Billenőkörök. Mindezeket összefoglalva a bistabil multivibrátor az alábbi igazságtáblázattal jellemezhető: nem megen
|
|
- Erzsébet Kozma
- 9 évvel ezelőtt
- Látták:
Átírás
1 Billenőkörök A billenőkörök, vagy más néven multivibrátorok pozitívan visszacsatolt, kétállapotú áramkörök. Kimeneteik szigorúan két feszültségszint (LOW és HIGH) között változnak. Rendszerint két kimenettel rendelkeznek Q és Q, amelyek egymásnak negáltjai. Egy billenőkör LOW állapotban van, ha Q=LOW, és HIGH állapotban, ha Q=HIGH. Aszerint, hogy milyen módon valósul meg a pozitív visszacsatolás (4-1.ábra), a billenőkörök lehetnek: -bistabilok (minkét visszacsatoló tag rezisztív), -astabilok (mindkét visszacsatoló tag kapacitív), -monostabilok (egyik visszacsatoló tag rezisztív, a másik kapacitív). (Megj.: V 1 és V 2 nem kétpólusok, a 4-1.ábra csak elvi ábrázolás a könnyebb áttekinthetőség érdekében. V 1, V 2 -nek lehet harmadik kivezetése is, amelyik pl. valamilyen egyenfeszültség szintre csatlakozik.) Bistabil multivibrátorok Olyan billenőkörök, amelyeknek két bemenetük (S és R), ill. két Q és Q kimenetük van (4-2.ábra). Külső beavatkozás nélkül (S=0, R=0), bármelyik állapotukat (LOW vagy HIGH) korlátlan ideig megőrzik.(természetesen tápellátás esetén.) LOW-ból HIGH-ba billenthetők egy "set" impulzussal S=1, (természetesen továbbra is R=0), amely akár rövid idejű is lehet, illetve HIGH-ból LOW-ba billenthetők egy "reset" impulzussal R=1 (ebben az esetben S=0-nak kell lenni). Általában nem megengedett az egyidejű "set" és "reset". Mindezeket összefoglalva a bistabil multivibrátor az alábbi igazságtáblázattal jellemezhető: S R n Q n 1 Q Q n nem megen nem megen Astabil multivibrátorok Általában bemenettel nem rendelkező billenőkörök. Kimeneteik állapota, külső beavatkozás nélkül, a LOW és HIGH szint között folyamatosan billeg (egyik állapot sem stabil). Kimenetük azonban, egy jól meghatározott ideig tartózkodik az egyik, majd a másik állapotban, az így kapott jel általában négyszöghullám jellegű (4-3.ábra). t1 és t2 értékét az astabil visszacsatoló áramkörei (V 1 és V 2 ) határozzák meg (4-1. ábra). kinyomtatva: /11 szerző: Hevesi László
2 Ha az astabil bemenettel is rendelkezik, akkor a generált négyszögjel megfelelő feltételek esetén szinkronizálható a bemenő jellel. Monostabil multivibrátorok Olyan billenőkörök, amelyeknél az egyik állapot stabil, azaz külső beavatkozás nélkül ebben az állapotban találhatók korlátlan ideig. Külső beavatkozásra, a trigger bemenetre adott impulzus hatására, a másik állapotukba billennek egy előre meghatározott ideig, amit a monostabil egyik visszacsatoló áramkörében található R és C elemek szabnak meg. Ezt az időtartamot időzítésnek nevezik. Ezen időzítés letelte után maguktól visszabillennek stabil állapotukba. Egy vagy két bemenetük lehet, amelyeket trigger bemeneteknek hívnak, és ezek felfutó (Tr+), illetve lefutó (Tr-) élre érzékenyek (4-4.ábra). Billenőkörök gyakorlati megvalósítása Billenőkörök készíthetők diszkrét elemekből (pl.tranzisztorokból), és integrált áramkörökből (logikai kapukból, műveleti erősítőkből, valamint speciálisan e célra gyártott IC-kből). Billenőkörök tranzisztorokkal Billenőkörök tranzisztorokkal való megvalósítása az elektronika előadásokból ismertnek tekintendő, ezek részletes ismertetése nem a labor tárgykörébe tartozik. A Hallgatótól viszont elvárható, hogy az alábbi ábrák (4-5., 4-6., 4-7. ábrák) alapján felelevenítse az előadásokon szerzett ismereteit (azonosítsa az egyes áramköröket, magyarázza müködésüket, próbálja fázishelyesen megrajzolni az egyes billenőkörök fontosabb jelalakjait.) Billenőkörök logikai kapukkal Logikai kapukkal megvalósított billenőköröket láthat a 4-8., 4-9., 4-10.ábrákon. RS bistabilt a 4-8.ábrán, melynek működése az előadásról már szintén ismert. kinyomtatva: /11 szerző: Hevesi László
3 A 4-9.ábrán két inverterből felépített astabil látható. A fontosabb pontok feszültség-idő diagramjain nyomon követhető az áramkör működése. Az astabil megépíthető mind TTL, mind pedig CMOS inverterekből. TTL inverterek esetében azonban van egy megkötés, az R ellenállás nem lehet nagyobb mint 500. Kisfogyasztású LS inverterek esetében max.1k. (Indoklás: Egy normál TTL kapu bemenetére LOW szintet adva, az a föld felé 1.6 ma áramot szolgáltat. 1.6 ma x 500 = 0.8 V, tehát a még éppen elfogadható LOW szint). CMOS invertereknél a bemenő áram sok-sok nagyságrenddel kisebb. Ezeknél gyakorlatilag nincs ilyen megkötés az R értékére vonatkozóan. Bármely kondenzátor (pillanatnyi) u c feszültsége, amely 0-tól U 0 felé töltődik R ellenálláson keresztül a következő egyenlettel írható le: t β 1 u C u ρ 0 1 β RC C U e t ρ RC ln ahol: k ρ 1- k U0 tehát: a kondenzátor u c feszültsége, U 0 k-ad részét a fenti t idő alatt éri el. TTL kapuk esetében ismeretes az a tény, hogy kimeneteik: -"HIGH" szint esetén (2.4 5V) tartományban vannak (természetesen az 5V csak elvi felső határ). -"LOW" szint esetén (0 0.4V) tartományban találhatók. Bemeneteik a: - (2 5V) közötti feszültséget "HIGH" szintnek, - (0 0.8V) közötti feszültséget "LOW" szintnek fogadják el. A még éppen elfogadott bemenő (0.8 és 2.0V) és kimenő (0.4 és 2.4V) szinteket feltételezve, valamint azt, hogy az inverter e két szint között középen, azaz 1.4V-nál billen, a (4-9.