Bevezetés a részecskefizikába

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés a részecskefizikába"

Átírás

1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2007) Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.1

2 Bevezetés a kísérleti részecskefizikába 1 Vázlat A. Elemi részecskék Fermionok és bozonok Kvarkok és leptonok Összetett részecskék: mezonok és barionok Színes kvarkok Elemi kölcsönhatások A kvarkok töltése és színe: kísérlet B. A Standard Modell Szimmetriák és megmaradási törvények Mértékszimmetriák és kölcsönhatások Kvantumelektrodinamika és a foton Kvantumszíndinamika és a gluon, kvarkbezárás Higgs-mechanizmus Elektrogyenge kölcsönhatás Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.2

3 Előszó A (részecske)fizika egzakt tudomány: Pontos matematikai formalizmuson alapszik. A fizikai fogalmak mérhető mennyiségek, a szavak csak mankók. Elmélet érvényes, ha mérhető mennyiségeket számol, és az eredmény egyezik kísérlettel. Az előadásom szavai mögött pontos matematika és kísérleti tapasztalat van. Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.3

4 Elemi részecskék Elemi (és egyre elemibb) részecskék Anaximenész: Föld víz tűz levegő Mengyelejev: Kémiai elemek periodicitás, színkép atomok izotópok Rutherford: atommag + elektron proton, neutron, elektron : sokszáz részecske gerjesztett állapotok belső szerkezet! 3 kölcsönhatás: származtatás??? 1970 óta: Standard Modell (David Gross: anyagelmélet) pontszerű leptonok, kvarkok, mértékbozonok Kölcsönhatások szimmetriákból Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.4

5 Az atomtól a kvarkig m m m < m pontszerű! Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.5

6 A mikrovilág vizsgálata: energia Planck-állandó: h = h/(2π) = 1, J s = 1 Fénysebesség: c = m/s = 1 Tárgy kicsi méret, m energia 10 3 Energia: 1 ev = kinetikus energia (e, U = 1 V) 1 kev = 10 3 ev; 1 MeV = 10 6 ev; 1 GeV = 10 9 ev; 1 TeV = ev Einstein: E = mc 2 [m] = GeV/c 2 = GeV baktérium 10 5 λ(fény) ev atom kev atommag GeV elektron TeV Heisenberg: E t h/2; p x h/2 Nagyobb energia kisebb távolság mélyebb szerkezet Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.6

7 Fermionok és bozonok Legfontosabb tulajdonság: spin (perdület) = saját impulzusmomentum h egységben Tulajdonság fermion bozon Spin feles ( 1 2, ) egész (0, 1, 2,...) ψ(1,2) = ±ψ(2,1) + Pauli-kizárás van nincs Részecskeszám megmaradása van nincs Statisztika Fermi-Dirac Bose-Einstein Kondenzáció Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.7

8 Elemi (pontszerű!) részecskék Elemi fermionok: leptonok és kvarkok Elemi bozonok: kölcsönhatások közvetítői + Higgs-bozon Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.8

9 Elemi fermionok (S = 1 2 ) 1. család 2. család 3. család töltés Leptonok ( ν e e ) L ( ν µ µ ) L ( ν τ τ ) L 0 1 Kvarkok ( ) u d L ( c s ) L ( ) t b L Tömeg családdal ր nő; kvarkbomlás:, majd տ ( ) L : gyenge kölcsönhatás sérti a paritás-szimmetriát balos részecskepárok és jobbos antirészecskepárok Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.9

10 Hadronok: összetett részecskék Mezonok = qq-állapotok: J = 0, 1,... (bozonok) Q = 0, ±1, B = 0 Barionok = qqq-állapotok: J = 1 2, 3 2,... (fermionok) Q = 0, ±1, ±2, B = 1 (barionok) Nukleonok: proton = (uud), neutron = (udd) alapállapot J = 1 2, B = 1 Pionok (J = 0, B = 0): π + = (ud), π 0 = 1 2 (uu dd), π = (du) Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.10

11 ++ = (u u u ) Színes kvarkok Bajok a kvarkmodellel Mi tartja össze a hadronokat? 3 azonos fermion, Pauli-kizárás?? Miért csak (qq) és (qqq) hadronok, miért nincs szabad kvark? R Új kvantumszám: 3 szín G B ++ kvarkjai különböző kvantumállapotban Kvarkok között erős, vonzó szín szín kölcsönhatás Csak színtelen állapotok szabadok (kvarkbezárás) Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.11

