MATEMATIKAI KOMPETENCIATERÜLET A

Hasonló dokumentumok
MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A

Matematika tanmenet 12. osztály (heti 4 óra)

Követelmény a 8. évfolyamon félévkor matematikából

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

Érettségi előkészítő emelt szint évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

MATEMATIKAI KOMPETENCIATERÜLET A

Osztályozó- és javítóvizsga. Matematika tantárgyból

Követelmény a 7. évfolyamon félévkor matematikából

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

16. modul: ALGEBRAI AZONOSSÁGOK

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Osztályozóvizsga követelményei

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

Az osztályozó vizsgák tematikája matematikából évfolyam

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP és AP )

SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika

11. modul: LINEÁRIS FÜGGVÉNYEK

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Az osztályozóvizsgák követelményrendszere 9. évfolyam

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

MATEMATIKA tanterv emelt szint évfolyam

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára

18. modul: STATISZTIKA

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

TARTALOM. Előszó 9 HALMAZOK

Az osztályozó vizsgák tematikája matematikából

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

Osztályozóvizsga követelményei

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA

Tanulmányok alatti vizsga felépítése. Matematika. Gimnázium

Osztályozóvizsga-tematika 8. évfolyam Matematika

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA

Matematika szóbeli érettségi témakörök 2017/2018-as tanév

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN

MATEMATIKA évfolyam. Célok és feladatok. Fejlesztési követelmények

Az osztályozóvizsgák követelményrendszere MATEMATIKA

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez

Matematika 5. évfolyam

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI. A vizsga formája. Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli

MATEMATIK A 9. évfolyam. 6. modul: TÉRELEMEK KÉSZÍTETTE: VIDRA GÁBOR, LÉNÁRT ISTVÁN, ERDÉLY DÁNIEL, ERDÉLY JAKAB

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

9. évfolyam. Órakeret Számtan, algebra Fejlesztési cél

TANMENET. a Matematika tantárgy tanításához a 12. a, b c osztályok számára

HELYI TANTERV MATEMATIKA SZAKKÖZÉPISKOLA

Osztályozóvizsga követelményei

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor

2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

Debreceni Baross Gábor Középiskola, Szakiskola és Kollégium Debrecen, Budai Ézsaiás u. 8/A. OM azonosító: Pedagógiai program

TANMENET. a matematika tantárgy tanításához 10. E.osztályok számára

MATEMATIKA. Szakközépiskola

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

Tanmenet a Matematika 10. tankönyvhöz

Osztályozóvizsga követelményei

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

Matematika 5. osztály

Helyi tanterv. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 15. sz. melléklet. alapján Matematika a szakközépiskolák 9 11.

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

8. modul: NÉGYSZÖGEK, SOKSZÖGEK

Vizsgakövetelmények matematikából a 2. évfolyam végén

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Matematika. a fogalma. Négyzetgyökvonás azonosságainak használata. A logaritmus fogalma, logaritmus azonosságai. Áttérés más alapú logaritmusra.

Toldi Miklós Élelmiszeripari Szakképző Iskola és Kollégium Érettségi témakörök május-június

TANMENET. Matematika

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

MATEMATIKA OSZTÁLYOZÓ VIZSGA ÉS JAVÍTÓVIZSGA

Helyi tanterv a Matematika tantárgy oktatásához

PEDAGÓGIAI PROGRAM 4. SZÁMÚ MELLÉKLETE ARANY JÁNOS KOLLÉGIUMI PROGRAM MATEMATIKA HELYI TANTERV

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

MATEMATIKA évfolyam. Célok és feladatok. Fejlesztési követelmények

PEDAGÓGIAI PROGRAM 3. SZÁMÚ MELLÉKLETE SZAKKÖZÉPISKOLA 3 ÉVES KÉPZÉS MATEMATIKA HELYI TANTERV

MATEMATIKA Szakközépiskola 9. évfolyam (K,P,SZ,V)

nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:

Átírás:

MATEMATIKAI KOMPETENCIATERÜLET A Programtanterv 12. évfolyam

A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési terv Humánerőforrás-fejlesztési Operatív Program 3.1.1. központi program (Pedagógusok és oktatási szakértők felkészítése a kompetencia alapú képzés és oktatás feladataira) keretében készült, a sulinova oktatási programcsomag részeként létrejött tanulói információhordozó. A kiadvány sikeres használatához szükséges a teljes oktatási programcsomag ismerete és használata. A teljes programcsomag elérhető: www.educatio.hu címen. Educatio Kht. 2008.

3 12. évfolyam Óraszám: 111 óra, 37 hét, 3 óra/hét témakörök javasolt óraszám modulszám 1. Gondolkodási módszerek 0 óra 0 2. Algebra 0 óra 0 3. Geometria 20 óra 3 4. Függvények 16 óra 2 5. Valószínűség, statisztika 4 óra 1 100 órát osztottunk ki, összesen 14 modulba rendezve. További 8 órát szántunk a témazáró dolgozatokra. A fennmaradó 3 óra ismétlésre, pótlásra használható.

4 1. témakör Cím Gondolkodási módszerek Képességfejlesztési fókuszok Ajánlott óraszám Ajánlott tevékenységek Számolás, számlálás, számítás Mennyiségi következtetés Becslés, mérés, valószínűségi szemlélet Szöveges feladatok, metakogníció Rendszerezés, kombinatív gondolkodás Induktív, deduktív következtetés Ismeretek, tananyagtartalmak 0, mivel önálló modulként nem szerepel, de a helyes, logikus gondolkodás fejlesztésének ezen az évfolyamon is óriási szerepe van az egyes modulokba beépítve. A zsebszámológép biztos használata, a műveleti sorrendek tudatos alkalmazása. A deduktív gondolkodási mód továbbfejlesztése. A számpéldák, és a belőlük levont sejtés közötti kapcsolat megfogalmazásának és indoklásának kialakítása, különösen a sorozatok képzési szabályainak kialakításakor. A térgeometriai feladatoknál különösen nagy szerepe van a mérésnek. A mért modell adatainak átkonvertálása a valóságba. Pontos szövegértés, szövegelemzés, a szöveges feladatokban megfogalmazott hétköznapi problémák átemelése a matematika logikai rendszerébe, a metakogníció fejlesztése. A tanév végi rendszerező összefoglalásnál felfedeztetjük a matematika bizonyos területeinek szoros kapcsolatát. Következtetés a speciális, konkrét megfigyelésekből az általános esetre, a szemléltetés fontossága, az induktív gondolkodás fejlesztése. Egyre nagyobb hangsúlyt kap ennél a korosztálynál a deduktív gondolkodás képességének fejlesztése is. Nyitott végű igaz-hamis állításokkal fejlesztjük a tanulók szintetizáló képességét. A deduktív gondolkodás tudatos fejlesztése. A sejtések helyes cáfolata (az ellenpélda szerepe), vagy a sejtések indoklása. Állítások és tagadásuk megfogalmazása, azok igaz, hamis voltának eldöntése, az és ill. a vagy műveletek alkalmazása. Egyszerű következtetések, állítások és megfordításuk megfogalmazása. A definíció és a tétel különbözősége. Szükséges és elégséges feltétel biztos alkalmazása. Az ekvivalencia és az implikáció tudatos alkalmazása.

5 2. témakör Cím Algebra Képességfejlesztési fókuszok Ajánlott óraszám Ajánlott tevékenységek Számolás, számlálás, számítás Mennyiségi következtetés Becslés, mérés, valószínűségi szemlélet Szöveges feladatok, metakogníció Rendszerezés, kombinatív gondolkodás Induktív, deduktív következtetés Ismeretek, tananyagtartalmak 0 (önálló modulként nem szerepel) Konkrét számolási feladatok a valós számkörben, a matematika legkülönbözőbb területein. Ezzel is valós számok fogalmát mélyítjük. Műveletek racionális és irracionális számokkal. A közelítő értékekkel számolás, valamint a zsebszámológép állandó használata (gazdasági matematika, térgeometria, felszín és térfogat számítás) miatt kiemelten elengedhetetlen a becslés szerepe. Szoktassuk a tanulókat a kapott eredmények realitásának eldöntésére! A szövegértés tudatos fejlesztése, hétköznapi szöveg lefordítása a matematika nyelvére, a valóságbeli problémák matematikai értelmezése (a metakogníció fejlesztése). A természet jelenségeinek értelmezése, azok matematikai modellezése. A szükséges adatok kikeresése, a fölösleges adatok mellőzése, a lényegkiemelő képesség fejlesztése folyamatos a középiskolai évek alatt is. Szöveges összefüggések leírása matematikai jelekkel. Szöveges feladatok megoldása előtt a várható eredmények közös becslése, a kapott eredményének ellenőrzése, értelmezése, szöveges válasz a felvetett szöveges problémára. A matematika különböző területeinél tanult azonosságok biztos alkalmazási képessége (kiemelés, hatványozás, logaritmus). Közelítő értékekkel való rutinos számolás.

6 3. témakör Cím Geometria Képességfejlesztési fókuszok Ajánlott óraszám Számolás, számlálás, számítás Mennyiségi következtetés 20 óra A műveleti sorrend biztos alkalmazása, különösen a térgeometria összetettebb képleteinél, behelyettesítéskor. Zsebszámológép biztos használata. Ismert adatokból logikus rend szerint ismeretlen adatok meghatározása. Nagyon fontos a jó vázlat elkészítése, melyen az ismert adatokat célszerű színessel kiemelni. A mennyiségek folytonossága, fogalmának továbbfejlesztése. Becslés, mérés, valószínűségi szemlélet Szöveges feladatok, metakogníció Rendszerezés, kombinatív gondolkodás Induktív, deduktív következtetés A feladatok várható eredményének becslése, különösen a szöveges feladatok esetén. Valóságból vett mért értékű feladatok matematikai átfogalmazása, azok megoldása, és az eredmények visszakonvertálása a valós problémába. Szövegértelmezés továbbfejlesztése, a lényegkiemelő képesség fejlesztése. A valóság tárgyainak geometriai modellezéséhez szükséges képességek továbbfejlesztése. A geometriai feladok algebrai megoldása során keletkező hamis gyökök kiválasztásának képessége. Az eddig tanult síkidomok kerületének és területének rendszerező áttekintése. Ugyanazon síkidom területének többféle képlete közötti kapcsolat felfedeztetése. A geometriai feladatok megoldási tervének elkészítési képessége. A geometriai feladatok megoldása algebrai eszközökkel. Az adatok rendszerezése, egy feladaton belül a szükséges egységrendszer kiválasztása, és a megadott adatoknak arra való átszámolása. Geometriai fogalmak segítségével az absztrakciós képesség fejlesztése. Összefüggések, képletek felfedezése gyakorlati tapasztalatból kiindulva, azok általánosítása és alkalmazása más esetekben.

7 Ajánlott tevékenységek Ismeretek, tananyagtartalmak Csoportmunkában egy-egy feladat több oldali megközelítése. Testek építése, és azokon különböző tulajdonságaik felfedezése. Kutatómunka: Matematikatörténeti érdekességek az egyes testekkel kapcsolatban Arkhimédész sírfelirata Fraktálokról kutatómunka Előadás, vetítés számítógéppel, interaktív programok az internetről. modulok Cím 3. Síkidomok kerülete, területe (6 óra) 4. Poliéderek felszíne, térfogata (6 óra) 5. Felszín- és térfogatszámítás2 (8 óra) Ajánlott óraszám 6 + 6 + 8 = 20 A kerület és a terület szemléletes fogalma. A háromszögek területének meghatározása különböző adatokból. Speciális négyszögek kerülete, területe. Szabályos sokszögek kerülete, területe. Kör, körcikk, körszelet, körgyűrű kerülete és területe. A felszín és a térfogat szemléletes fogalma. A poliéderek szemléletes definíciója, alapfogalmak ismerete (pl.: alkotó, alaplap, magasság). A hasáb, a gúla, a csonkagúla felszínének és térfogatának kiszámítása a megismert képletekbe helyettesítéssel. Forgáshenger és forgáskúp felszíne és térfogata. Csonkakúp felszínének és térfogatának kiszámítása a megismert képletekbe helyettesítéssel. A gömb felszínének és térfogatának ismerete. Egyszerűbb összetett testek adatainak meghatározása (be- és körülírásos feladatok)

8 ALTERNATÍV MEGOLDÁSOK (KÉPESSÉG- FÓKUSZ-VÁLTÁS) követelmények Kapcsolódó tantervi modulok Kapcsolódás más műveltségi területekhez Korábbi tanulmányok síkidomokról, testekről. Kerület- és területszámítás bizonyos síkidomok esetében. Térelemek kölcsönös helyzete, hajlásszögük. Bizonyos testek felszínének és térfogatának ismerete. A Pitagorasz-tétel és a trigonometria biztos alkalmazása. Hasonlóság ismerete, hasonló síkidomok kerület- és terület aránya, hasonló testek felszín- és térfogat aránya. Képzőművészet, építészet, modellezés. Természeti környezet. Fizika, csillagászat. Háromszögek, négyszögek, sokszögek kerületének és területének meghatározása bizonyos adatok alapján. A körrel kapcsolatos fogalmak ismerete, és a kör és részeinek kerülete, területe. A megismert felszín és térfogatképletek alkalmazása feladatokban.

9 4. témakör Cím Függvények, sorozatok Képességfejlesztési fókuszok Ajánlott óraszám Ajánlott tevékenységek Számolás, számlálás, számítás Mennyiségi következtetés Becslés, mérés, valószínűségi szemlélet Szöveges feladatok, metakogníció Rendszerezés, kombinatív gondolkodás Induktív, deduktív következtetés Ismeretek, tananyagtartalmak 16 óra A zsebszámológép biztos használata feltétele a fejezet feldolgozhatóságának. A műveleti sorrendre nagy figyelmet kell fordítani. A százalékszámítás alapelemeivel biztosan kell dolgozni. Képletbe helyettesítés képességének fejlesztése-különösen a rekurzív definíció esetén. Adott sorozatbeli elemekből logikus szabály szerint a többi elem kiszámolása, sorozatbeli elemek összegzése. A gazdasági matematikában a várható reális eredmények megbecsülése, és összevetése a kiszámolt értékekkel. A valóságból merített szöveges faladatok algebrai megfogalmazása, átültetése a matematika jelölésrendszerébe. Ez többsíkú gondolkodást igényel, az ehhez szükséges képességek fejlesztése. Az összefüggések felismerésének képességét feltételezi a sorozatok elemei közötti kapcsolatok vizsgálata, a sorozatok tulajdonságainak meghatározása. A sorozat elemeinek megfigyelése grafikonon, a képi megjelenés és a valós folyamat kapcsolata. Konkrét sorozatok tulajdonságaiból következtetések levonása. Konkrét számokkal és összefüggésekkel megadott sorozatokból átlépés az általános képletekkel megadottakra, illetve az általánosítás után azok konkrét alkalmazása. Tudja értelmezni a kapott eredményeket. Grafikonok készítése. Bankok ajánlatainak összehasonlítása. Áremelések és árleszállítási katalógusok gyűjtése, és a bennük található adatok feldolgozása. A sorozat fogalma, megadási módjai. Sorozatok tulajdonságai. Sorozatok grafikonja. Számtani sorozat definíciója, tulajdonságai, a n, S n. Mértani sorozat definíciója, tulajdonságai, a n, S n. Kamatos kamatszámítás.

10 modulok Cím 1. Sorozatok (12 óra) 2. Gazdasági matematika (4 óra) ALTERNATÍV MEGOLDÁSOK (KÉPESSÉG- FÓKUSZ-VÁLTÁS) követelmények Ajánlott óraszám 12 + 4 = 16 Kapcsolódó tantervi modulok Kapcsolódás más műveltségi területekhez Algebrai azonosságok, műveletek a valós számkörben. Százalékszámítás. Egyenletek, egyenlőtlenségek megoldása. Elemi függvények grafikonja, és a függvények tulajdonságai. Alkalmazás fizikai, biológiai, kémiai törvényszerűségek leírására. A valóság diszkrét folyamatai. Közgazdasági alapismeretek és fogalmak. Ismerje a számsorozat fogalmát és használja különböző megadási módjait. Olyan feladatok megoldása számtani és mértani sorozatoknál, ahol az a n és az S n -re vonatkozó összefüggéseket kell alkalmazni. Tudja a kamatos kamatra vonatkozó képletet használni, és abból bármelyik ismeretlen adatot kiszámolni.

11 5. témakör Cím Valószínűségszámítás, statisztika Képességfejlesztési fókuszok Ajánlott óraszám Ajánlott tevékenységek Számolás, számlálás, számítás Mennyiségi következtetés Becslés, mérés, valószínűségi szemlélet Szöveges feladatok, metakogníció Rendszerezés, kombinatív gondolkodás Induktív, deduktív következtetés Ismeretek, tananyagtartalmak 4 óra Az adatsokaság elemeinek megszámlálása. Az azonos tulajdonságú elemek előfordulásának valószínűségének meghatározása. Tudjon statisztikai diagramok elkészítéséhez arányokat illetve százalékokat kiszámolni. A részből az egészre és az egészből a részre következtetés. modulok Cím Valószínűségszámítás, statisztika Ajánlott óraszám 4 A mindennapi életben lejátszódó folyamatok valószínűsége. Statisztikai adatok alapján valószínűség és a relatív gyakoriság kapcsolata. Statisztikai diagramok elkészítése előtt az adatsokaság specifikus jellemzőihez tartozó elemszám becslése. Azon mindennapi szituációk értelmezése, ahol a véletlennek vagy a bizonytalanságnak szerepe van. Egyszerű valószínűségi állítások jelentése a mindennapi életben. A valószínűség és a statisztika szoros kapcsolatának felismerése feladatokon keresztül. Az azonos tulajdonsággal rendelkező elemek halmazba rendezése, a halmaz számosságának meghatározása, majd az alaphalmaz számosságával összevetve valószínűségek és statisztikai mutatók meghatározása, és azok értelmezése az adott probléma kapcsán. A véges mérési eredmények kiterjeszthetősége nagyobb alaphalmazra. Nagyobb alaphalmazon létrehozott statisztikai mutatók értelmezhetősége kisebb alaphalmazon. Adatgyűjtés tényleges tevékenységgel, internetről, újságokból, statisztikai zsebkönyvből. Adatok feldolgozása zsebszámológéppel, grafikus kalkulátorral és számítógéppel. Csoportmunka: a gyűjtött adatok elemzése (statisztikai mutatók, grafikonok, táblázatok). Az eddig tanult valószínűségszámítási és statisztikai fogalmak (ez a modul rendszerez, de új ismereteket nem tartalmaz).

12 ALTERNATÍV MEGOLDÁSOK (KÉPESSÉG- FÓKUSZ-VÁLTÁS) követelmények Kapcsolódó tantervi modulok Kapcsolódás más műveltségi területekhez Műveletek valós számokkal. Függvények, grafikonok. Kombinatorikai, klasszikus valószínűségszámítás. Statisztikai alapismeretek. Az élet minden területén előforduló jelenségek valószínűségének és statisztikai mutatóinak létrehozása és értelmezése. Adatok szemléltetése, táblázatba rendezése, adatsokaság átlagának, móduszának, mediánjának, terjedelmének, szórásának meghatározása. Tudjon adathalmazokat összehasonlítani a tanult statisztikai mutatók segítségével. Gyakorisági diagram, grafikonok készítése. Gyakoriság, relatív gyakoriság ismerete. Kombinatorikus valószínűségszámítás. A klasszikus (Laplace-) modell ismerete. Valószínűségek kiszámítása visszatevéses mintavétel esetén, binomiális eloszlás ismerete.