Áramlások fizikája

Hasonló dokumentumok
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

Ó Ó ó ö ó

ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó

Á ű ó ó

Áramlástan kidolgozott 2016

ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É

ű Ö ű Ú ű ű ű Á ű

Á Ó ű ű Á É ű ű ű ű Ú Ú

Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö

ö ö Á Á Ó Á ö ö ö ö ö ú ű ö ö Á Á ű ű ö ö ö ö ű

ű Ú ű ű É Ú ű ű

Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö

Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő

ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö

Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö

Á Ü É Ü Ú Ü É

ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü

Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű

É Á Á Ö Á

ű ő ő ő

ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á

é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é

Á ó ó ó Ü Ü ó ó Ü ó ó ú ú ó ó Ü ó ó ó Ü ó ó

ú Ó ú ú ú ú ú ú ú É Á

É É Ö

ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú

ü ú ú ü ú ú ú ú

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Folyadékok és gázok mechanikája

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

1.2 Folyadékok tulajdonságai, Newton-féle viszkozitási törvény

ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű

ú Ü Í ú ú ú ú ú ú

É ú É ö ö ű ö ö ö ú ú ú ű ű ú ö ű ö ű ű ü ö ö ü ű ö ü ö ö ö ö ú ü ö ö ö ú ö ö ú ö ö ú ü ú ú ú ű ü ö ö ű ú ű ű ü ö ű ö ö ö ű ú ö ö ü ú ü ö ö ö ü ú ö ű

É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í

É Ö Á Í Á Ó Ö ü

ú ű ú ú ű ú ű ű ú ű ú ű Á ű ű Á ű ű ú ú ú ú ú ú ű ú ú ú ú ú ú ú ú

Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő

É ö Ű ő ű ő ő ű ű

Ü

ú ú ö ö ü ü ü ü ű ü ü

ö ő ő ü ü Ó ü ö ű Á ő ő ö ő Á Ó ű ö ü ő ő ű

Ó ű ű Á ú ű ű ú ú ú ű ű É ú É Á Á ú ű Ü Á Ü Á ű Ö Ú É Ó É Á Á Á Ű Á úá Á Ö É Ö É Ü

é ú é é é é é é é é é é é é ú é ö é é é ö Ő é é é ú é é é é é é é é ö é é é ö é Ö é é ö é ö é é é ű é ö ö é ö é é ö ö é é ö ö é ö é Ö é ú é é é é é é

Á Á Ö Ö Ü É Ö É É Á Ú É É É É Á Á Ö Ö Ő

ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü

ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í ó ű Ü ó í ú í ö í ö í Í ó ó í í ö ü ö ö í ö í ö ö ö ü ó í ö ö ó í ú ü ó ö

ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó

Ö Ö ű ű ű Ú Ú ű ű ű Ú ű

ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö

ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü

ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó ó ö ü ü ö ü ó ó ő ó ü ó ü ü ö ö É ú ó ó ö ú ö ü ü ó ó ó ü Á ö ö ü ó ö ó ö ö ö ö ó ó ö ó ó

Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü

ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü

Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö

í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó

ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö ü ú ö ú ö ű ú ú ü ö ó ö ö

é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü

Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü

í ó ő í é ö ő é í ó é é ó é í é é í é í íí é é é í é ö é ő é ó ő ő é ö é Ö ü é ó ö ü ö ö é é é ő í ő í ő ö é ő ú é ö é é é í é é í é é ü é é ö é ó í é

Ö Ö Ö Ö Ö Á Ű É Ö Ö Ö

ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö

ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö

Ü ü Ü Ö Ó ö ü ö Ó Ú Ó ü Ó ö ö Á ö ö ö ö ü

ű ű ű ű Ü ű ű ű Ó ű Á ű Á Ö É É É Á É É É É Ü Á Á Á ű


í Ó ó ó í ó ó ó ő í ó ó ó ó

Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö

É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű

É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő

ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó

ű í ú ü ü ü ü ü Ó í ü í í í É Á

ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü

ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú

ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó

ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó

ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü

ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő

Ö Ö ú

Ü ű ö Á Ü ü ö ö


Í ö ö ű ú ö ö Í ö ü ö ü

í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó ó ó í ó í ü ó í Á

Ö Ö ö Ó Ó Ó Ó Ü ú ü Ű Ö Ö Ö ö Ü ö Í ü ű

ü ö ö ő ü ó ó ú ó

í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó í ö í ú ó ú í ö ú ö ö ö í ó ó ó ú ó ü ó ö í ó ó í í í Á í ó ó ó

ű ö ú ö ö ö ö í ű ö ö ö ű ö ö ö í ü ú í ű í ö í ú ű í ü ö ö ú ö í ö ű ú ü ö ö í ö ü ö ú ű ö ö ö í Á í ü í ö ü ö í ü ö Ő ü ö í ű ü ö í í í í í

ó ö í í ü Ű Ö ó ó ű ö ü Í í í ö Ö Ó ö Ű Ö ú ó ó í í ű ö ö ö ö í ó ö ö í ö ű ö ű ö ö ö ö ö í ó Ö Ö ü ú ö ó ü ö Ö ű ö Ö ü ó ö ö ó ö ö Ó í ű ö ű ö ö ű í

ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü

ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á

í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö ö ú ő ő ú í ő í ő ö ö í ő ü ü í ő ö ü ü ú í í ü ő í ü Í í í í ö ő ö ü ő í ő ő ü ű ő ő í ő í í ő ő

ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü ö ö í Ö ö ö í ö í Ő í ű ű í Ö Ó í ö ö ö ö Ö Ö ö í ü ö ö Ö í ü Ö ö í ö ö ö ö ö Ö ö í

ű Á ü ő ö í ö ö ő ő ő ő ö

Átírás:

Bene Gyula Eötvös Loránd Tudományegyetem, Elméleti Fizikai Tanszék 7 Budapest, Pázmány Péter sétány /A 6. Előadás 6.. smétlés Példák a konform leképezések alkalmazására: áramlás sarok/él körül, áramlás szárnyprofil körül. sukovszkij tétele: bármilyen keresztmetszetű hengerre ható felhajtóerő Fy Àv 0 À Thomson tétele: az áramlással együtt sodródó görbére vett cirkuláció ideális, barotróp folyadékban, konzervatív tömegerő esetén időben állandó. Örvényes áramlás alapfogalmai: örvényvektor, örvényvonal, örvénycső, örvényfluxus 6.2. Örvénytételek Az örvénycsőbe zárt örvényfluxus adott időpontban a cső mentén állandó (általánosan érvényes, nem ideális folyadékra is): divê 0 divê d V df df df palást Ê {z } 2 Ê À Ê 0 K Ê df állandó a cső mentén Az örvénycső lehet zárt. Ha nem zárt, akkor csak a folyadék határán végződhet. A cirkuláció megmaradásából származó örvénytételek (ideális és barotróp folyadék konzervatív térfogati erő esetén) Az örvénycsőbe zárt örvényfluxus időben sem változik. Örvényfonál: olyan vékony cső, hogy benne Ê állandó. Az örvényfonalat bárhol és bármely időpontban a Ô ÊdF örvényesség (örvényfluxus) jellemzi. deális folyadékban minden örvényfonal örvényessége megadandó mint külső paraméter. deális folyadékban örvények nem keletkeznek és nem szűnnek meg. Ha t 0 időpontban egy folyadéktartományban nincsenek örvények, akkor ott Ê 0. Mivel À ekkor tetszőleges görbére eltűnik, a megmaradás miatt később is eltűnik, ezért később is fenn kell állnia, hogy Ê 0. Örvénycsövet alkotó folyadékrészek később is örvénycsövet alkotnak. Bizonyítás: vegyünk fel tetszőleges zárt redukálható görbét az örvénycső palástján. Az erre vett cirkuláció nulla. Későbbi időpontban a folyadékkal együttmozgó görbére a cirkuláció Thomson tétele szerint továbbra is nulla lesz. M ivel ez bármely és tetszőlegesen kicsi görbére is igaz, az örvényvektornak a korábbi örvénycső sodródásával létrejött cső palástján a palásttal párhuzamosnak kell lennie, azaz ez a cső is örvénycső. / 5 20-0-3 :30

