 (2004). [4] Hine, P. J.; Ward, I. M.: High stiffness and high impact strength polymer composites by hot compaction of oriented fibers and tapes, Polymer, 44, 1117 1131 (2003). [5] Peijs, T.: Composites for recyclability, Materials Today, 4, 30 35 (2003). [6] Houshyar, S.; Shanks, R. A.; Hodzic, A.: Influence of different woven geometry in poly(propylene) woven composites, Macromolecular Materials and Engineering, 290, 45 52 (2005). [7] Houshyar, S.; Shanks, R. A.: Tensile properties and creep response of polypropylene fibre composites with variation of fibre diameter, Polymer International, 53, 1752 1759 (2004). [8] Bárány, T.; Karger-Kocsis, J.; Czigány, T.: Development and characterization of self-reinforced polypropylene composites. Carded mat reinforcement, Polymers for Advanced Technologies, 17, 818 824 (2006). [9] Bárány, T.; Izer, A.; Czigány, T.: High performance selfreinforced polypropylene composites, Materials Science Forum, 537-538, 121 128 (2007). [10] Bárány, T.; Izer, A.; Czigány, T.: A konszolidáltság mértékének hatása az önerõsítéses kompozitok mechanikai tulajdonságaira, Anyagvizsgálók Lapja, 4, 113 115 (2005). [11] Varga, J.: β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application, Journal of Macromolecular Science, Part B- Physics, 41, 1121 1171 (2002). [12] Varga, J.; Ehrenstein, G. W.: Beta-modification of isotactic polypropylene. In Polypropylene: An A-Z Reference, Karger-Kocsis, J. (ed), Kluwer, Dordrecht, pp. 51 59, 1999. [13] Menyhárd, A.; Varga, J.; Liber, Á.; Belina, G.: Polymer blends based on the β-modification of polypropylene, European Polymer Journal, 41, 669 677 (2005). [14] Bárány, T.; Izer, A.: Environment-friendly polypropylene composites, Gépészet 2006, Budapest, 2006. május 25 26, CD proceeding, 6 oldal. 2008. 45. évfolyam, 12. szám 467