H atom centrális szerep a kvantummechanika
|
|
- Csaba Illés
- 7 évvel ezelőtt
- Látták:
Átírás
1 .. A H-ATOM SPEKTRUMÁNAK RÉSZLETEI A KÍSÉRLETEK ALAPJÁN. A hidogénatom ektumának fő eemzői H atom centái zee a kvantummechanika kidogozááná onto kíéeti eedmények (ok áaot, ok átmenet) ontoan imet köcönhatá (E.M.) zát kétézecke-endze [Özehaonítá: magfizika: imet a módze imeeten a köcönhatá két-ézecke endzeek kíéeti vizgáata ott nehéz] H atom ó kiinduá má atomokná feéő eenégekhez átaánoítához Eddig: Boh eméet teméma kiött Miyenek az egye n-hez tatozó aátáa.? Módze: Schödinge-egyenet a kvantummechanika megmutata
2 ' ' u V E m u Ha feé otáció enegia i e V E ot az n. áaot enegiáa é huámfüggvénye: u e E d u d n n n a kvantummechnika megoda Mot: n meett é m feéte édeke 4 n e E E n nm ; a függv.: u nm n =,,. főkvantumzám =,,,.(n-) meékkvantumzám m = -, -+,.+ mágnee kvantumzám n-hez n n küönböző huámfüggvény tatozik
3 E n ugyanaz é m zeint degeneát Degeneáció: zeint: Couomb-töv. aaka az oka [ Cb.-té E ~ /n hamoniku ozc. ot. E ~ (n+/) négyzögotenciá: E ~ n ] m zeint: mágnee tében fehaad (enevezée innen)
4 . A H-vonaak finomfehaadáa Boh eíá ó egyezé a kíéette Ok fő eenég a Cb.-köcönhatá Nagyobb febontáú ektométee: H (+ ok atom) vonaak kettőek finomfehaadá meékeenégek Finomfehaadá oka: a) a mágnee enegia küönböző, i. in áya imuzumom. beááa b) eativiztiku koekció a) A in-áya köcönhatá Lényeg: eekton mozgáa miatt B mágn. té ine beááátó függ az enegia V = μ. B σ. B ( = ) B onto meghatáozáa nehéz Magyaázat: a oton (ok-eektono atomokná a tötött ézek átagoan) eektomo teet hoz éte ebben a tében v ebeégge mozgó e.-hoz kötött koodinátaend.ben mágn. té é fe (. mozog v eb.ge)
5 B vxe c dv E d e dv B vx c e d dv B m c e d ; xm Nehézég v nem egyenete a koodinátatengeyek foognak koekt evezeté: nehéz Szeméeteen: a otonó nézve az e.-hoz kötött koodinátaendze egyze tengeye köü megfodu minden köbe-meneteko (Thoma-ecezió) Mot bizonyítá nékü: B B v heye tanzfomáció eedménye: [ -e fakto Thoma-fakto) B dv B V B m c m dv d ec d
6 heyfüggő oeáto Mágnee enegiát ezze Ψ imeetében V() meghatáozható eányékot eektona i igaz H atomná (ninc ányékoá) V e ] m c Sin-áya catoá enegia függ é beááátó Fogatónyomaték: M = B xμ, vektook ecezának = + mozgááandó e z z z m m m m m m ; m = + ½ áhuzamo beáá = - ½ eentéte beáá egyzee megfigyehető:,,, z m (, z-komonene a ecezió miatt nem mozgááandó, -né hatáozott fázivizonyok) Pontoan: kvantummechanika [Atommagokná, kvakendzeekné tb. haonó in-áya tagok ének fe]
7 H atom finomfehaadáa: mágnee té nagyága V μ B. B kizámítva: B Tea (~abomágn.) (. ) megbecée Kizámítva: V -4 ev kici: egkiebb geeztéi enegia ~ ev n m V 4 4 ; ; n n n E
8 + ½ ΔE +/ =. γ n - ½ ΔE -/ = - (+). γ n minden nívó két nívóa haad.: (=) nívó E n. γ n (+)=4 +γ n / -(+). γ n -γ n / (+)= Átaában igaz: zeinti degeneációva úyozva az enegiákat úyont nem vátozik n m c 4 Z ; 4 n Kíéet: nagyágend ó (ΔE/E ~ -5 ) ninc egyezé e c
9 Ok: eativiztiku koekció ke T T c m m c m c c m T ΔT/T ~ -5 (H-e) nehéz atomoka nagyobb, %; 4 8 c m E n n n Z c m E E E e FS 4 4 a fehaadá nagyágát α hatáozza meg α finomzekezeti áandó 7 c e dimenziótan az EM köcönhatá eőégée eemző temézete egyégben ΔE FS cak -tő függ (-tő nem függ) Ez a Diac-eméet eedménye Diac-egyenet így ía e a H-t