12 Színtelen kvarkállapotok Mezon = (qq); barion = qqq; antibarion = (qqq) q kvarkok azonosak vagy különbözők. Mindent magyaráz Bizonyíték: Összes lehetséges kvarkállapot létezik Nem találtunk lehetetlent (pl. Q > 2) Nem látunk több-kvarkos állapotot (dibarion, pentakvark?) Családokban össztöltés Q = Q ν + Q l + 3(Q u + Q d ) = 0 anomáliák eltűnnek Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.12

13 Kölcsönhatások és közvetítő bozonjaik Kölcsön- erősség potenciál hatótáv élettartam bozon m 0 hatás Erős 1 R 1 fm 1/m π El-mágn /R Gyenge R e R R 0 < 1 fm R 0 h M W c s ( pπ) s (π 0 γγ) > s (π µ ν) GeV 8 gluon 0 foton 0 W ± Z Gravitáció R graviton 0 r(proton) = 0,8 fm 1 fm = m Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.13

14 Amit mérünk: hatáskeresztmetszet Bombázó részecskenyaláb Céltárgy részecskéje σ = W/Φ átmeneti valószínűség/fluxus Egysége: 1 barn = m 2 (1 pb = m 2 ) Fluxus = részecskék sürüsége sebessége nyalábban: Φ = n b v b = részecskeszám/felület/sec Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.14

15 Amit mérünk: rezonancia τ = Γ 1 élettartam exp. bomlás: N(t) = N 0 e Γt Valószínűségeloszlás: χ(e) 2 = 1 (E M) 2 +Γ 2 /4 M Γ } Breit-Wigner-formula rezonancia { helye szélessége Lorentz-görbe Új részecske felfedezése: rezonancia a tömegnek megfelelő ütközési energiánál Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.15

16 A kvarkok töltése: 2 3 és 1 3? Kvark ad-hoc, nyakatekert, szabadon nem létezik, de egyetlen modell (Nambu!) és kísérlet igazolja V 0 = (qq) Semleges mezonok elektromágneses bomlása Γ(V 0 l + l ) Q 2 q ρ(770) = 1 2 (uu dd) Q 2 q = { 1 2 [ 2 3 ( 1 3 )]}2 = 1 2 ω(782) = 1 2 (uu+dd) Q 2 q = { 1 2 [ 2 3 +( 1 3 )]}2 = 1 18 Γ e (ρ) : Γ e (ω) 9 : 1 mért arány 11 : 1 de pl. 1 : 1 ha Q u = 1; Q d = 0 Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.16

17 Elektromágneses pionszórás nukleonon q µ πn µ µ + X π q Ν γ µ + π = (ud) 12 C (18u+18d) π + = (ud) > σ 18Q 2 u = > σ 18Q 2 d = σ(π C µ + µ...) σ(π + C µ + µ...) 4 kísérlet Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.17

18 Hadronképződés hatáskeresztmetszete R = σ(e+ e hadronok) σ(e + e µ + µ ) = σ( i e + e q i q i ) σ(e + e µ + µ ) Q 2 q i i Lehetséges végállapotok számával arányos Nincs szín R 0 = q Q 2 q; 3 szín van R 3 = 3R 0 Energia [E CM (e + e )] függvényében: {u, d, s}: R 0 = (2/3) (1/3) 2 = 2/3; R 3 = 2 {u, d, s, c}: R 0 = 2 (2/3) (1/3) 2 = 10/9; R 3 = 10/3 {u, d, s, c, b}: R 0 = 2 (2/3) (1/3) 2 = 11/9; R 3 = 11/3 Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.18

19 R = σ(e+ e hadronok) σ(e + e µ + µ ) Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.19

20 B. A Standard Modell Szimmetriák és megmaradási törvények Mértékszimmetriák és kölcsönhatások Kvantumelektrodinamika és a foton Kvantumszíndinamika és a gluon, kvarkbezárás Higgs-mechanizmus Elektrogyenge kölcsönhatás Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.20

21 Szimmetriák Részecskefizikában még fontosabbak, mint kémiában vagy szilárdtestfizikában Noether tétel: Globális szimmetria megmaradási törvény Eltolás térben impulzus (lendület) Eltolás időben energia Forgatás impulzusmomentum Elektromágneses mérték- töltés Mértékelmélet: Lokális szimmetria kölcsönhatás Lokális szimmetria: pontról pontra meghatározott módon módosuló Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.21

22 Kvantumelektrodinamika Az elektromágneses jelenségek kvantumelmélete Töltött részecskék szóródása egymáson: A C p C p D q 1 2 t B D A + B => C + D p A p B Leírás: foton q impulzust visz át A-ról B-re Feynman-gráf: recept valószínűség kiszámítására Belső foton, nem észlelhető virtuális Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.22

23 Kvantumszíndinamika, QCD Szín-szín kölcsönhatás Közvetítő: gluon, m = 0, J = 1 Színt hordoz: RR, GG BB RG RB GR BR BG de 1 3 (RR+GG+BB) = 1 8 független gluon foton: m, J, de γ nem hordoz töltést gluon két színt g-g kölcsönhatás V(r) r Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.23

24 Fragmentáció, hadronizáció Fragmentáció, hadronizáció: Kvarkpárok keltése, amíg az energiából futja nincs szabad kvark vagy gluon szakadó gluonszál Példa: pπ + K + Σ + kvarkvonalakkal Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.24

25 Mérték-kölcsönhatások elmélete Pontszerű fermion (pl. elektron) mozog lokális szimmetriájú térben. Lokális szimmetria speciális (kovariáns) deriválás Háromféle lokális szimmetria, három kölcsönhatás: elektromágneses, gyenge és erős (szín-) Mértékbozonok mind zérus-tömegűek: foton és 8 gluon rendben. De 3 gyenge bozon nehéz: m(w ± ) = 80 GeV; m(z 0 ) = 91 GeV!! Ráadásul gyenge kh. elméletében végtelen tagok, zérus-spinű bozon létezése megszabadítana tőlük. Megoldás: Higgs-mechanizmus Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.25

26 Spontán szimmetriasértés tömeg Gyenge bozonok tömege Higgsbozon David J. Miller és CERN: djm/higgsa.html Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.26

27 A Higgs-bozon A spontán szimmetriasértés mellékterméke A részecskefizika legkeresettebb része, mivel a Standard Modell egyetlen hiányzó láncszeme Kísérletileg nem figyeltük meg, az elmélet szerint léteznie kell mert tömeget teremt és rendbeteszi a divergenciákat It was in that my life as a boson really began (Peter Higgs: Int. J. Mod. Phys. A 17 Suppl. (2002) ) Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.27

28 Elektrogyenge kölcsönhatás Elektromágneses és gyenge kölcsönhatás egyesítése a Higgs-mechanizmus jótékony közreműködésével Eredmény: zérus-tömegű foton és nehéz Z, W +, W lepton e ν e { d u d n } d u u p W p nukleon n Standard Modell: áram-áram kölcsönhatás W + neutronbomlás e ν e Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.28

29 A Standard Modell állatkertje Horváth Dezső: Bevezetés a részecskefizikába I CERN, augusztus fólia p.29

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I CERN, 2009. augusztus 18. 1. fólia p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2009. aug. 17-21.) Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába I: SM CERN, 2014. augusztus 18. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére CERN, 2014. aug. 18-22. (Pásztor Gabriella helyett)

Részletesebben

Mese a Standard Modellről 2*2 órában, 1. rész

Mese a Standard Modellről 2*2 órában, 1. rész Mese a Standard Modellről 2*2 órában, 1. rész Előadás a magyar CMS-csoport számára (RMKI-ATOMKI-CERN, 2008. június 6.) Horváth Dezső horvath rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet,

Részletesebben

Részecskefizika I: a standard modell

Részecskefizika I: a standard modell Horváth Dezső: Részecskefizika I: a standard modell Debrecen, 2014. április 15. 1. fólia p. 1/70 Részecskefizika I: a standard modell DE Kísérleti Fizika tanszék, 2014. április 15. Horváth Dezső horvath.dezso@wigner.mta.hu

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

Magyarok a CMS-kísérletben

Magyarok a CMS-kísérletben Magyarok a CMS-kísérletben LHC-klubdélután, ELFT, 2007. ápr. 16. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Magyarok a CMS-kísérletben LHC-klubdélután,

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2.

Elemi részecskék, kölcsönhatások. Atommag és részecskefizika 4. előadás március 2. Elemi részecskék, kölcsönhatások Atommag és részecskefizika 4. előadás 2010. március 2. Az elektron proton szóródás E=1MeVλ=hc/(sqrt(E 2 -mc 2 )) 200fm Rutherford-szórás relativisztikusan Mott-szórás E=10MeVλ

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2011. augusztus 15 10. 1. RÉSZ Mit vizsgál a részecskefizika és milyen eszközökkel? Elemi részecskék

Részletesebben

Indul a Nagy hadron-ütköztető: hová és minek?

Indul a Nagy hadron-ütköztető: hová és minek? Horváth Dezső: Indul az LHC: hová és minek? BME, Budapest, 2008. nov. 14. p. 1/56 Indul a Nagy hadron-ütköztető: hová és minek? Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és

Részletesebben

Építsünk Univerzumot!

Építsünk Univerzumot! Horváth Dezső: Építsünk Univerzumot - Indul az LHC MCSE, Esztergom, 2008. nov. 19. p. 1/54 Építsünk Univerzumot! Indul a nagy hadron-ütköztető (LHC) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

Részecskefizika: elmélet és kísérlet

Részecskefizika: elmélet és kísérlet Horváth Dezső: Részecskefizika: elmélet és kísérlet Cegléd, 2010.02.06. p. 1/54 Részecskefizika: elmélet és kísérlet Ceglédi Téli Tábor, 2010.02.06 Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

Indul az LHC, a világ legnagyobb mikroszkópja

Indul az LHC, a világ legnagyobb mikroszkópja Horváth Dezső: Indul az LHC, a világ legnagyobb mikroszkópja Trefort Gimnázium, Budapest, 2008. okt. 18. p. 1/59 Indul az LHC, a világ legnagyobb mikroszkópja ELTE Trefort Ágoston Gyakorló Gimnáziuma Horváth

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

Az LHC első éve és eredményei

Az LHC első éve és eredményei Horváth Dezső: Az LHC első éve és eredményei Eötvös József Gimnázium, 2010 nov. 6. p. 1/40 Az LHC első éve és eredményei HTP-2010 utóest, Eötvös József Gimnázium, 2010 nov. 6. Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Pásztor Gabriella University of Geneva & MTA Wigner FK Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme. PROGRAM HéOő Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

Indul az LHC: célok, sikerek, problémák

Indul az LHC: célok, sikerek, problémák Horváth Dezső: Indul az LHC: célok, sikerek, problémák SZBK, Szeged, 2008. nov. 24. p. 1/53 Indul az LHC: célok, sikerek, problémák Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest

Részletesebben

A mikrovilág szimmetriái: CERN-kísérletek DE Kossuth Lajos Gyakorló Gimnáziuma

A mikrovilág szimmetriái: CERN-kísérletek DE Kossuth Lajos Gyakorló Gimnáziuma A mikrovilág szimmetriái: CERN-kísérletek DE Kossuth Lajos Gyakorló Gimnáziuma Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: A mikrovilág szimmetriái:

Részletesebben

Részecskefizika a CERN-ben

Részecskefizika a CERN-ben Horváth Dezső: Részecskefizika a CERN-ben Wigner FK, Budapest, 2014.07.23. p. 1/41 Részecskefizika a CERN-ben Diákoknak, Wigner FK, Budapest, 2014.07.23. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner

Részletesebben

A Világegyetem leghidegebb pontja: az LHC

A Világegyetem leghidegebb pontja: az LHC Horváth Dezső: A Világegyetem leghidegebb pontja: az LHC Székesfehérvár, 2010 jan. 19. p. 1/57 A Világegyetem leghidegebb pontja: az LHC Székesfehérvár, 2010 jan. 19. Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

Részecskefizika a CERN-ben

Részecskefizika a CERN-ben Horváth Dezső: Részecskefizika a CERN-ben Wigner FK, Budapest, 2014.02.07. p. 1/46 Részecskefizika a CERN-ben Diákoknak, Wigner FK, Budapest, 2014.02.07. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner

Részletesebben

A nagy hadron-ütköztető (LHC) és kísérletei

A nagy hadron-ütköztető (LHC) és kísérletei Horváth Dezső: A nagy hadron-ütköztető (LHC) és kísérletei MTA, 2008. nov. 19. p. 1 A nagy hadron-ütköztető (LHC) és kísérletei Magyar Tudományos Akadémia, 2008. nov. 19. Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL tartozó valószínûség -hez, a többi nullához tart. A most vizsgált esetben (M M = 0) a (0) szerint valóban ennekkell történnie. Teljesen hasonlóan igazolható (0) helyessége akkor is, amikor k = n. A közbensô

Részletesebben

Alapvető szimmetriák kísérleti vizsgálata

Alapvető szimmetriák kísérleti vizsgálata Alapvető szimmetriák kísérleti vizsgálata Simonyi nap, 2006. okt. 18. Horváth Dezső Horváth Dezső: Alapvető szimmetriák kísérleti vizsgálata Simonyi-nap, RMKI, 2006. október 18. p.1 Vázlat A részecskefizika

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

A tau lepton felfedezése

A tau lepton felfedezése A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)

Részletesebben

Magyar Tanárprogram, CERN, 2010

Magyar Tanárprogram, CERN, 2010 Horváth Dezső: Válaszok a kérdésekre CERN, 2010. augusztus 20. 1. fólia p. 1 Magyar Tanárprogram, CERN, 2010 Válaszok a kérdésekre (2010. aug. 20.) Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 24. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 017. Február 4. V-részecskék 1. A15 felfedezés 1946, Rochester, Butler ezen a képen egy semleges részecske bomlásakor két töltött részecske (pionok) nyoma villa