ábrán) látható időzítésekkel lehet számolni. 1 t1 ρ RC ln ρ 0.69 RC t2 ρ RC ln ρ1.1rc ] ] Természetesen ezen előbb kiszámított értékektől t 1, t 2 időtartamok a valóságban eltérnek, mert az inverterek nem a fent feltételezett szinteken billennek. A 4-10.ábra NAND kapukból felépített monostabil multivibrátort mutat a legfontosabb pontok feszültségdiagramjaival, amelyeken nyomon követhető az áramkör működése. Felhasználhatók TTL vagy CMOS NAND-ek, azonban TTL kapuk esetében az előző pontban tárgyalt megkötés érvényes. Az elért időzítés: T υ 0.69 RC. kinyomtatva: /11 szerző: Hevesi László
4 Billenőkörök műveleti erősítőkkel A 4-11.ábrán bistabil multivibrátor látható. A műveleti erősítő az R 1 és R 2 ellenállásokkal Schmitt-triggert alkot +U k és -U k küszöbszintekkel, amelyek az R 1, R 2 ellenállások értékeitől, valamint a műveleti erősítő +U t és -U t tápfeszültségeitől függenek. Bemenő jel hiányában az invertáló bemenet földpotenciálon található. A Schmitt-trigger megőrzi előző állapotát. A bemenetre adott pozitív impulzus, (amely nagyobb mint +U k ) "LOW" állapotba, egy negatív impulzus (-U k alatti) pedig "HIGH" állapotba billenti. Astabil multivibrátort láthat a 4-12.ábrán. A műveleti erősítő az R 1 és R 2 ellenállásokkal ebben az esetben is Schmitt kört alkot +U k és -U k küszöbszintekkel. Ha a hiszterézises komparátor "HIGH" állapotban van (U ki = +U t ), a C kondenzátor R ellenálláson keresztül töltődni kezd +U t felé. Ha a B pont feszültsége eléri a felső küszöbszintet (U B = +U k ) a Schmitt kör átbillen "LOW" állapotba. Ekkor a B pont feszültsége csökkenni kezd és tart -U t felé (a kondenzátor kisül, majd ellenkező polaritással kezd töltődni), amíg el nem éri az alsó küszöbszintet (U B = -U k ). Ekkor a billenőkör ismét "HIGH" állapotba billen és a folyamat kezdődik előről. Ha R 1 és R 2 értékét úgy választják meg, hogy U k =U t / 2 akkor a generált négyszögjel periódusa: 1 T Ζ 2 RC ln Ζ 2.2 RC 2 1ς 3 Műveleti erősítőből felépített monostabil multivibrátor látható a 4-13.ábrán. kinyomtatva: /11 szerző: Hevesi László
5 Alapállapotban (bemenő jel hiányában) a neminvertáló bemenet földpotenciálon, az invertáló bemenet pedig egy előre beállított negatív feszültségen (-U p ) található, tehát U ki = +U t, és ezt az állapotát megőrzi mindaddig míg nincs bemenő jel. A C 2 kondenzátoron levő feszültség U C2 = +U t. (+U t és -U t a műveleti erősítő tápfeszültségei.) Pozitív impulzust adva a trigger bemenetre (úgy, hogy U A > 0) a műveleti erősítő átbillen "LOW" állapotba (U ki = -U t ). Ekkor B pont feszültsége -2U t lesz (közvetlenül az első pillanatban), mely -U p alatt van, így a bemenő trigger impulzus megszűnte után is "LOW" állapotban marad a műveleti erősítő addig, amíg a B pont el nem éri a -U p -t. Ekkor C 2 feszültsége U C2 = -(U t -U p ). A műveleti erősítő visszabillen eredeti "HIGH" állapotába, B pont +U t fölé kerül U t -U p értékkel, mely egy bizonyos idő után visszacsökken nullára, (miután a C 2 kondenzátor feszültsége U C2 = -(U t -U p ) értékről U C2 = +U t értékre változik R 1, R 2 ellenállásokon keresztül) készen állva egy újabb triggerimpulzus fogadására. Billenőkörök speciális IC-kel Számtalan cél-ic-t fejlesztettek ki billenőkörök építésére. A laborjegyzet terjedelme kizárja mindezek ismertetését, azonban érdemes néhány érdekesebb típust kiragadni közülük. 555-ös timer IC Cél-IC ellenére széles körű felhasználásnak örvend. Belső felépítése a ábrán látható. Az IC lelke egy külön törlőbemenettel rendelkező RS bistabil, amelyet két komparátor hajt meg. Az IC-ben helyet kapott továbbá: egy (5k -os ellenállásokból álló) feszültségosztó, mely a komparátorok számára állít elő 1/3 U t és 2/3 U t értékű referenciafeszültséget (ezen feszültségek értékei szükség esetén kívülről kismértékben módosíthatók a kontroll bemenet segíségével), egy végfokozat, amely maximálisan 200 ma-ig terhelhető, valamint egy kisütő tranzisztor, amely rendszerint egy külső kapacitást szokott a megfelelő pillanatban rövidre zárni. kinyomtatva: /11 szerző: Hevesi László
6 A ábra diagramján nyomon követhető a bistabil, a kisütés, valamint az IC kimenet értékei különböző "FK" és "AK" bemenő feszültségek esetén. ( A bistabil r törlő bemenetének természetesen elsőbbsége van az R és S bemenetekkel szemben V alatti feszültség szintet adva az r bemenetre, Q=0 lesz függetlenül attól, hogy az R és S illetve az "FK" és "AK" milyen értékű.) A következő ábra az 555-ös IC monostabilként történő felhasználását mutatja be. Az így kapott monostabil negatív élre billenő. Alapállapotban (ez a stabil állapot) U be = +U t S = 0; U C = 0; R = 0; a bistabil megőrzi előző állapotát Q = 0; U ki = LOW; a kisütő tranzisztor vezet és továbbra is U C = 0 állapotot biztosít. Ez az állapot korlátlan ideig fennmaradhat. Ha azonban U be < 1/3 U t alá csökken, S=1 Q=1; U ki = HIGH; a kisütő tranzisztor lezár, a C kondenzátor R ellenálláson keresztül +U t felé töltődni kezd. Amikor U C eléri 2/3 U t -t, R=1 (a helyes müködéshez ekkor már S=0 azaz U be > kinyomtatva: /11 szerző: Hevesi László
7 1/3 U t kell legyen), Q=0; U ki =LOW; kisütő tranzisztor vezet U C =0, visszaáll az alapállapot. Az áramkör kimenetén megjelenő impulzus szélessége T = 1.1 R C (amíg a C kondenzátor feszültsége nulláról + 2/3 U t -ig növekszik). A monostabil akkor működik helyesen ha a triggerimpulzus szélessége rövidebb mint az időzítés. Az 555-ös típusú IC astabilként müködik a ábra szerinti elrendezésben. A C kondenzátor az R 1 +R 2 ellenállásokon keresztül töltődik. Amikor U C > 2/3 Ut érték fölé emelkedne R=1; (S=0) lesz, Q=0 (U ki = LOW), a kisütő tranzisztor vezet, a C kondenzátor R 2 ellenálláson keresztül kezd kisülni. Amikor U C < 1/3 U t érték alá csökkenne S=0 (R=1) lesz, Q=1, U ki = HIGH, a kisütő tranzisztor lezár, a C kondenzátor ismét töltődni kezd R 1 +R 2 ellenállásokon keresztül és a folyamat ismétlődik előről. t 1 = (R 1 +R 2 ) C ln2 és t 2 = R 2 C ln 2. Ebben az elrendezésben csak olyan négyszögjel generálható, amelynél t 1 > t 2. Ez a hátrány kiküszöbölhető, ha két dióda segítségével külön választják a töltő és kisütő áramkört, amint azt a ábra mutatja. Az 555-ös IC újabb felhasználási körét mutatja a ábra. Ez egy úgynevezett időzítő áramkör, amelynél ellentétben a monostabillal a triggerimpulzus megjelenésekor a kimenet állapota nem változik. Ebben a pillanatban azonban beindul az időzítés, amelynek letelte után LOW szintre csökken a kimenet. kinyomtatva: /11 szerző: Hevesi László
8 Ebben a kapcsolásban az 555-ös Schmitt-triggerként működik 1/3 U t és 2/3 U t küszöbszintekkel. Alapállapotban U be = HIGH, T tranzisztor vezet, C kondenzátor kisütve, U C =0, R=0; S=1; Q=1 U ki =HIGH. Az időzítés beindítható ha U be LOW szintre csökken, a T tranzisztor lezár, C kondenzátor az R 1 ellenálláson keresztül +U t felé töltődni kezd. Q=1 és U ki = HIGH marad továbbra is, egészen addig amíg U C > 2/3 U t fölé nem lép. Ekkor R=0 Q=0 U ki =LOW lesz. A helyes működéshez az szükséges, hogy a bemenő feszültség U be hosszabb ideig tartózkodjon LOW szinten mint az időzítés (T = 1.1 R C) es CMOS IC ismertetése Az IC mind astabil, mind pedig monostabil üzemmódban használható. Az integrált áramkör lelke a Low Power Astable Multivibr. -el jelzett blokk, amely egy (nagypontosságú, 10kHz-ig 0.5%) szimmetrikus négyszögjelet előállító, kapuzható astabil multivibrátor, periódus idejét az 1, 2, 3-as lábakra csatlakoztatott külső R, C elemek határozzák meg. Az astabil kimenőjele közvetlenül (13-as lábon), vagy egy frekvencia felező (pontosabban impulzusszélesség kétszerező) után érhető el ( Q és Q 10, 11-es lábak). kinyomtatva: /11 szerző: Hevesi László
9 R C Osc.Out Ast.Contr. Ast.Contr. 5 4 Astable Gate Control Low Power Astable Multivibr. Freq. Divider Q Q Tr + Tr - Retrigger Monostab. Control CD4047 Retrigger Control Reset ábra -astabil üzemmódok: -szabadonfutó: U t -re: ast, ast, Tr, földre: Tr+, rtr, Res, bemenet: nincs, kimenet: Osc (T 0 =2.2 RC), Q, Q (T 0 =4.4 RC). -logikai 1-el kapuzott: U t -re: ast, Tr, földre: Tr+, rtr, Res, bemenet: ast, kimenet: Osc (T 0 =2.2 RC), Q, Q (T 0 =4.4 RC). -logikai 0-val kapuzott: U t -re: Tr, földre: ast, Tr+, rtr, Res, bemenet: ast, kimenet: Osc (T 0 =2.2 RC), Q, Q (T 0 =4.4 RC). megj.: csak a Q, Q kimeneteken garantált az 50% -os kitöltési tényező, Osc-on nem. -monostabil üzemmódok: -felfutó élvezérelt: U t -re: ast, földre: ast, Tr, rtr, Res, bemenet: Tr+, kimenet: Q, Q (J=2.48 RC). -lefutó élvezérelt: U t -re: ast, Tr+, földre: ast, rtr, Res, bemenet: Tr, kimenet: Q, Q (J=2.48 RC). -retriggerelhető, felfutó élvezérelt: U t -re: ast, földre: ast, Tr, Res, bemenet: Tr+, rtr, kimenet: Q, Q (J=2.48 RC). megj.: a triggerjel hosszára teljesen immunis az áramkör, csak az illető elrendezés szerinti fel/lefutó él számít. kinyomtatva: /11 szerző: Hevesi László
10 A mérendő áramkörök 1 Műveleti erősítővel megvalósított astabil multivibrátor: vizsgálandó jelalakok U A és U ki1. Ut1 +12V C1 "A" R1 P1 0V Ut2-12V 0.47u R3 10k 1.5k 47k IC1 741 R2 10k R4 4.7k D1 1N4007 Uki ábra es IC-vel megvalósított, felfutó élvezérelt monostabil multivibrátor. Mivel ilyen alkatrész nem található a szabványos Leybold dobozok között, ezért egy általános foglalat-dobozba lett az IC behelyezve. A dobozon belül kötöttük be: U t -re: ast, és földre: ast, rtr, Res kivezetéseket a hallgató által megvalósítandó összekötések minimalizálása céljából (igaz ugyan, hogy így csak monostabilként használható). Felfutó élvezérelt monostabilként használható az ábrán látható módon, lefutó élvezérelként, ha Tr+ = Ut és Tr = bemenet. Vizsgálandó jelalakok U B és U ki2. Ut1 +12V Osc.Out Q Uki2 Q Ut Retrigger Reset Tr + IC GND Ube2 Ast.contr. Ast.contr. Tr - R5 1.5k C2 P2 10k 0.47u 4.21 ábra "B" ös timerrel megvalósított monostabil multivibrátor. Mivel az áramkör érzékeny a triggerjel hosszára (lásd 4.15 ábránál leírtakat), ezért alkalmaztunk az U be3 és az IC bemenete között egy kvázidifferenciáló áramkört (1nF, 100k ). Nagyobb időállandó esetén a tényleges triggerjel szélessége nő, kisebb időállandónál amplitudóban nem bukik 1 U t alá, és ezáltal nem triggerelődik az 555-ös. Vizsgálandó jelalakok U C és U ki3. 3 kinyomtatva: /11 szerző: Hevesi László
11 Ut1 +12V Ube3 R6 100k C3 1n 1N4007 D2 "C" P3 47k R7 1.5k IC3 555 R1 R S Uki3 C4 0.47u 4.22 ábra Elvégzendő feladatok: 1.) Építse meg a fenti 4.20, 4.21, 4.22 ábrákon látható áramköröket a Leybold alaplapján lehetőleg úgy, hogy a három egység minél jobban elkülönüljön! Kösse össze őket a következőképpen: -az astabil kimenete U ki1 hajtsa meg a 4047-es monostabil felfutó élvezérelt triggerbemenetét U be2, -a 4047-es Q kimenete U ki2 pedig az 555 monostabil lefutó élvezérelt U be3 bemenetét. Ezáltal egy olyan eszközt kapunk, amely a laboratóriumi impulzusgenerátor tan-változatának tekinthető. U ki1 a generátor szinkron kimenete, míg U ki3 a jel kimenet. Ha U ki3 -at tekintjük U ki1 -hez képest, akkor azt tapasztaljuk, hogy P 1 segítségével a generátor periódusideje, P 2 segítségével U ki3 késése (U ki1 -hez képest), míg P 3 -al U ki3 kitöltési tényezője állítható (épp, mint az impulzusgenerátor esetén!). Az összeállítás után, még egyszer ellenőrizze a kapcsolás helyességét, majd kapcsolja be a tápfeszültséget! Oszcilloszkópon jelenítse meg az egyes mérőpontok (U A, U ki1, U B, U ki2, U C, U ki3 ) idődiagramjait! A potméter értékek állításával figyelje ezek hatásait! 2.) Kérjen a gyakorlatvezetőtől potméter-állásokat! Ezek figyelembe vételével állítsa (Ohmmérő segítségével, tápfeszültség lekapcsolva, potenciométerek kiemelve az áramkörből!) P 1, P 2, P 3 -at az előbbi értékekre! 3.) Számolja ki elméletileg az egyes időzítéseket a fenti potméterértékek figyelembevételével! 4.) Helyezze vissza a potenciométereket, kapcsolja vissza a tápfeszültséget, majd oszcilloszkóp segítségével nézze meg és rajzolja le fázishelyesen U A, U ki1, U B, U ki2, U C, U ki3 idődiagramokat! 5.) Vesse össze az elméletileg számolt és a gyakorlatilag megmért (oszcillogramokról leolvasott) időzítéseket! 6.) Mérje meg az impulzusgenerátor műszaki jellemzőit: -periódusidő T min, T max, -impulzus késleltetés t min, t max, -kitöltési tényező C min, C max. 7.) Írja le a D 1, D 2 diódák szerepét! kinyomtatva: /11 szerző: Hevesi László
Billenőkörök. Billenő körök
Billenő körök A billenőkörök, vagy más néven multivibrátorok pozitívan visszacsatolt, kétállapotú áramkörök. Kimeneteik szigorúan két feszültségszint (LOW és HIGH) között változnak. A billenőkörök rendszerint
Jelformáló áramkörök vizsgálata Billenő áramkörök vizsgálata (Időkeret: 5óra) Név:
Jelformáló áramkörök vizsgálata Billenő áramkörök vizsgálata (Időkeret: 5óra) Név: Előzetes kérdések: Írja az áramköri jelhez a dióda és a tranzisztor lábainak elnevezését! Kell ügyelni a nf kapacitású
ANALÓG ÉS DIGITÁLIS TECHNIKA I
ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS BILLENŐ ÁRAMKÖRÖK 2010/2011 tanév 2. félév 1 IRODALOM
Hobbi Elektronika. Bevezetés az elektronikába: Scmitt-trigger kapcsolások
Hobbi Elektronika Bevezetés az elektronikába: Scmitt-trigger kapcsolások 1 Az NE555 mint Schmitt-trigger Ha az NE555 trigger és treshold bemeneteit közös jellel vezéreljük, hiszterézissel rendelkező billenő
MUNKAANYAG. Farkas József. Digitális áramkörök kapcsolásai. Kapcsolási rajzok értelmezése, készítése. A követelménymodul megnevezése:
Farkas József Digitális áramkörök kapcsolásai. Kapcsolási rajzok értelmezése, készítése A követelménymodul megnevezése: Mérőműszerek használata, mérések végzése A követelménymodul száma: 396-6 A tartalomelem
I M P U L Z U S T E C H N I K A
ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 I M P U L Z U S T E C H N I K A ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Impulzus fogalma...3 Impulzus megadása, impulzus jellemzők...3 Az impulzusok
Billenő áramkörök Jelterjedés hatása az átvitt jelre
Billenő áramkörök Jelterjedés hatása az átvitt jelre Berta Miklós 1. Billenőkörök A billenőkörök pozitívan visszacsatolt digitális áramkörök. Kimeneti feszültségük nem folytonosan változik, hanem két meghatározott
54 523 01 0000 00 00 Elektronikai technikus Elektronikai technikus
A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
96. ábra Analóg kijelzésű frekvencia- és kapacitásmérő blokkvázlata
5.19. Frekvencia- és kapacitásmérő analóg kijelzéssel Univerzálisan használható frekvencia- és kapacitásmérő tömbvázlata látható a 96. ábrán. Ez a mérési összeállítás a digitális és az analóg mérési módszerek
Jelalakvizsgálat oszcilloszkóppal
12. fejezet Jelalakvizsgálat oszcilloszkóppal Fűrészjel és impulzusjel megjelenítése oszcilloszkóppal Az oszcilloszkópok feszültség vagy bármilyen feszültséggé átalakítható mennyiség időbeli változásának
A stabil üzemű berendezések tápfeszültségét a hálózati feszültségből a hálózati tápegység állítja elő (1.ábra).
3.10. Tápegységek Az elektronikus berendezések (így a rádiók) működtetéséhez egy vagy több stabil tápfeszültség szükséges. A stabil tápfeszültség időben nem változó egyenfeszültség, melynek értéke független
Kapcsolóüzemű tápegységek és visszahatásaik a hálózatra
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Elektrotechnikai - Elektronikai Tanszék Villamosmérnöki BSc alapszak Kapcsolóüzemű tápegységek és visszahatásaik a hálózatra Név: Szaka Gábor Tankör:
ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK
ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK Az Elektronikai alapismeretek szakmai előkészítő tantárgy érettségi vizsga részletes vizsgakövetelményeinek kidolgozása a műszaki
Magyar nyelvű szakelőadások a 2000-2001-es tanévben
Erdélyi Magyar Műszaki Tudományos Társaság Magyar nyelvű szakelőadások a 2000-2001-es tanévben Kolozsvári Műszaki Egyetem Számítástechnika Kar Szerzők dr. Baruch Zoltán Bíró Botond dr. Buzás Gábor dr.
Irányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális
MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)
Miskolci Egyetem Elektrotechnikai- Elektronikai Intézeti Tanszék MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) A mérések célja: megismerni a leggyakoribb alap- és alkalmazott
Elektronikus dobókocka
Elektronikus dobókocka I. Feladat: egy olyan készülék elkészítése, amely a különféle játékokban használatos dobókockát helyettesíti. II. Gyakorlati megvalósítása: Az elektronikus dobókocka szerkezetileg
Mérés és adatgyűjtés
Mérés és adatgyűjtés 5. óra Mingesz Róbert Szegedi Tudományegyetem 2012. március 10. MA - 5. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/47 Tartalom I 1 Elektromos mennyiségek mérése 2 A/D konverterek
34-35. Kapuáramkörök működése, felépítése, gyártása
34-35. Kapuáramkörök működése, felépítése, gyártása I. Logikai áramkörcsaládok Diszkrét alkatrészekből épülnek fel: tranzisztorok, diódák, ellenállások Két típusa van: 1. TTL kivitelű kapuáramkörök (Tranzisztor-Tranzisztor
Impulzustechnikai áramkörök szimulációja és dokumentálása
Dienes Zoltán Impulzustechnikai áramkörök szimulációja és dokumentálása A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem
DR. KOVÁCS ERNŐ TRANZISZTOROS KAPCSOLÁSOK MÉRÉSE
MISKOLCI EYETEM ÉPÉSZMÉRNÖKI ÉS INFORMTIKI KR ELEKTROTECHNIKI- ELEKTRONIKI TNSZÉK DR. KOÁCS ERNŐ TRNZISZTOROS KPCSOLÁSOK MÉRÉSE illamosmérnöki BSc alapszak Nappali tagozat MÉRÉSI UTSÍTÁS 2007. MISKOLCI
4. mérés Jelek és jelvezetékek vizsgálata
4. mérés Jelek és jelvezetékek vizsgálata (BME-MI, H.J.) Bevezetés A mérési gyakorlat első része a mérésekkel foglalkozó tudomány, a metrológia (méréstechnika) néhány alapfogalmával foglalkozik. A korszerű
2. Digitális hálózatok...60
2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk
Hobbi Elektronika. Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások
Hobbi Elektronika Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások 1 Felhasznált irodalom Torda Béla: Bevezetés az elektrotechnikába 2. CONRAD Elektronik: Elektronikai kíséletező készlet
Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.
3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi elépítését (tömbvázlatát)
Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.
Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,
DIGITÁLIS TECHNIKA 7-ik előadás
IGITÁLI TECHNIKA 7-ik előadás Előadó: r. Oniga István Egyetemi docens 2/2 II félév zekvenciális (sorrendi) hálózatok zekvenciális hálózatok fogalma Tárolók tárolók JK tárolók T és típusú tárolók zámlálók
RC és RLC áramkörök vizsgálata
dátum:... a mérést végezte:... RC és RLC áramkörök vizsgálata legalapvetőbb RLC áramkörök ellenállásból, induktivitásból (tekercs) és kapacitásból (kondenzátor) állnak. Ezek bemenetén és kimenetén mérhető
5 Egyéb alkalmazások. 5.1 Akkumulátorok töltése és kivizsgálása. 5.1.1 Akkumulátor típusok
5 Egyéb alkalmazások A teljesítményelektronikai berendezések két fõ csoportját a tápegységek és a motorhajtások alkotják. Ezekkel azonban nem merülnek ki az alkalmazási lehetõségek. A továbbiakban a fennmaradt
Elektronika I. laboratórium mérési útmutató
Elektronika I. laboratórium mérési útmutató Összeállította: Mészáros András, Horváth Márk 2015.08.26. A laboratóriumi foglalkozásokkal kapcsolatos általános tudnivalók: E.1 A foglalkozások megkezdésének
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Villamosmérnöki Intézet Elektrotehnikai - Elektronikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Villamosmérnöki Intézet Elektrotehnikai - Elektronikai Intézeti Tanszék 5/1. melléklet Villamosmérnöki szak Elektronikai tervezés szakirány Belsőégésű
Elektrotechnika alapjai
Budapesti Műszaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék Elektrotechnika alapjai Mérési útmutató 1. mérés Ismerkedés az oszcilloszkóppal Dr. Nagy István előadásai
23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL
23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból
12. GYAKORLÓ FELADATOK ÉS MEGOLDÁSAIK
. GYKORLÓ FELDTOK ÉS MEGOLDÁSIK z itt szereplõ feladatok az egyes fejezetek tematikáihoz alkalmazkodó csoportosításban és sorrendben lettek összeállítva. *-gal jelölt *G. i. j. számozású feladatok megoldásai
Az 555-ös időzítő használata a mikrokontrolleres tervezésben
Az 555-ös időzítő használata a mikrokontrolleres tervezésben Nagy Gergely BME EET 01. április 4. ebook ready Bevezetés Az 555-ös IC-t Hans Camenzind tervezte 1971-ben a Signetics (ma Philips) munkatársaként.
Pontosság. időalap hiba ± 1 digit. Max. bemeneti fesz.
Conrad Szaküzlet 1067 Budapest, Teréz krt. 23. Tel: (061) 302-3588 Conrad Vevőszolgálat 1124 Budapest, Jagelló út 30. Tel: (061) 319-0250 Függvénygenerátor, FG-8202 Rend.sz.: 12 31 13 Az útmutatóban foglaltaktól
Elektropneumatika. 3. előadás
3. előadás Tartalom: Az elektropneumatikus vezérlés Az elektropneumatikus a rendszer elemei: hálózati tápegység, elektromechanikus kapcsoló elemek: relék, szelepek, szenzorok. Automatizálástechnika EP
Számítógépes irányítások elmélete (Súlyponti kérdések)
Számítógépes irányítások elmélete 182 Számítógépes irányítások elmélete (Súlyponti kérdések) 1. A számítógépes irányításban alkalmazott jeltípusok. 2. Digitális bemenetek megvalósítása kapcsolásaik és
Digitális kártyák vizsgálata TESTOMAT-C" mérőautomatán
Digitális kártyák vizsgálata TESTOMAT-C" mérőautomatán NAGY SANDOR ZOLTAN FRIGYES IVAN BHG BEVEZETÉS Az elektronikus termékek minőségét alapvetően az alapanyagok tulajdonsága, a gyártástechnológia műszaki
Nyomtatóport szintillesztő 3V2
Nyomtatóport szintillesztő 3V2 A 3V2-es verziójú illesztő kártya lehetővé teszi a nyomtató porthoz vagy az UC300-hoz való kényelmes, egyszerű hozzáférést, a jelszintek illesztett megvalósítása mellett.
GSM Gate Control Pro 20 GSM Gate Control Pro 1000
GSM Gate Control Pro 20 GSM Gate Control Pro 1000 TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ v1.21.2387 és újabb modulverziókhoz Dokumentumverzió: 1.61 2015.10.19 Jellemzők: Kimenetek vezérlése interneten keresztül,
Telepítési és kezelési útmutató
Steca TR A503 TTR szolár termál vezérlés beépített adatrögzítő funkcióval, 5 bemenet/3 kimenet Telepítési és kezelési útmutató Forgalmazó: Spring Solar Kft. 8111 Seregélyes-Jánosmajor Ipari Park 20. ép.
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
ProCOM GPRS ADAPTER TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ. v1.00.0096 és újabb modul verziókhoz Dokumentumverzió: 1.41 2013.08.09
ProCOM GPRS ADAPTER TELEPÍTÉSI ÉS ALKALMAZÁSI ÚTMUTATÓ v1.00.0096 és újabb modul verziókhoz Dokumentumverzió: 1.41 2013.08.09 Tartalomjegyzék 1 A ProCOM GPRS Adapter alapvető funkciói... 3 1.1 Funkciók
Méréstechnika. 3. Mérőműszerek csoportosítása, Elektromechanikus műszerek általános felépítése, jellemzőik.
2 Méréstechnika 1. A méréstechnika tárgya, mérés célja. Mértékegységrendszer kialakulása, SI mértékegységrendszer felépítése, alkalmazása. Villamos jelek felosztása, jelek jellemző mennyiségei, azok kiszámítása.
Térvezérlésű tranzisztor
Térvezérlésű tranzisztor A térvezérlésű tranzisztorok a vékonyréteg félvezetős eszközök kategoriájába sorolhatók és a tranzisztorok harmadik generációját képviselik. 1948-ban jelentik be amerikai kutatók
Szóbeli vizsgatantárgyak
Szóbeli vizsgatantárgyak 1. Villamosságtani és gépészeti alapismeretek A) Mechanika, gépelemek B) Műszaki ábrázolás, anyag- és gyártásismeret C) Műszaki villamosságtan 2. Szakmai ismeretek A) Szerkezettan
Az 555-ös időzítő használata a mikrokontrolleres tervezésben
Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Az 555-ös időzítő használata a mikrokontrolleres tervezésben Nagy Gergely Elektronikus
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
DT1100 xx xx. Galvanikus leválasztó / tápegység. Kezelési útmutató
Galvanikus leválasztó / tápegység Kezelési útmutató Tartalomjegyzék 1. Kezelési útmutató...4 1.1. Rendeltetése... 4 1.2. Célcsoport... 4 1.3. Az alkalmazott szimbólumok... 4 2. Biztonsági útmutató...5
DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók
DOC N : DT1361-1393-62 DT13xx Gyújtószikramentes NAMUR / kontaktus leválasztók Felhasználói leírás DT1361, DT1362, DT1363, DT1364, DT1371, DT1372, DT1373, DT1381, DT1382, DT1384, DT1393 típusokhoz Gyártó:
WiLARM-1 GSM Átjelző Modul Telepítői útmutató
Version: 1.2 1 Tartalomjegyzék I. Általános leírás... 3 II. A beüzemelés lépései... 4 III. SMS programozás... 5 IV. Telepítői beállítások... 6 IV. Funkciók... 10 V. Műszaki paraméterek... 13 VI. Programozás
Az INTEL D-2920 analóg mikroprocesszor alkalmazása
Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan
LPT illesztőkártya. Beüzemelési útmutató
LPT illesztőkártya Beüzemelési útmutató Az LPT illesztőkártya a számítógépen futó mozgásvezérlő program ki- és bemenőjeleit illeszti a CNC gép és a PC nyomtató (LPT) csatlakozója között. Főbb jellemzők:
2. tartály tele S3 A tartály tele, ha: S3=1 I 0.2. 3. tartály tele S5 A tartály tele, ha: S5=1 I 0.4
Követővezérlés tárolással Tárolótartályrendszer: feltöltés vezérlése Három tárolótartály tele állapotát az S1, S3, S5 jeladók, az üres jelet az S2, S4, S6 jeladók szolgáltatják az előbbi sorrendben. A
1. Ismertesse az átviteltechnikai mérőadók szolgáltatásait!
Ellenőrző kérdések A mérés elején öt kérdésre kell választ adni. Egy hibás válasz a mérésre adott osztályzatot egy jeggyel rontja. Kettő vagy annál több hibás válasz pótmérést eredményez! A kapcsolási
VHR-23 Regisztráló műszer Felhasználói leírás
VHR-23 Regisztráló műszer Felhasználói leírás TARTALOMJEGYZÉK 1. ÁLTALÁNOS LEÍRÁS... 3 1.1. FELHASZNÁLÁSI TERÜLET... 3 1.2. MÉRT JELLEMZŐK... 3 1.3. BEMENETEK... 4 1.4. TÁPELLÁTÁS... 4 1.5. PROGRAMOZÁS,
Közlekedés gépjárművek elektronikája, diagnosztikája. Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai
Közlekedés gépjárművek elektronikája, diagnosztikája Mikroprocesszoros technika. Memóriák, címek, alapáramkörök. A programozás alapjai TÁMOP-2.2.3-09/1-2009-0010 A Széchenyi István Térségi Integrált Szakképző
FONTOS BIZTONSÁGI UTASÍTÁSOK
FONTOS BIZTONSÁGI UTASÍTÁSOK A fenti nemzetközileg elfogadott jelek figyelmeztetnek a készülék belsejében előforduló elektromos veszély lehetőségére. Az egyenlő oldalú háromszögben elhelyezkedő nyílhegyben
Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész
Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 2. rész 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások Losonczi Lajos: Analóg Áramkörök
HITELESÍTÉSI ELŐ ÍRÁS HIDEGVÍZMÉRŐ K IMPULZUSADÓS VÍZMÉRŐ K HE 6/2-2004
HITELESÍTÉSI ELŐ ÍRÁS HIDEGVÍZMÉRŐ K IMPULZUSADÓS VÍZMÉRŐ K HE 6/2-2004 FIGYELEM! Az előírás kinyomtatott formája tájékoztató jellegű. Érvényes változata Az OMH minőségirányítási rendszerének elektronikus
Mikroelektronikai kutatás a dig^ 20 éve
Mikroelektronikai kutatás a dig^ 20 éve MEGBÍZHATÓSÁG VIZSGÁLATOK, KAPCSOLATOK A tudományos-technikai forradalom időszakában a gazdasági élet fejlődése egyre erőteljesebb automatizálást, hatékony és megbízható
Hobbi Elektronika. Bevezetés az elektronikába: Boole algebra, logikai kifejezések
Hobbi Elektronika Bevezetés az elektronikába: Boole algebra, logikai kifejezések 1 Felhasznált anyagok Mészáros Miklós: Logikai algebra alapjai, logikai függvények I. BME FKE: Logikai áramkörök Electronics-course.com:
Kapcsolóüzemű feszültségstabilizátorok túlterhelés elleni védelme ETO 621.376.722.1:621.316,
D. EDL ICHÁD BME Mikrohullámú Híradástechnika Tanszék Kapcsolóüzemű feszültségstabilizátorok túlterhelés elleni védelme ETO 621.376.722.1:621.316, A -félvezető kapcsolóeszközök fejlődésének következtében
Vegyes témakörök. A KAT120B kijelző vezérlése Arduinoval
Vegyes témakörök A KAT120B kijelző vezérlése Arduinoval 1 KAT120B hívószám kijelző A KAT120B kijelző a NEMO-Q International AB egy régi terméke. A cég ma is fogalmaz különféle hívószám kijelzőket bankok,
MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:
10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén
Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok
Telepítési utasítás ORU-30
TART TECH KFT. 9611 Csénye, Sport u. 26. Tel.: 95/310-221 Fax: 95/310-222 Mobil: 30/9973-852 E-mail: tarttech@mail.globonet.hu Telepítési utasítás ORU-30 típusú univerzális 10 lépcsős vezérlőegységhez
1. Kombinációs hálózatok mérési gyakorlatai
1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:
T E R M É K I S M E R T E T Ő
T E R M É K I S M E R T E T Ő INDUKTÍV KÖZELÍTÉSKAPCSOLÓK Fémes anyagok jelenlétének, közelítésének, helyzetének jellemzésére alkalmasak. Mechanikus működésű jeladók, végálláskapcsolók helyettesítésére
A G320 SERVOMOTOR MEGHAJTÓ ÜZEMBE HELYEZÉSE (2002. március 29.)
A G320 SERVOMOTOR MEGHAJTÓ ÜZEMBE HELYEZÉSE (2002. március 29.) Köszönjük, hogy a G320 szervomotor meghajtót választotta. A G320 DC szervomotor meghajtóra a vásárlástól számítva 1 év gyártási hibákra kiterjedő
A forgórész az állórész eredő mezejének irányába áll be. Ezt a mágneses erők egyensúlya alapján is követhetjük.
55 Léptetőmotorok A léptetőmotorok kívülről adott, digitális vezérlőimpulzusokat diszkrét szögelfordulásokká alakítanak át. Az elfordulás szöge arányos az impulzusok számával, a forgási sesség pedig az
HASZNÁLATI ÚTMUTATÓ. Version 1.0 2001. március
HASZNÁLATI ÚTMUTATÓ Version 1.0 2001. március BIZTONSÁGI ÚTMUTATÓ FIGYELEM: Az áramütés veszélyének elkerülése érdekében ne távolítsa el a készü-lék burkolatát ill. hátlapját. A készülék belsejében felhasználó
FILCOM. Visszamosatást vezérlő egység
FILCOM Visszamosatást vezérlő egység Tartalom 1.0 Bevezetés...2 2.0 Műszaki jellemzők...2 3.0 Kijelző panel...2 3.1 LED...3 3.2 Kijelző...3 4.0 A vezérlő egység hardver konfigurálása...3 4.1 Váltóáramú
Kapacitív áramokkal működtetett relés áramkörök 621.316.92S:621.318.B7:S21.3S2.$
DR. GÁL JÓZSEF Budapesti Műszaki Egyetem Kapacitív áramokkal működtetett relés áramkörök BTO 621.316.92S:621.318.B7:S21.3S2.$ A cikk cím szerinti témáját két, egymástól időben nagyon távoleső kapcsolási
3. Mérés. Áramkör építési gyakorlat III. Rezgéskeltők II
3. Mérés Áramkör építési gyakorlat III. Rezgéskeltők II. 204.03.5. Az elkövetkező mérés első fele két kapcsolás erejéig tovább taglalja a műveleti erősítővel megvalósítható egyszerű oszcillátorok témakörét:
M-LINE 80.2 M-LINE 125.2 M-LINE 95.4. Kezelési utasítás..autoradiokeret.
WWW M-LINE 80.2 M-LINE 125.2 Kezelési utasítás.autoradiokeret. HU Gratulálunk az Ön új GLADEN erősítőjéhez. Az erősítő üzembehelyezése előtt, kérjük figyelmesen olvassa el ezen használati utasítást és
A DELPHYS UPS ÁRAMKÖREI.
UPS technika. Villamos hálózatok zavar analízis vizsgálata. Termikus mérések. Mérésszolgáltatás. 1 A DELPHYS UPS ÁRAMKÖREI. Ver.: 1.0 Készült: 2001.12.03. Ellenőrizve: 2001.12.03. Utolsó módositás: 2006.06.19.