10 Péda:, nívók H-ban, n=, =, / / / / /, / etub.an cak. +e. ko.
11 H. atom enegiazintei: (nem méetaányo)
12 . A hiefinom fehaadá Ok: a mag é az eektonbuok köcönhat H-atom: oton mágnee momentuma é az eekton mágn. mom. hat egymáa Becé: m e e m; B 86 m c e Poton anomái mágnee momentum 658. μ = μ e g = 5.58 A két momentum köcönhatáa: E HF ~ a / ΔE HF ev << ΔE A in-áya enegia okka nagyobb: é catoáa maad a oton ine -hez igazodik mag kici az EM té kontan B mágnee té az eektontó J B B ; B B, m, m d Az e. ine é az átaa étehozott mágn. té eentéte iányúak
13 V HF =-μ. B a. ine é J catoódik F z m F F F F J F ; H aaáaota: F ; F= ; F= MAG MAG MAG g g ; Innen: B A F F A V E J F B J B B J B V MAG HF HF MAG MAG MAG HF (intevaumfakto)
14 H-atom (aaáaot): 4 B A MAG F= ΔE HF () = A/4 F= ΔE HF () = -. A/4 B átaában nehéz kizámítani Eektodinamika:. té a gömb közeén, ha a feüet egyeneteen mágneezett: 8 8 n a Z g M d B M n n B e n e MÁGNESEZÉS
15 Kvantummechanika zámoáa zeint ΔE HF (n=, =) = h MHz Kíéet: mikohuámú tatomány ν kí = 4. MHz Ez a λ = cm-e ugázá! Rádióciagázat méi: az ionozféa átengedi Ninc egyezé! Hiányzik még egy koekció! g e nem egézen ontoan a Diac-eméet eddig í e ó
16 4. A Lamb-fée vonaetoódá Itt: vázat ontoan a kvantumeektodinamika tágyaa [WILLIS EUGEN LAMB (9-8), Nobe-dí: 955] A eenég fonto EM köcönhatá átaáno zekezetéve kacoato Láttuk: ézecke-huám duaizmu mikofizikában át. eenég EM té kvantumtuadonágai kv.e.din. EM köcönhatá: fotonok emizióa é abzocióa kiceéődéi eeg (fotonok ceée) Tötött ézecke köü: áandóan fotonok emizióa é abzocióa P.: e e + foton e E t ~ megengedi vituái foton
17 Köcönhatá: vituái fotonok ceée (Cb. tövény heyfüggée) (am. Kein-Nihina-hoz) Kében: magaabb endű effektuok vituái e - e + áketé (vákuumoaizáció) Eedmény: az effektív töté a téfoá köü kiebb Cb. tövény nagy -e igaz, de ki távoágon etéé van Atomfizikai konzekvenciák: g e (nem ontoan, ~ -6 etéé) / é a / nívók fehaadnak a H- atomná Lamb-etoódá (Lamb-hift)
18 Mot a H atom / é a / nívóinak fehaadááva fogakozunk Kimutatá cak igen onto kíéette ehetége Lamb-Rethefod kíéet (947) A fehaadá fizikai oka: áaot im. mom. nagy űűég ki távoágokon Az áaota az effektív töté kiebb E < E (a / é a / nívókná) ΔE / é a / ~ -6 ev Kíéet: nagyfekvenciá módze, otikai úton igen nehéz
19 τ~ -4 ec (B tée zükég van má ki e. té i - átmenetet okoz) / / átmenet titott, met Δ = megengedett
20 Lényege: ha e nem bomott / áaotú H ékezik az a vofámbó az eektont vát ki Méendő: ν fekvencia (B minimái eekton áam)
21 zámoá vákumoaizáció nékü mééek eedménye vákuumoaizációva : kiváó egyezé Vizgát a H α -vona: n =, n =, a Bame-o eő taga λ Hα = nm
22 A H-atom ektumát a kíéeti ontoágig tökéeteen étük!
23 .4. A TÖBBELEKTRONOS ATOMOK. A többeektono atomok é ionok eektonzekezetének emiiku vonatkozáai. Atomok Röntgen-ektuma. Özetett atomok é ionok ektuma Cé: fizikai hátté megbezéée Koekt tágyaá: kvantummechanika é kvantum-eektodimnamika Evieg: ó eméet oktetobéma nehézégei. A többeektono atomok é ionok eektonzekezetének emiiku vonatkozáai Megétendő: aaáaot tuadonágai geeztett áaotok endzee A megéténé a konceció: eektonokbó áó feéíté; az eekton-áaotok fizikai vaóága (áttuk,. e.-atom ütközéekné)
24 Az eektonzekezetet aakító tényezők:. Cb. vonzá mag e.-ok között. Cb. tazítá e.-ok között. Sin-áya enegiák 4. Sin-in (e.-é) mágn. mom. köchat. 5. E.ok áyáábó adódó mágn. momentumok KH. 6. E. in magin KH. 7. E. áyamom. magin KH. 8. Reativiztiku koekciók 9. Huámfüggvény antizimmetiáábó következő enegiaetoódáok ( Paui ev + hatáozatanági. eáció következménye kvantummechanika) Átaában nehéz feadat: centái té + maadékköcönhatá Ebben fontoak: 9, (ehagyott éz), (nagy Z-e fonto)
Á ú ú ű ű ú ú Í ú ú Ö ű Ö ű Ö Ö ű ű ú ÍÍ Í ú Í Í Í Í Í ú ú