Részletesebben

Egzotikus részecskefizika

Egzotikus részecskefizika Egzotikus részecskefizika CMS-miniszimpózium, Debrecen, 2007. nov. 7. Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Egzotikus

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

A részecskefizika elmélete és a Higgs-bozon

A részecskefizika elmélete és a Higgs-bozon Horváth Dezső: Részecskefizika és a Higgs-bozon Szkeptikus Klub, 2012.04.17. p. 1/62 A részecskefizika elmélete és a Higgs-bozon Szkeptikus Klub, 2012.04.17. Horváth Dezső horvath@rmki.kfki.hu MTA Wigner

Részletesebben

A Standard modellen túli Higgs-bozonok keresése

A Standard modellen túli Higgs-bozonok keresése A Standard modellen túli Higgs-bozonok keresése Elméleti fizikai iskola, Gyöngyöstarján, 2007. okt. 29. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

Trócsányi Zoltán. Az eltőnt szimmetria nyomában - a évi fizikai Nobel-díj

Trócsányi Zoltán. Az eltőnt szimmetria nyomában - a évi fizikai Nobel-díj Trócsányi Zoltán Az eltőnt szimmetria nyomában - a 2008. évi fizikai Nobel-díj A Fizikai Nobel-díj érme: Inventas vitam juvat excoluisse per artes Kik felfedezéseikkel jobbítják a világot Fizikai Nobel-díj

Részletesebben

Töltött Higgs-bozon keresése az OPAL kísérletben

Töltött Higgs-bozon keresése az OPAL kísérletben Horváth Dezső: Töltött Higgs-bozon keresése az OPAL kísérletben, RMKI-ATOMKI-CERN, 28..3. p. /27 Töltött Higgs-bozon keresése az OPAL kísérletben Budapest-Debrecen-CERN szeminárium, 28. okt. 3. Horváth

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

BEVEZETÉS A RÉSZECSKEFIZIKÁBA

BEVEZETÉS A RÉSZECSKEFIZIKÁBA BEVEZETÉS A RÉSZECSKEFIZIKÁBA Gabriella.Pasztor@cern.ch CERN Hungarian Teachers Programme 2015. augusztus 17-21. Pásztor: Bevezetés a részecskefizikába 1 PROGRAM Részecskefizika célja, eszközei Elemi részecskék

Részletesebben

A Higgs-bozon felfedezése: a nagyenergiás fizika negyvenéves kalandja

A Higgs-bozon felfedezése: a nagyenergiás fizika negyvenéves kalandja Horváth Dezső: A Higgs-bozon felfedezése TIT, 2014.12.17. p. 1/40 A Higgs-bozon felfedezése: a nagyenergiás fizika negyvenéves kalandja TIT József Attila Szabadegyetem, Budapest, 2014.12.17. Horváth Dezső

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Legújabb eredmények a részecskefizikában. I. rész

Legújabb eredmények a részecskefizikában. I. rész ismerd meg! Legújabb eredmények a részecskefizikában I. rész 1. A részecskék osztályozása Jelenlegi tudásunk szerint az anyag fermion típusú építkövekbl és bozon típusú ragasztóanyagból épül fel. (A világegyetem

Részletesebben

Indul a legnagyobb részecskegyorsító: elnyeli-e a Világot?

Indul a legnagyobb részecskegyorsító: elnyeli-e a Világot? Horváth Dezső: Indul az LHC: elnyeli-e a Világot? Telki, 2009 jan. 8. p. 1/55 Indul a legnagyobb részecskegyorsító: elnyeli-e a Világot? Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

NAGY Elemér Centre de Physique des Particules de Marseille

NAGY Elemér Centre de Physique des Particules de Marseille Korai CERN együtműködéseink a kísérleti részecskefizika terén Az EMC és L3 kísérletek NAGY Elemér Centre de Physique des Particules de Marseille Előzmények A 70-es évektől kezdve a CERN meghatározó szerephez

Részletesebben

Mese a Standard Modellről 2*2 órában, 2. rész

Mese a Standard Modellről 2*2 órában, 2. rész Mese a Standard Modellről 2*2 órában, 2. rész Előadás a magyar CMS-csoport számára Horváth Dezső horvath rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és MTA ATOMKI, Debrecen Horváth

Részletesebben

Részecskefizika és az LHC: Válasz a kérdésekre

Részecskefizika és az LHC: Válasz a kérdésekre Horváth Dezső: Részecskefizika és az LHC Leövey Gimnázium, 2012.06.11. p. 1/28 Részecskefizika és az LHC: Válasz a kérdésekre TÁMOP-szeminárium, Leövey Klára Gimnázium, Budapest, 2012.06.11 Horváth Dezső