Pl.: pipafüst-karika Füstkarikák. Füstkarikák 2. 6.3. Örvények keletkezése ideális folyadékban A cirkuláció nem marad meg, ha a folyadék nem barotróp (azaz baroklin: kezdetben nincs egyensúly) a tömegerő nem konzervatív baroklin folyadék (de konzervatív tömegerő) dà Ezúttal nem igaz, hogy (p), amiből következne, hogy a p állandó(izobár) és a állandó (izosztér) felületek egybeesnek. Most tehát ezek a felületek metszik egymást. Pl. B C D A dà ABCD À Ó ( p A B C D {z } {z } {z } {z } 2 À 2 p2àp 2 p2àp Általában B grad Âgrad p 2 dà C À : baroklin vektor. grad p d s " À Stokes-tétel À Ó rot grad p df grad Ó Â grad p df grad  grad p df BdF 2 Alkalmazások Nyugalomban levő légkörben nagy kiterjedésű felmelegedés lokálisan! nincs termodinamikai egyensúly, s állandó! baroklin. Áramlás indul meg, ami általában örvényes lesz. Egyenlítői erősebb felmelegedés! passzát (északi féltekén) - antipasszát 2 / 5 20-0-3 :30

Óceán és szárazföld különböző mértékű felmelegedése télen és nyáron: monszun (évszakonként változó) Szárazföld és víz különböző mértékű felmelegedése ill. lehűlése nappal és éjjel Egyenlítői ciklonok: helyi felmelegedés (anticiklon: helyi lehűlés) Tengeri áramlás a sókoncentráció-különbség hatására növekszik a sótartalommal: alul áramlik a sósabb víz, felül a kevésbé sós Áramlás Gibraltárnál: a Földközi-tenger sósabb, mint az Atlanti-óceán Áramlás a Boszporusznál: a Földközi-tenger sósabb, mint a Fekete-tenger 3 / 5 20-0-3 :30

Nemkonzervatív erő (ugyanakkor barotróp folyadék) A legtipikusabb eset: Coriolis-erő Áramlás forgó koordináta-rendszerben Az Euler-egyenlet: dv Ê 2 2 À grad V À 0R grad p Àgrad À2 (Ê 0  v) {z 2 } {z } centrifugális gyorsulás Coriolis-gyorsulás Bernoulli-egyenlet: A cirkuláció egyenlete: v 2 Ó vgrad V À Ê 20 R 2 w 0 2 2 dà À 2 (Ê 0  v) ds Szemléletes jelentése: Legyen C jobbkéz-körüljárású. Ekkor (Ê 0  v) d s Ê 0 C mivel v?  d s? a v  ds vektornak az Ê 0-lal párhuzamos komponense. jv?  d s? j a paralelogramma területe C (v  d s) Ê 0 (v?  d s? ) C? 4 / 5 20-0-3 :30

H t t j (v? Â d s? )j a területváltozás C és C között egységnyi idő alatt.?? dæ (Ê 0 Â v) d s Ê 0 ; ahol Æ a C? által körbezárt terület. Passzát: A C görbe az egyenlítő irányába mozog, dæ < 0, így À C növekszik ) erősödő áramlás keletről. (Antipasszát ugyanígy) Ciklon: az alsó légtömegek a mag felé áramlanak, dæ < 0, így À C növekszik: balra csavarodó áramvonalak. Ez összhangban van azzal, hogy a 2v Â! Coriolis-erő az északi féltekén jobbra, a déli féltekén balra térít el. Általános esetben mindkét oka megvan a cirkuláció megváltozásának. dà À 2 (Ê 0 Â v) d s BdF Gyula Bene 2008-02-4 5 / 5 20-0-3 :30