ú Á ú ű ú ú ű ú ű ű Ö Í ű ű Í ú Í ú Á Í ú ú ú Á ú ú ű ű ú ú Í ú ú Ö ű Ö ű Ö Ö ű ű ú ÍÍ Í ú Í Í Í Í Í ú ú Ö Í ű ű Í ű Ö Í Í Í ű Í ű Í ú ű ú Í Í ú ú ú ú Í ú Ü Á ú ű ú ű ű Í Í Í ű ú Ö ú ű ű Í Í Í Í ű ű Í
Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság
Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos
ő ü ó í í í ő ó Ó í
ő ü É Ö É Ü É í í í ó Ö ü ő ó ó ó ő Ö ő ü ő ü ó Ö ő ű Ó ő ó ű ő ü ő ő í í í ő í í í í í í ő ü ő ó ü í í ő ó Ö ó ú ő ő ő É í ü ó ő ő ő ü ó í í í ő ó Ó í Ö ő ü ő ó í í ó í ő ő ő ó ő ő ü ó í í ó Í í ő ó ő
ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í é ü ő é í ü é ó é é é ő ű ő ü é Ö é é é é ő é Ö é é é é é é é é Ö ü ü é ü é é ó é ü é ü é é ű ü Ő é
ó é é ő ü é ü é é ő é ó ó é Ö é ő ü é é é ó ó ó é é é é é é é é ő é ő ü é ú ü ú í í ü é ú í ü é í í ó é é é ő ő ő é ü ü é í ó é ő ó ó ü é é ű í ó é é í ü É É ó Ö ü ü é í é é ő ü é Ú é í ü é é é ő é ü í
ö ü í ú í ö ö í ú ü í ü ö í ú ö ü í ö ü ö ö ö Í ö ö
ö ö ü ü ö ö ü ü ü ö Í ö ö í ü í ü ü Í í ö ü í ú í ö ö í ú ü í ü ö í ú ö ü í ö ü ö ö ö Í ö ö ö í ü ü ü ü ö ü ü ö ö ö ü Ó ö ö ü í ö ö Ó ö ö ö ö ü ö ö ü ü í ö ü ü ö ö É ü ü ü í ü ö Í ö ü í ö ü í ö ö ö í ü
ö ö É ő ó ó ő ü ó ó Ü É É ö ö ó ű ü ó ó ö ű Í ö ó ö Í ő ü ü ö ö ő ö ó ö ó ó É ó ő ö ö ó Ö ü ő Í ű ó ő ü ő Ó Ö ű Í ó Ó ő ő ö ő ő ő ö
ö ó ó Ü É Ö Ö ó ó ü ü Ó ó ó ü ő ő ü ő ő ó ő ó ó ő ó ó ő ó ó Ó ü ő ó ó ó ő ó ű ő ö ü ö ü ü ő ó ű ű ő ö ö ó ó ó Ö É Ó ö ö É ő ó ó ő ü ó ó Ü É É ö ö ó ű ü ó ó ö ű Í ö ó ö Í ő ü ü ö ö ő ö ó ö ó ó É ó ő ö ö
É É Í É É ö Í í í í ű ü ö í í Í
Í É Í É ö ü í í ö ö Í ö í í í í ű ü ö í Í É É Í É É ö Í í í í ű ü ö í í Í Ő Í Í ö ü í í ö Í ö Í í í í í í í í í í ű ü ö í í í ö Í ü í í ö ö Í ü ö ü É ú í ű ü ö í í Í É ö ú ü í Í í ö ö Í ö ö ö ü ü ú ű ü
ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í ö ö
ú ö ü ű í ü ö í ü í É É É Ő í ü ö ü ü í ü É ö í í í ü ö ö ű ö ü ö í ü ö í ü ö ű í í í ö Ü í ü ü ö í í ü ö í ű í ö í í ú ö ö í í ü ű ö ü í í ü í ü í í ö ü í ö ö ü í ö ű ö í í ö ú ö í ö í ű ö ö ö í í í í
É ó Í É
É Ó É É É Í ő É É ó Í É ó ú ú ó ö ű ő í ó ó í ü ű í Í ő ú í í ő ő ó ő ö ó ó ő ó ő ő ö ó ő ó ö ö ö ő ö ó ö ő ő í ó í í ő ó ú ó í ő ű ö ő Í ő ő ó ö ü ö ő ó ő ó ő ő ő ó ó ű ö í ő ö ö ö ő í ö ó ö ö ő í ü ú
í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö Í ó ó Í í ó ó ö ö ö ö ö í ö ó ű í ó ó ö ú ó ó ö ö ó í ö ö ó ó ö ö í ö ó í ű ö
É ó É ó ö ö í ö ó ó ó ö ö ó ó ö ö ó ó ö ö ö í ó ö í ó ó ó ó ó ö ö í ö í ö í ű ű ö ú ö ö ú ö ö ö ö í ó ó ó ö ö í Í ó ö ö ö ö Í Ü í í ö ó í ö í Í ó ú ó ö ű ó ű ö í ó ó ó ó ó Í ú í ó í í ó Í ö ö ú í ú ó ö
ü É ü Ö ü ü ü Ü ü ü Í
ü É ü Ö ü ü ü Ü ü ü Í Ü É Ö ü Í Ü Ü ü É Ő Ö ü Ö É É Ő Ü ü ü ü Ö ű Ö ű Ö ú Ó É Ö ü ü ü ü É Ö ű ü ü ü É ü ű Ó Ü ü ü Ü ű ü Ó ű ü É É Ö ű ű Ö ű É Ö ű ű ü Ö ü ü ü ú Ü Ő ü Ö ü Í Ő ű É É É Ö ü ü ü ü Ü É ű Ú Ő
Í ü í í í ü ű ű í ü í ü ü ű ü í ü í ű ü ü ű Ö ü ű ü í í ü í í ű ü ű í í ű ü í ü í í ü ü í ü Ú í ü í í í ű ű í ű í í í ü í í í í í ü í í ü í í í í ü í í í ü í í ü í ü ü ü ü Ó ü í ü í ü ü ü í ű í í ü ű
ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű
ö ü ö Ö ü ü í ö ű ö ű ö í í ö É ö ü ö ú ü ű ü ü ű ö ö ü ü ü ö ü ü ű ü ü ű í ü ü ö Ö ü í ű ö Ö ü ű ü ö ü ö ö í ü ö ö ü í ö í ü ü ü ú ö ü ü ü ű í í ü ü ö Ö ü í ö ü ö Ö ü ö ö ű ö ö Ö ü ö ö Ö ü í í í Ü ö í
ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú
ö É Ő ü ü ű ö ű ű ö ű ö Í Ó Ö É É Ó É ú ü ü ú ö ű ü ü ö ü ö ö ü ö ö Í Ö ö ü ö Í ű ö ű ü ü ö ú ö ű ü ü ö ö ö ü ű ü ö ü ű ű ú ö ö ö ű ü ú ú ö ö ű ö ű ö ű ú ü ü ö ű ü ö ü ű ű ú ü ö ö ö ű ü ö ö ö ö ö ú ú ö
ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í
ú ű í ú í ú í ü ü í í í Ö í Í É í ú í í í ű ű í í Í í í É í í í ü ú ú ú ú ú í ú ü Ó ü ü ü ü Í Í í ü ü ü ü ü ü É í ü ü ú Í í ü í í í ü ü í í ú ü í ü í í í ú ú í ü ü ü ü í í í ű ü í í É É í í í í Ü í í ú
Jármű- és hajtáselemek I. (KOJHA156) Csavarkötés kisfeladat: Feladatlap - A
BUDAESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Jármű- é hajtáeeme I. (KOJHA156) Cavaröté ifeaat: aatap - A Sz.: A/. Név:... Neptun ó.:. ADATVÁLASZTÉK A Eacé 10 10 3 [N/mm ] Eöntöttva 15 10 3 [N/mm ] Eauminium
ELLENŐRZŐ KÉRDÉSEK LENGÉSTANBÓL: A rugóállandó a rugómerevség reciproka. (Egyik végén befogott tartóra: , a rugómerevség mértékegysége:
ELLENŐRZŐ ÉRDÉSE LENGÉSNBÓL: Átaáno kérdéek: Mik a engőrendzer eemei?: engőrendzer eemei: a tömeg(ek), a rugó(k), ietve a ciapítá(ok). Mi a rugóáandó?: rugóáandó a rugó egyégnyi terheé aatti aakvátozáát
SÍKBELI KERINGŐMOZGÁS SÍKBELI KERINGŐMOZGÁS
SÍKBELI KERINGŐMOZGÁS Időtő függeten Schrödinger-egyenet két dimenziós körmozgásra: h V E 8π m x y R V x ha x y R ha x y R Poárkoordináták: SÍKBELI KERINGŐMOZGÁS x y rcos r sin r x x r x r y y r y r x
Adatbázisok elmélete 16. előadás
Adatbáziok elmélete 16. előadá Katona Gyula Y. Budapeti Műzaki é Gazdaágtudományi Egyetem Számítátudományi Tz. I. B. 137/b kikat@c.bme.hu http://www.c.bme.hu/ kikat 2004 ADATBÁZISOK ELMÉLETE 16. ELŐADÁS
Hidrogénszerű atomi részecskék. Hidrogénszerű atomi részecskék
Hidrogénzerű rézeckék páyáinak radiái fuámfüggvénye: páya radiái uámfüggvény p 3 3p 3d Zr Zr Rn, ( r) Nn, r exp Ln radiái uámfüggvény na na R ( Z / a ) exp( Zr / a ) 3, R ( Z / a ) ( Zr / a )exp( Zr /
ó ü ó ö ó ö ö Ö í ó ü ö Ö ó í ö í ó ö í ö ü ú í ö űű í ó ö í ű ó ö ö ö ö ó í ö ú ö í ö ű ö ó í ü ü ö ö Ö ú ö í ö ö ö í ó ö ó í ó ö
ö Ö ü ö ü ö Ö í ü ö ö ö ó ü ü ö í ü ö ö í ó ö ö ö ö í í í ó ü ö íű í ó ö í ö ö ú ö Ö ü ö ö ó ö ó í ó ó ö ó ö ö ó ö ö í ó ü ó ö ó ö ö Ö í ó ü ö Ö ó í ö í ó ö í ö ü ú í ö űű í ó ö í ű ó ö ö ö ö ó í ö ú ö
KÖZLEKEDÉSI ALAPISMERETEK
Közekedéi aapimeretek emet zint 101 ÉRETTSÉGI VIZSGA 011. máju 13. KÖZLEKEDÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fonto tudnivaók
Az atomok vonalas színképe
Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható
í í ü
í í ü ü űú í Á Ú ö Ó Ő ű ö ö í í í Á ű í ü ő í ő íú íá ü í ö í ú ő ö ő Ó ü í í í ű í É ő ö ü ő ö ő í ű ü ő ű í ú ö ü ú ő ú ö ő ű ö í ő ü ö ő ö ő í í ö ö ű ő ü ü ö ő ü ő ö ő ö ő í í ü ü í ü ö ö ú í ő ö
ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü
ö ü Ő Ö ü ö ü ó ü ü í ü ó ö ö ö ü ö ö ü í ü ü ü ö ó ü ö ü ú ö ö ö Ö ö ó í ó ü ö Ö ó ü ó ü ü ó ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü ü ö ö ö Ö ü í ü ö
É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í
Í É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í É Á É Í Í É É Í Í Í Á Í Á Á ö ó ö ö ő ő ő ö ö ó ő ű ö ö ö ö ü ö ö ö ü ü ó ö Á ó ó ö ö ő ő ő ő ö ó ü ó ó ó ó ó ó ö ü ü ó ö Ó Í Í É É
Ü
Ó Á ú Á É Ü Ö Ö Ö É É É Ö É Ü Ö É É É É É Ó Ö Ó Í Ö Ö Ö Ö Í Ö Ö É É É Í Ö Ö É Ö Í Á Ó Í Á É É Ó É Ú Á Í É É É Ö Ö Ó Ö Ö Ö Ö Ó Ó Ó Í Ü Ö É É Ö Ó Ö Ó ö Ö Ö Ö Ö Ö Ó Ü Ö Ó É ű É É É É É É É É Í Ö Ó Ö É Ö Ö
í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó
Á Á Ó Ö Á í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó ó í í ó ó ű ű ö ű ú í ö ó ó í ó ó ö ö Ü ú ó Ü ö ö í ö í ó ó ó ű í ó ö ö í í ö ö í ö Í ó ö í ö ö ó ó ö ö í ó ö ö í í ö í ú Í
ü ö ö ő ü ó ó ú ó
ö ö ő ü ü ü ő ö ü ö ö ő ü ó ó ú ó Ő Ö ü ö Ö ó ü ü ü ö ö Ö ó ó ü ö ó ő ü ó ü ő ó ő ó ü ö ö ö í í ó ő ú ü ö ö ó ü ö ő í ő ő í ő ü ó ő ü ű ö ú ó ú í ü ó ü ö ó ó ü ö Ö ó ő í ó ő ü ö ü ő ö ö ö ö Ö Ó ő ü ü ó
ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í ó ű Ü ó í ú í ö í ö í Í ó ó í í ö ü ö ö í ö í ö ö ö ü ó í ö ö ó í ú ü ó ö
Á Ö É Á É Ő Ü Ü ü ö Ö ü ú ö í ü ü ó ó Á ö ó ö ö ö Ö í ü ü ü í í ü ü ö ü ü ü ü ö í ó ó Ő ó ó ö ó ö í ü í Í ó í ó ö í ó ó ö ó ó ö ó ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í
REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus. 17. feladat: Kéttámaszú tartó (rúd) hajlító rezgései (kontinuum modell)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kidogota: Dr. Nagy Zotán egyetemi adjunktu 7. feadat: Kéttámaú tartó (rúd) hajító regéei (kontinuum mode) y v( t ) K = 8m E ρai
Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü
É Á í É Á Á ü Ú ű í Í Í Ü ü ú ü Í ü ü ü ü Í ü Í í ü ü ü ü ü ü ü ü ü í Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü Í Ó Í Ó ü ü ü Í ü ü É ü ü ü ü ü É ü ü Í ü ü ü Í Ó Í Ó í Á í É ü í Í ü í Í í í ü ü É ü ü
ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö
Ü É ű ü ü ö Í ü ö ö ü ű Í Í ü ű ö Ö ö ö ö Í ü ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö ü ü ü Í ü ö ö ö ö ö ö ö ü Í Í ű ö ö ö ü ü ö ü ö ö ö ü ö ö ö ö ü ü ű ü ö ö ö ü ö ü ű ö ü ö ö ű Í ü ü ű Í ö ü ö
í ó ő í é ö ő é í ó é é ó é í é é í é í íí é é é í é ö é ő é ó ő ő é ö é Ö ü é ó ö ü ö ö é é é ő í ő í ő ö é ő ú é ö é é é í é é í é é ü é é ö é ó í é
ű ű ö é ő ó í ö ő ü é ő é ü ő ö ő ö é é í ö ő ö ó ő é ó í ö ő ü é é é é é ő é é é é í ő ö é é ő ű ő ö í ö é é é Ö ű ú ő é é ű ő í ü ö é é ő ó ö ö ő é é é é é é é é é é ő ü í í é ú í í í Ú í é ú é ő ó ó
ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö
Í Í Ő Ó Ü Ö Ő ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö ő ö ő Í ó ö ó ú Í Ö Í ÍÍ É Ó Ü Ü Ó Ó Ö É Ö ő ö ő ű ó ö ú Í Ö Í Ö Í Ö Ó Ó Ó Ó Ü Ö Ü Ü É Ú Ö Ó Ó Í Í ő ö ő ű ó ö ó ú É Ö Í Í ÍÍ Í Í Í É Í
ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó
ö Ö ó ü Ú ú ű ó ú ü ö Ö ü ó ü ü ó ó ö ö ó ó ö Ú ö í ó ö ö ö í í ú ü ó ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó ó ó Ó Ú ö ú ó í í ú ó ö ü ü Ö ó ü ü í Ö Ö ú
Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö
Ö É Ö Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö Ü Ü Á É Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ú Í É Ó Á Ü Á É Á Ü Í Í Í Í Ü Í Í Í Í Í É Ö Á Í Á Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Í Í É Í Í É É Í Í Í É Í Ü Í Ü Á Ü Ü
ő ó ü ö ő ö ö ő ö ó ű ö ő ó ó ü ő ü ö ű ö ő ó ó ő ö ö ó ő ö ö ő ű ö ő ű ö ö ő ő ő ö ö ú ó ö ö ö ő ő ó ő ü ó ó ű ö ö ü ő ü ö ő ü ő ó ű ö ö ö ó ö ö ö ü
ú ő ö ó ő ü ö ó ó ó ö Ö ú ó ó ó ö ő ö ő ö ő ö ú Ö ó ó ű ö ő ó ö ű ö ö ő ö ó ű ö ő ö ő ö ú ü ű ö ő ó ö ő ö ó ö Ó ű ö ő ö ó ü ú ú ö ö ü ü ö ü ú ő Ű ö ő ö ú ó ű ü ő ö ő ü ö ü ő ó ü ú ü ö ö ó Ó ó ó ő ü ö ö
í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó ó ó í ó í ü ó í Á
Ö ü ó Ö ü ó ó ó ó ó ó ó ó ó ó í ü í í ü ü ü ü ó ü ü ú ó ü ü ü í ó í ü ü í ó í ó í ó ó ó ó í ó ó ó í í ó ü ú É Ö í í í ú ó í ü í ó í ó ó ó í í ü ú í ú ó ó ü ü í ó ü ú ó ü í í ü ü ü ó í ü í ü ü í ü ü í ó
é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü
é í ü é ö é é ő ü é é é ú é ó Í é é ő Í é ó ö í é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü é ö ő
í Ó ó ó í ó ó ó ő í ó ó ó ó
í Ú Á Í í Ó ó ó í ó ó ó ő í ó ó ó ó í Ó Ó í ő ó Í í í í Ó í ó í í Ő É Ú Ű Í É Á ó Á É É ó ó í É Ü Í ő í ó í ó í Ő Ő Á Ó Ó Á É É Á Á É É Ő Á Ú É í ó Á í Á í í ő í í Ő Ő É Ú Ű Í É Á ó Á É Ö Í Í É ó ó í Ú
ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó
ü ű ú ü ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó ü í í í í ó ü ó Ö ó ü Ö í ó ű ó ó ó Ö Ö ó ó í í Ö Ö ó ó í Ö ó ű í í ü
ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó
ü ö ö Ö ü ü ö ö Ö ö ó ö ú ó ü ö ö ö Ö í ó ü í í ü ö í í ó ó ü ö ü ö ö ü í ó ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó ö ö Ö ü í ö Ö ö ö ó ü í ö ó ó ü ö ó í ü ü ü ö ö ü í ü
í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó í ö í ú ó ú í ö ú ö ö ö í ó ó ó ú ó ü ó ö í ó ó í í í Á í ó ó ó
Í ö í ú ú ó ú Ö ü Ú ú Ö ü ó ü ó ö ö ó ó ö í ó í ó í Í ó í ö ö ö ó í ü ó ö ü ü ú ó ó ó ó ó ó í ó ó ó í ú ó ó ó ó ó í ü í í í í ó í ó ö ö í ű ü ó ó ü ú Á Á ó ó ó ó ó ó í ó ö ö ü Ó ö ü í ö ó ö í í ö í ó ó
Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő
ű É ű ű É Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő É Ó Ó É ű Ö ű Ö ű ű ű Ú Ú Ö ű ű ű Ö ű ű ű ű ű ű ű ű Ú É É É É Ö Ö Ú Ö É ű ű ű ű ű ű ű Ó ű Ö Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű ű ű ű ű Ö ű ű ű Ü ű ű ű ű Ö ű