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Részecskefizika a CERN-ben

Részecskefizika a CERN-ben Horváth Dezső: Részecskefizika a CERN-ben Gyöngyös, 2014.11.28. p. 1/40 Részecskefizika a CERN-ben Berze Nagy János Gimnázium, Gyöngyös, 2014.11.28. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner

Részletesebben

Részecskefizika. Ujvári Balázs HTP2016

Részecskefizika. Ujvári Balázs HTP2016 Részecskefizika Ujvári Balázs HTP2016 Oláh Éva előadása Atom, nukleon, kvarkok méretei Hogy rakunk össze egy protont? Színek, antiszínek (a hadronok legyenek fehérek) Bomlási szabályok, megmaradó mennyiségek

Részletesebben

Részecskefizika. Ujvári Balázs Debreceni Egyetem, Fizika Intézet HTP2017

Részecskefizika. Ujvári Balázs Debreceni Egyetem, Fizika Intézet HTP2017 Részecskefizika Ujvári Balázs Debreceni Egyetem, Fizika Intézet HTP2017 Oláh Éva előadása Atom, nukleon, kvarkok méretei Hogy rakunk össze egy protont? Színek, antiszínek (a hadronok legyenek fehérek)

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Az LHC-kísérlet és várható eredményei

Az LHC-kísérlet és várható eredményei Horváth Dezső: Az LHC-kísérlet és várható eredményei Cegléd, 2009 ápr. 22. p. 1/45 Az LHC-kísérlet és várható eredményei Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai Kutatóintézet,

Részletesebben

Óriási gyorsítók és pirinyó részecskék: az LHC első két éve

Óriási gyorsítók és pirinyó részecskék: az LHC első két éve Horváth Dezső: Óriási gyorsítók és pirinyó részecskék Berzsenyi Gimnázium, 2012.02.09. p. 1/50 Óriási gyorsítók és pirinyó részecskék: az LHC első két éve Berzsenyi Dániel Gimnázium, Budapest, 2012.02.09

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2007) Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Útban a Standard Modell felé

Útban a Standard Modell felé Útban a Standard Modell felé Mag és részecskefizika 4. előadás 2017. március 10. Amiről eddig tanultunk Hadronok: kvarkok kötött állapotai Barionok (qqq), anti-barionok (qqq), mezonok (qq) Rezonanciák

Részletesebben

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS)

RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) ATOMMAGFIZIKA II. (NUCLEAR PHYSICS II.) RÉSZECSKÉK ÉS KÖLCSÖNHATÁSAIK (PARTICLES AND THEIR INTERACTIONS) (Harmadik, korszerűsített kiadás) (Third up-dated edition) FÉNYES TIBOR DEBRECENI EGYETEMI KIADÓ,

Részletesebben

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18

2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 1 / 18 Az erős és az elektrogyenge kölcsönhatás elmélet Csanád Máté ELTE Atomfizikai Tanszék Részecske- és magfizikai szeminárium 2012. október 23. Csanád Máté, ELTE Atomfizikai Tanszék Részecske- és magfizikai

Részletesebben

Sinkovicz Péter. ELTE, MSc II november 8.

Sinkovicz Péter. ELTE, MSc II november 8. Út az elemi részecskék felfedezéséhez és az e e + ütközések ELTE, MSc II. 2011. november 8. Bevezető c kvark τ lepton b kvark Gyenge kölcsönhatás Áttekintés 1 Bevezető 2 c kvark V-A elmélet GIM mechanizmus

Részletesebben

Részecske- és magfizika vizsgakérdések

Részecske- és magfizika vizsgakérdések Részecske- és magfizika vizsgakérdések Az alábbi kérdések (vagy ezek kombinációi) fognak az írásbeli és szóbeli vizsgán is szerepelni. A vastag betűs kérdések egyszerűbb, beugró-kérdések, ezeknek kb. 90%-át

Részletesebben

Új fizika keresése p-p ütközésekben a CMS-detektorral ELFT vándorgyűlés, Eger, aug. 23.

Új fizika keresése p-p ütközésekben a CMS-detektorral ELFT vándorgyűlés, Eger, aug. 23. Új fizika keresése p-p ütközésekben a CMS-detektorral ELFT vándorgyűlés, Eger, 2007. aug. 23. Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

Részecskefizika 3: neutrínók

Részecskefizika 3: neutrínók Horváth Dezső: Bevezetés a részecskefizikába III CERN, 2014. augusztus 20. p. 1 Részecskefizika 3: neutrínók Előadássorozat fizikatanárok részére (CERN, 2014) Horváth Dezső Horvath.Dezso@wigner.mta.hu

Részletesebben

Óriási gyorsítók és pirinyó részecskék: az LHC indulása

Óriási gyorsítók és pirinyó részecskék: az LHC indulása Horváth Dezső: Óriási gyorsítók és pirinyó részecskék Pécs, 2010 aug. 26. p. 1/43 Óriási gyorsítók és pirinyó részecskék: az LHC indulása ELFT Vándorgyűlés, Pécs, 2010 aug. 26. Horváth Dezső horvath@rmki.kfki.hu

Részletesebben

Szimmetriák és sértésük a részecskék világában

Szimmetriák és sértésük a részecskék világában Szimmetriák és sértésük a részecskék világában A paritássértés 50 éve Horváth Dezső horvath@rmki.kfki.hu. MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Szimmetriák

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

Higgs-bozonok keresése az LHC-nál

Higgs-bozonok keresése az LHC-nál Higgs-bozonok keresése az LHC-nál MAFIHE téli iskola, Gyenesdiás, 2008.02.04. Horváth Dezső MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen Horváth Dezső: Higgs-bozonok keresése

Részletesebben

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest

Papp Gábor, Németh Judit. Magfizika. egyetemi jegyzet fizika tanár szakos hallgatóknak. 2003, ELTE, Budapest 1 Papp Gábor, Németh Judit Magfizika egyetemi jegyzet fizika tanár szakos hallgatóknak 2003, ELTE, Budapest 2 Tartalomjegyzék 1. Atommagok tulajdonságai 7 1.1. Az atommag alkotórészei......................

Részletesebben

Alapvető szimmetriák kísérleti vizsgálata a CERN ben

Alapvető szimmetriák kísérleti vizsgálata a CERN ben Alapvető szimmetriák kísérleti vizsgálata a CERN ben Horváth Dezső horvath@rmki.kfki.hu. RMKI, Budapest és ATOMKI, Debrecen 50 éves a CERN MTA, 2004. szept. 22. Horváth Dezső Alapvető szimmetriák kísérleti

Részletesebben

Az LHC és a Higgs-bozon

Az LHC és a Higgs-bozon Horváth Dezső: Az LHC és a Higgs-bozon Bolyai Kollégium, 2008.11.05. 1. dia p. 1/69 Az LHC és a Higgs-bozon Bolyai Kollégium fizikus szakszemináriuma 2008. nov. 5. Horváth Dezső MTA KFKI Részecske és Magfizikai

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

A részecskefizika anyagelmélete: a Standard modell

A részecskefizika anyagelmélete: a Standard modell A részecskefizika anyagelmélete: a Standard modell Horváth Dezső MTA KFKI Részecske- és Magfizikai Kutatóintézet, Budapest 1. Bevezetés A CERN nagy hadronütköztető (LHC) gyorsítóját 2008-ban indítják,

Részletesebben

Részecskék osztályozása, kölcsönhatások, Standard Modell?

Részecskék osztályozása, kölcsönhatások, Standard Modell? Részecskék osztályozása, kölcsönhatások, Standard Modell? Mag-, részecskefizika és asztrofizika 4. előadás 2018. október 2. Köszönet Pásztor Gabriellának http://gpasztor.web.cern.ch/gpasztor/mrf2017 Részecskefizika4,.htmlSzimmetriák,

Részletesebben

A részecskefizika eszköztára: felfedezések és detektorok

A részecskefizika eszköztára: felfedezések és detektorok A részecskefizika eszköztára: felfedezések és detektorok Varga Dezső MTA WIGNER FK, RMI NFO Az évszázados kirakójáték: az elemi részecskék rendszere A buborékkamrák kora: a látható részecskék Az elektronikus

Részletesebben

Indul a CERN óriási gyorsítója: mi az és mire jó?