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. május 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 13. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
S7021 ADATGYŰJTŐ. 2-csatornás adatgyűjtő számláló és bináris bemenettel. Kezelési leírás
S7021 ADATGYŰJTŐ 2-csatornás adatgyűjtő számláló és bináris bemenettel Kezelési leírás Nem hivatalos fordítás! Minden esetleges eltérés esetén az eredeti, angol nyelvű dokumentum szövege tekintendő irányadónak:
Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk
1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek
MÉRÉSI JEGYZŐKÖNYV. A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének
MÉRÉSI JEGYZŐKÖNYV A mérések célja: A szinuszos oszcillátorok főbb jellemzőinek mérése, az oszcillációs feltételek felismerésének gyakorlása A mérések tárgya: A mérést végezte: A mérések helye: A mérések
Vastagréteg hangfrekvenciás oszcillátorok
Vastagréteg hangfrekvenciás oszcillátorok HORVÁTH LAJOS REMDC Összefoglalás A cikk egy konkrét vastagréteg áramköri típus kifejlesztése kapcsán bemutatja annak fontosságát, hogy már a kapcsolási elrendezés
11.2. A FESZÜLTSÉGLOGIKA
11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy
Versenyző kódja: 31 27/2012. (VIII. 27.) NGM rendelet 54 523 02-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2015 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési
Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész
Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,
Sorompó kezelés mérlegműszerrel
METRISoft Mérleggyártó KFT PortaWin (PW2) Jármű mérlegelő program 6800 Hódmezővásárhely Jókai u. 30 Telefon: (62) 246-657, Fax: (62) 249-765 e-mail: merleg@metrisoft.hu Web: http://www.metrisoft.hu Módosítva:
Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 3. FEJEZET
Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 5. félév Óraszám: 2+2 1 3. FEJEZET TÁPEGYSÉGEK A tápegységek építése, üzemeltetése és karbantartása a teljesítményelektronika
FIR és IIR szűrők tervezése digitális jelfeldolgozás területén
Dr. Szabó Anita FIR és IIR szűrők tervezése digitális jelfeldolgozás területén A Szabadkai Műszaki Szakfőiskola oktatójaként kutatásaimat a digitális jelfeldolgozás területén folytatom, ezen belül a fő
Használati útmutató. 1.0 verzió. 2003. augusztus
Használati útmutató 1.0 verzió 2003. augusztus BIZTONSÁGI ELŐÍRÁSOK FIGYELMEZTETÉS: A tűzveszély vagy elektromos áramütés veszélyének elkerülése érdekében, a berendezést ne érje eső vagy nedvesség hatása.
SmartLink-G SmartLink-GP GSM hívó. Programozói leírás
SmartLink-G SmartLink-GP GSM hívó Programozói leírás Tartalomjegyzék TARTALOMJEGYZÉK... 2 1 BEMUTATÁS... 4 2 ÁLTALÁNOS INFORMÁCIÓK... 4 2.1 MELLÉKELT DOKUMENTÁCIÓK... 4 2.2 LEÍRÁSOK... 4 2.3 ELÉRHETŐSÉGEK...
FAAC 531 EM. Az 531 EM automata mozgató belső használatra és garázskapuk működtetésére lett tervezve és gyártva. Minden másfajta használat helytelen.
FAAC 531 EM Az 531 EM automata garázsmotor szekcionált vagy billenő kapuk mozgatására használandó. A készülék egy egybeéptített elektromechanikus motorból, vezérlőegységből és egy lámpából áll, ami a plafonra
CALL FPI CALL FCRI CALL FS CALL FCRS
CALL FPI CALL FCRI CALL FS CALL FCRS ÁLATLÁNOS JELLEMZŐK Mikroprocesszor vezérlésű kültéri sziréna, villogóval. Ellenálló polikarbonát ház Időjárásálló belső fémburkolat Egy hang,- és egy fényindító bemenet.
GRUNDFOS KEZELÉSI UTASÍTÁSOK. Hydro Multi-E. Telepítési és üzemeltetési utasítás
GRUNDFOS KEZELÉSI UTASÍTÁSOK ydro Multi-E Telepítési és üzemeltetési utasítás Magyar (U) Magyar (U) Telepítési és üzemeltetési utasítás Az eredeti angol változat fordítása. TARTALOMJEGYZÉK Oldal 1. A dokumentumban
MULTICAL 402 Használati utasítása
MULTICAL 402 Használati utasítása www.kamstrup.com MULTICAL 402 Energia mérés A MULTICAL 402 a következőképpen működik: Az áramlásmérő rögzíti, hogy hány m 3 (köbméter) távfűtött melegvíz folyik át a fűtőrendszeren.
TFBE1301 Elektronika 1.
E, Kísérleti Fizika Tanszék TFBE1301 Elektronika 1. Térvezérlésű tranzisztorok E, Kísérleti Fizika Tanszék TÉRVEZÉRLÉŰ TRANZIZTOROK (FET-ek) Térvezérlésű (unipoláris) tranzisztor (Field Effect Transistor
DELTA VFD-E frekvenciaváltó kezelési utasítás
DELTA VFD-E frekvenciaváltó kezelési utasítás RUN indítás STOP / RESET leállítás/törlés ENTER menü kiválasztás, értékek mentése MODE kijelzett érték kiválasztása, visszalépés A frekvenciaváltó csatlakoztatása:
FAAC 844T. Háromfázisú Toló Motor Vezérlés
FAAC 844T Háromfázisú Toló Motor Vezérlés MASCO Biztonságtechnikai és Nyílászáró Automatizálási Kereskedelmi Kft. H-1045 Budapest, Madridi u.2., T: (+36 1) 3904170, Fax: 3904173, masco@masco.hu, www.masco.hu
Digitális technika kidolgozott tételek
Digitális technika kidolgozott tételek 1. digit jel, kódok Analóg jel: általában lineáris egységek dolgozzák fel, időben folyamatos, valamilyen függvénnyel leírhatóak. Jellemzői: egyenszint átvitel, jel-zaj
DT920 Fordulatszámmérő
DOC N : DT920 No EEx-62 DT920 Fordulatszámmérő Felhasználói leírás Gyártó: DATCON Ipari Elektronikai Kft 1148 Budapest, Fogarasi út 5 27 ép Tel: 460-1000, Fax: 460-1001 2 Tartalomjegyzék 1 Rendeltetés4