é ú é é é é é é é é é é é é ú é ö é é é ö Ő é é é ú é é é é é é é é ö é é é ö é Ö é é ö é ö é é é ű é ö ö é ö é é ö ö é é ö ö é ö é Ö é ú é é é é é é
é ű ö Ö é é ö ú é é é é ö ö é ö é é é ö ö é é é ö ö é ű é é ö é é é é é é é é é é ö é ö é é é ű ö ű ö é é é Ö Ú Í é ö é é Ő ö ö ú é é é é é é é é é é ű é é é ú é é é ű ú é é é é é ö é ö é ö é é ö é é é
ű í ú ü ü ü ü ü Ó í ü í í í É Á
ü ű ü ú ű í ú í ű í ú ú ú ú ű í ú ü ü ü ü ü Ó í ü í í í É Á ű í í í Á ü É í í Ö Ö Á í Á É Á ú ú ú í ű í ú ű í í í É í í É í ű í ü í ú ű í ű í É í Ú í í í ű í ú ű í í í ü í í ú í ú í Ö ű í í í ü ü Ő í í
ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű
É Á É É Ó Á ű Á ű ú ú ű ű ú ű ű ú Á ú ű ú ű ú ű ú ű Á ű ú ű ű Ö Ú Á ű ű Á ű ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű ű ú ű ű ű ű ű ú ű ű ű ű ű ű Á ú ű ű ú ú ű ű ű ű ű ú ű Á ű ű ű ű ű ű ú ű ú ű ú ű Ö ú ű Ö
ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü
ű ü ü ú ü ú ú ű ü ú ú ü ü Ó Ö Í ü ú ú ű Ö ú ú ú ü ü ú ÍÍ ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü ü Ü ü ü ú ü ű ü ü ü Ü ú ú ü ü ü ü Í ü ü ú ű ü ü ü ü ü ü Í Í ü
ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü
ú Ö Ú ú ú ó Ő Ö ü Ú ú ö Ö Í ó í ü ü ó ó ó Í ö ö ö ö í ü ó ö ü ü ú í ű ö ó ó ö ö ö ű ö ó ó ö ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü ü ö ö ó ó Í ü ö ó ú ü ü ö ó ö ö Í í ó ó
í é ü í Í é í é ö ö í é é é ö é é é í ö é ö é é é ö ü í Ó é í í ö ö ü é í é ü í ö é é é í é ö é é é í é é é Ő Ó Ő í Ó é í í ö ö ü é í é ö ö í ú é ü ö
ö é Ö é ü ű é í í ó ö é Ö é ü ö Ó ó ó ö ö ó í é ű ö é é é í ó ó ö ö ó í é ö é é é ö é ű í í í ö é Ö ö ü é ú í é ú í ö ü é í í ö é Ö é ü ö í ü é ü é é ú í í ö ü é í í é ö é Ö é ü ö í ü é ű é í í í í ö ü
ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó ó ö ü ü ö ü ó ó ő ó ü ó ü ü ö ö É ú ó ó ö ú ö ü ü ó ó ó ü Á ö ö ü ó ö ó ö ö ö ö ó ó ö ó ó
Ü Ű Ö É Á Á ö É É Ö Ú Ü ö ü ő ő ö ő Á ő ó ő ü ü ö ö ú É ű ó ü ű ö ú ü ö ó ö ö ü ű ö ó ó ö ö ö ö ü ű ö ő ö ö ó ö ö ő ó ő ü ő ó ő ö ö ő ü ü ö ő ó ú ú ü ú ő ó ő ő ó ó ó ö ó ü ő ó ő ö ü ü ó ö ő É ó ö ö ö ó
É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő
ő Ü É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő ő ő ú ő ő ő ú ő ü ú ű ő ű É Í ő É Ü Í ő ü ő ő ő ő ő ő ú ü ű ő ú ő ű ő ő ő ű ő ű ő É Í Ú Ö Á Á É Á Á Á Ő Á É Á Ö Á Ö É É É ü ő Á ő ú ü ő
ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü
Á Ó ö ü ü ü ú ú ü ü ö ü Ő ö ö ö ü ú ü Á ö ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü ö ö ü ü ö ü ö Ó ö ö ü ü ö ü ö ú ö ú ü ö ü É É Á ü ű Ö ű ú ö ö ú ö ú ö ú ö ű ü Ö ö ű ü ú ö ü ú ű ö ű ú
Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü
Ö ő ü Ö ő ü Ö Ö Ő ü ő Ö Ö ü ű Á Í Ö ű ü ő ő ő Ö ü ü ő ő ő Ü ü ő ő ő ü ő ő ü ü ü ő ő ő ú ű ő ő ú Ö ő ü ő ő Ö ő ü ő ő ő ő ő ő ü ü ő ő Ö ő Í Ö Ö Ö ü Ü Ö ő ő Ö ü Ö Ö ü Ö Ö ü Ö Ü Ö ü ü ü ő ű Ö ő Ö ü ü ü ő Ű
ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö ü ú ö ú ö ű ú ú ü ö ó ö ö
ö ö Ő Ö ü ö Ö ü ü ü ó ö ö ö ü ö ú ü ü ö ö ú ú ö ú ó ú ó ü ú ú ú ú ó ú ö ú Á ö ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö
Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö
ö ú ö ö ú ö ú Ü ő ú ő ö ő ő ő ö ö Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö Ú ő ö ő ő ő ö ú ú ú ő ö ő ö ő ő ő ö ö ö ö ő ő ö ő ú ő ö ú ö
Adatbázisok elmélete 17. előadás
Adatbáziok elmélete 17. előadá Katona Gyula Y. Budapeti Műzaki é Gazdaágtudományi Egyetem Számítátudományi Tz. I. B. 137/b kikat@c.bme.hu http://www.c.bme.hu/ kikat 2005 ADATBÁZISOK ELMÉLETE 17. ELŐADÁS
ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó
ö ú Á ő ű ü ő ó ö ö ú ö ú ü ó ó ű ö ú ó ó ó ő ö ö ő ú ó ö ö ő ő ő ő ö ű ü ü ü ő ü ü ő ő ü ó ő ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó ó ü ű
Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú
ű É Í Á Á Á Ó É Á Á Ó Í Ö Á Á Á Ö ü Í Ó Í ű ű ü ú Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú ü Í ú Ü Ű Ó Ó Í ú Í ú Ö Ó ü Ü ü ű Ó ú Í ü É Í Í Á Á Ó Í Á ú Ö Í Ó ú ú ú Í ú ú ű ú Ü ü ü Í Á ü ú Í ú
ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á
ü ű ú í í ü í ű ú ó ó ü í Á Á ú ó ó ó ó ó ó ó ó ó ó ó ó ó ó í ó ü É ű ü ó í ü í í í í í ó í ü í í ó ó Á ó ű ó í Á í ó ü í ó ó í ü ü ű ó í ü í í ü í í í ó í ó í ü ó Ó í ó ó ó í í í ü Í ó ó í í í í ó í í
Í ö ö ű ú ö ö Í ö ü ö ü
Í Í ö ú ö ö ö ö ű ö ö ö ö Í ű ű ö ü ú ö ú ú ű Í ö ö ű ú ö ö Í ö ü ö ü ö ú ü ü ö ú ö ű ö Í ű ú ú ö ú ú ű Á É Á ö ű ú Í ö ö ü Í ú ö ú ö ö Í ű ö Í ú ö ö ö Í ö ö ö ö ö Í ö ö ö Í ö ö ö ö Í ű ö Í ú ö Í ö ö ű
ű ö ú ö ö ö ö í ű ö ö ö ű ö ö ö í ü ú í ű í ö í ú ű í ü ö ö ú ö í ö ű ú ü ö ö í ö ü ö ú ű ö ö ö í Á í ü í ö ü ö í ü ö Ő ü ö í ű ü ö í í í í í
ü ö É ű ö ú ö ö ö ö í ű ö ö ö ű ö ö ö í ü ú í ű í ö í ú ű í ü ö ö ú ö í ö ű ú ü ö ö í ö ü ö ú ű ö ö ö í Á í ü í ö ü ö í ü ö Ő ü ö í ű ü ö í í í í í í í ö Á í ű í ü ö í ű ö í ú ű í ű ü ö í ű ö ű ö ö ű ö
ó ö í í ü Ű Ö ó ó ű ö ü Í í í ö Ö Ó ö Ű Ö ú ó ó í í ű ö ö ö ö í ó ö ö í ö ű ö ű ö ö ö ö ö í ó Ö Ö ü ú ö ó ü ö Ö ű ö Ö ü ó ö ö ó ö ö Ó í ű ö ű ö ö ű í
ö Ö ü ö Ü Ö Ö ü ú í Ó ü ü ö ó ö ö Á ó ó ó ü í ö í ö ö ó ö ö í í Ő í ó Ő ü ú ó ö ö ó ö í ü ó ó ö í ó í ó ö í í ü Ű Ö ó ó ű ö ü Í í í ö Ö Ó ö Ű Ö ú ó ó í í ű ö ö ö ö í ó ö ö í ö ű ö ű ö ö ö ö ö í ó Ö Ö ü
í ö Á ö ö ö Á í ö ű ü í í ű ö ú ü íí ö ű ö ü ú ü ö í ü ű í ö ö ü ü í ö ü ö ű ö í ű ü í ö í í ü í Á Á í í ü ö ö ü ű í í ö ö ü í ű ü ö í ö ű ü í í ű ö í í í ö ö í ö ö ö ö ö ö í í ű Á Á Á Á Á í í ú í ö ö
ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő
ő ő ő ü ő ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő ő ü ő ő ű ü ő ű ő ő ő ő ü ő ő ő ü ő ű ő ő ő ü ő ü ő ő ü ű ő ő ü ü Á ő Á ű ű ü Á ő ű ű ő ű ű ü ű ő ő ő ü ő ű Ó ü Í Á ő ű ő ő ő ő ü
ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü
ü ü ü ú ú ü ű ü ű ü ü ű ü ü ü Í ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü ú ü ü Á ű ü ü ü ü ü ü ü ú ü ü Í ú ü É Ö Ö ú Ö Ö Ö ú ú ü ú Á Ö Á ú É ü ú ú É ú ú ú Ü ü ű ú ű É ú ű ü ü Á ú É ü ű ü ú Á É É ú ü Ö Ö Ö ú ú Á Ö
ű ú ü ü ü Í ü ö ü ö ü ö ü Ó ü ö ü ö ö ü ű ű ú ü ö ö ü Ó ö ű ü ö ú ö ö ü ü ű ü ü ö ö ü ü ú ö ö ü ü ú ü
ű ö ű ö ü ú ú ú ö ö Í ú ü ú ú ö Í ü ö ü ü ö ü ö ü ü ű ö ü ü ö ü ú ú ú ú ú ű ú ü ü ü Í ü ö ü ö ü ö ü Ó ü ö ü ö ö ü ű ű ú ü ö ö ü Ó ö ű ü ö ú ö ö ü ü ű ü ü ö ö ü ü ú ö ö ü ü ú ü ű Á Í ű ű ö ü ö ü ü ú ű ö
ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö
Í Á Ö Ú Á Á Ó Á ö ú ú ö ú ú ö ü ü ű ü ű ö ö ü ű ö ü ö ú ö ü ú ö ö ü ü ö ü ű ö ö ü ű ö ö ú ö ö ú ú ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö ü ö ü ö ö ü ö ö ú ö ü ű ö ü
É ú É ö ö ű ö ö ö ú ú ú ű ű ú ö ű ö ű ű ü ö ö ü ű ö ü ö ö ö ö ú ü ö ö ö ú ö ö ú ö ö ú ü ú ú ú ű ü ö ö ű ú ű ű ü ö ű ö ö ö ű ú ö ö ü ú ü ö ö ö ü ú ö ű
É É É Ó Á É ú É ö ö ű ö ö ö ú ú ú ű ű ú ö ű ö ű ű ü ö ö ü ű ö ü ö ö ö ö ú ü ö ö ö ú ö ö ú ö ö ú ü ú ú ú ű ü ö ö ű ú ű ű ü ö ű ö ö ö ű ú ö ö ü ú ü ö ö ö ü ú ö ű ü ű ö ö ú ö ú ö ö ö ö ö ü ú ü ö ö ö ö ö ü
ö Ó
Ü Í Ó Ö ö É É ö Ó ü ö ü Ö ö ú ü Í ü ö ö ü ö ö ö Í ö ü ö ö ű Í ű ö ú ü ú ö ú ű Í ú ü ö ö ü Ö Ő ü ü ú ú Í Ó ü ú Ü Ö ú ü ú Ü ú ú ú Í Í ü ü ú ü ú ú ú Í Í Í ö ú ö ö Í É ü ö Í ö ö ö ö ö ö ö ö ü ö ú ü Ó ú Í Í
ú ú ö ö ü ü ü ü ű ü ü
Ü ú ű ű ú ű ú ú ö ö ü ü ü ü ű ü ü ö ö ö ö ö ö ű ö ö ö ö ö ö ö ö ö ü ü ü Ú ú ü ű ü ú ű ö ű ú ö ö ö ö Á ú ú ű Á ú Á Á Á ü ö ö Á ö ö ü Á ú Á ú Á Á Ö Á Á ö ű ö ö ü ú ü ú ö ú ű ú ú ü ü ü ü ű ű Ő ú ö ű ú ú ű
É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű
ő ő ű ú Á ő ű ő ő ő ő Ö Ö Í Á É Á ő Ö Ö Í ő ő ő ő É ő ő ú ú ú ő Á Ö É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű ő ű ő ú Á ő ű ő ő ő ő ő ő Ö ő ú ú Ö ő ő ű ú Á ő ú Ó ű Ó ú ú ú ő ő ú ú ő ő ú ő Ú ú
ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü
ő É ő ő ő ő É Ü Ö Ö Ö Í Ö Ö Ö ő Ó Ó Ö Ö Á É É É ő Á É Á Á Ú Á Ú Ö Ö Á Ú Ö Á ű Á ú ő ő ü ü Ó ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü ő ő ő ő Á ü ú ú