Indul a CERN óriási gyorsítója: mi az és mire jó? Horváth Dezső: Indul a CERN óriási gyorsítója: mi az és mire jó? Schwartz 2009, Nagyvárad, 2009.11.07 p. 1/36 Indul a CERN óriási gyorsítója: mi az és mire jó? Schwartz Emlékverseny, Nagyvárad, 2009.11.07

Részletesebben

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető

Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető Mikrofizika egy óriási gyorsítón: a Nagy Hadron-ütköztető MAFIOK 2010 Békéscsaba, 2010.08.24. Hajdu Csaba MTA KFKI RMKI hajdu@mail.kfki.hu 1 Large Hadron Nagy Collider Hadron-ütköztető proton ólom mag

Részletesebben

A CERN óriási részecskegyorsítója és kísérletei

A CERN óriási részecskegyorsítója és kísérletei Horváth Dezső: A CERN óriási részecskegyorsítója és kísérletei Kaposvár, 2009 ápr. 17. p. 1/47 A CERN óriási részecskegyorsítója és kísérletei Horváth Dezső horvath@rmki.kfki.hu MTA KFKI Részecske és Magfizikai

Részletesebben

Higgs-bozon: a keresés húszéves kalandja

Higgs-bozon: a keresés húszéves kalandja Horváth Dezső: Higgs-bozon Atomki, Debrecen, 2013.11.19. p. 1 Higgs-bozon: a keresés húszéves kalandja Atomki nyílt nap, 2013.11.19. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont,

Részletesebben

Hogyan tegyük láthatóvá a láthatatlant?

Hogyan tegyük láthatóvá a láthatatlant? Hogyan tegyük láthatóvá a láthatatlant? Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport Bolyai Kollégium Budapest 2019. április 24 2015. évi Fizikai Nobel-díj Takaaki

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Megvan már a Higgs-részecske?

Megvan már a Higgs-részecske? Horváth Dezső: Megvan már a Higgs-részecske? Nagyvárad, 2012.11.10. p. 1/45 Megvan már a Higgs-részecske? Schwartz-2012 emlékverseny Nagyvárad, 2012.11.10 Horváth Dezső horvath.dezso@wigner.mta.hu MTA

Részletesebben

Tényleg felfedeztük a Higgs-bozont?

Tényleg felfedeztük a Higgs-bozont? Horváth Dezső: Tényleg felfedeztük a Higgs-bozont? Trefort Gimnázium, 2012.10.05. p. 1/45 Tényleg felfedeztük a Higgs-bozont? Trefort Gimnázium, 2012. okt. 5. Horváth Dezső horvath.dezso@wigner.mta.hu

Részletesebben

MEGLESZ-E A HIGGS-RÉSZECSKE A NAGY HADRONÜTKÖZTETŐVEL?

MEGLESZ-E A HIGGS-RÉSZECSKE A NAGY HADRONÜTKÖZTETŐVEL? Magyar Tudomány 2012/2 MEGLESZ-E A HIGGS-RÉSZECSKE A NAGY HADRONÜTKÖZTETŐVEL? Horváth Dezső a fizikai tudomány doktora, tudományos tanácsadó, MTA Wigner Fizikai Kutatóközpont, MTA ATOMKI horvath.dezso@wigner.mta.hu

Részletesebben

Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1

Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1 Szimmetriák és sértésük a részecskék világában a paritássértés 50 éve 1 Horváth Dezső (E-mail: horvath@rmki.kfki.hu) MTA KFKI Részecske és Magfizikai Kutatóintézet, Budapest és ATOMKI, Debrecen 1. Tükrözési

Részletesebben

Egyesített funkcionális renormálási csoport egyenlet

Egyesített funkcionális renormálási csoport egyenlet Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika

Részletesebben

A Higgs-bozon felfedezése: Nobel-díjas kaland

A Higgs-bozon felfedezése: Nobel-díjas kaland Horváth Dezső: Higgs-bozon KÖMAL, ELTE, 2013.10.29. p. 1 A Higgs-bozon felfedezése: Nobel-díjas kaland A KÖMAL díjkiosztó ünnepsége, ELTE, 2013.10.29. Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner

Részletesebben

Tényleg megvan a Higgs-bozon?

Tényleg megvan a Higgs-bozon? Horváth Dezső: Higgs-bozon CSKI, 2014.02.19. p. 1 Tényleg megvan a Higgs-bozon? CSFK CSI, 2014.02.19 Horváth Dezső horvath.dezso@wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Részecske- és Magfizikai

Részletesebben

A természet legmélyebb szimmetriái

A természet legmélyebb szimmetriái A természet legmélyebb szimmetriái Horváth Dezső horvath@rmki.kfki.hu. RMKI, Budapest és ATOMKI, Debrecen Horváth Dezső: A természet legmélyebb szimmetriái Ortvay-kollokvium, 2004. dec. 16. p.1 Vázlat

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen

A sötét anyag nyomában. Krasznahorkay Attila MTA Atomki, Debrecen A sötét anyag nyomában Krasznahorkay Attila MTA Atomki, Debrecen Látható és láthatatlan világunk A levegő Túl kicsi dolgok Mikroszkóp Túl távoli dolgok távcső, teleszkópok Gravitációs vonzás, Mágneses

Részletesebben