Ó ű í ű ü í í ú í ü í í ú ú í ú ű ú ü ü í ű ü É Í Í Ó í í É Ö ú ú í í í ü ü ü í É ű í Ó í í ü ú ü í
Ú Ü Ű Ü Ó ü í ü ü ú Ó í í í í Ö ü í ü ú ú í ű í í Í Ó í ü ü ü ü ú í ü ú í ú í Ő ú ü ú ü ü í Ó ű í ű ü í í ú í ü í í ú ú í ú ű ú ü ü í ű ü É Í Í Ó í í É Ö ú ú í í í ü ü ü í É ű í Ó í í ü ú ü í í É ü ú ü
FIZIKA I Villamosságtan
FZKA Viamosságtan D. ványi Miósné egyetemi taná 8. óa Készüt az ERFO-DD-Hu-- szeződésszámú pojet támogatásáva, 4. PTE PMMK Műszai nfomatia Tanszé EA-V/ . Foytonossági fetétee-ét mágneses anyag hatáfeüetén
ö É Á É É Ú Ö É Á
É É Á ö ó ó ó ó ö í ó ö ó í ű ö ó Á Á ó í í ö É Á É É Ú Ö É Á Á Á Á Á í ó Á Á É ő Ö ő ö ő ő ő ő őí ő ö ö Á Ó Ö Ö Ő É ÁÍ Á Ö Á Á Ö ő ö Á ú Á ó Í É í í Ő Í Á Ü ő í Ü ő ö ő ö Ü É Ö Ó É Á Á É Á ü ö ö ü ő ö
Ü ű ö Á Ü ü ö ö
Í Í Ü Ú ö ú Ö Ü ű ö Á Ü ü ö ö ú ü ü ö ü ö ö ö ö Ü Ü ö ö ö ö ö ü ü ö ü Ü ö ú ü ö ü ö ű ö ű Ü ü ö É ö ü ü ö ö ö ö ö ö ö ö Ó ö Ü ü Ü ü ü ö ö ö ö ö ö ö ú ü ö ű ü ö ú ű Ü ö ö ö ü Ü Ü Ü ú ö ö ü ű ö ű ö Á Á Í
ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü
ü ü ü ü Ó í Ó Éü í ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü ű ű ű í ü ő ű ü ü ő ú ú ő ü ő ő ő ü ú ű ú ú ú ő ő ú ő ő í ú í Ó ú ü ő ú ú ú ű ú ú Ű ű ő ű ű ő Á ü í ü ú ü í ú ő ú ő ű ő í ő ő
á ü ö ó á ö ó üí á á ö ó á ó á ó Í ö í á ű ö ő á ű á á ó á á á á ű ő á á ó ő á á ű ö í őí ö üí á á ű á öí ó ó í á ö ö ö ö í ő í á Í ü ö ö ő á í ú ö üí
Ó á á ű ö ú ö ó ó á á á á ü á á ű ö ö ö á á ű í á á ű á ö ú á ú í ű ö ü ö ö ő ö ű í ű á ű ö ö á ó ö ő á ü ö á ü ö ö ő á á ó üí á ő ö ö á ű ő í Á ő ö ö ú ö ő á ó ó ü ö ö ő ó ó ü ö á á Í Í ü ö ü ö ü ö ő
Bevezetés. Atomszerkezet, kötések. Az előadás során megismerjük:
Anyagzekezettan é anyagvizgálat 0/7 Atomzekezet, kötéek D. Szabó Péte Jáno zj@eik.bme.hu Az előaá oán megimejük: a két alavető atommoell alajait, é a moellek közötti különbégeket; az atomok fő enegiajellemzőit;
í í ü í í í í í Ó ő ő í í í Ú ü Ú í í Ú ő ü Ú ü ő
É Á Á ő ü í ü ü í ü ő ü ő ü ü ü í í í í í ü í í ő í í ü í í í í í Ó ő ő í í í Ú ü Ú í í Ú ő ü Ú ü ő ő í ő í ű ű í í ü í í ő í í í í í ű í ő í í í í ü í ő í ő í ü í ű ő ű ü í ü ü í ő ő ü ő í í Ö ü í ü ü
ő ő ú ő ó ó ú ő ő ó ő ó ó ú ú ú ü ó Ó ó ó ó ő ő ő ú ű ó ó ő ü ő ó óó ó ó
ú É É ő ő ő ú ő ó ó ú ő ő ó ő ó ó ú ú ú ü ó Ó ó ó ó ő ő ő ú ű ó ó ő ü ő ó óó ó ó ü ó ú ő ó ő ú ő ő ú ó ó ó ű ü ő ó ó ő ő ó ő ő ü ó ó ó ó ő ó ő ő ő ü ő ó ó ű ó ő ü ü ő ó ó ő ő ő ő ú ó ü ő ó ő ó ú ő ó ü
É Ö Á Í Á Ó Ö ü
Ö ű Ö ő ü ő ő ő ű Ö Ö ü Á Á É Ö Á Í Á Ó Ö ü Ö ű ű Ö ű ű ú ű ű ú ú ő ő ü ű ű É Ö ú ű ő ű ű ú ő ü Ö ú ú ő ő ú ű ü ő ü ű ú ú ű Ü ő ő Ó ü É Ó Ö Ö ú ü ü ü ü Ű ú Ö Á ü É Ó ű Á Ö Á ű ü ú Ö ű ű ű ü ő ő ő Á ő ő
ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü ö ö í Ö ö ö í ö í Ő í ű ű í Ö Ó í ö ö ö ö Ö Ö ö í ü ö ö Ö í ü Ö ö í ö ö ö ö ö Ö ö í
Á ö Á Á É Ö í ö Ö Á Ó Ű ú ű Ü ö ö ú ö ú í ö í ö ö ö í Ö ö í ö Ő ü ö ö í Á Ö Ú ű Ö í Ö ö ö Ö ü ű ö ű ö Ö ü ö Ö Ö Ö ö í ö ö Ö ö í Ö ö Ú ö ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü
ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő
ő ő ű ú ő ü ü ü ü ü ő ő ü ü ü ü ü ü ü ü ü ő Ö ő ő ő ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő ő ű ő ú ü ú ő ő ő ő ő ő ő ő ő ő ő É ü ű ő ü Á ő ú ű ű ő ő ő É ü ű ő ő ő ű ú ü ú ő ő ő
ű Á ü ő ö í ö ö ő ő ő ő ö
Á É í ü í í í ü í í ö í ű í í í í í í í í í ü ő ö ö ö ű ő ö ű Á ü ő ö í ö ö ő ő ő ő ö ö ő ő ő ö ö Ű ú Á ö ú ú ö ü í ő ő ú É í í ő ö í ö ú í ő ü í í í í í ö í ű í í í í í í í í í ü ő ö ö ö ű ű ő ű ü í Ö
í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö ö ú ő ő ú í ő í ő ö ö í ő ü ü í ő ö ü ü ú í í ü ő í ü Í í í í ö ő ö ü ő í ő ő ü ű ő ő í ő í í ő ő
ö Ö ő ü ü ő Á ü ö ö ő ő ű ő ü ő Ö ö ő í ő ö í ö ö ő ő ö í ú Á Á Á í Á í ü Á ő í í ő Á í ő ő ú ő ö ö ő Í í ő ő í í ö í ő Ó ő ő í ö ő ő ü ö ö ő ö í ö ő í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö