Helyi tanterv. Fizika

Hasonló dokumentumok
mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

HELYI TANTERV. Fizika

FIZIKA NYEK reál (gimnázium, óra)

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Fizika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-11./

Fizika. Fejlesztési feladatok

HELYI TANTERV FIZIKA Tantárgy

Az osztályozóvizsga követelményei fizika tantárgyból 9. osztály

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Vizsgatémakörök fizikából A vizsga minden esetben két részből áll: Írásbeli feladatsor (70%) Szóbeli felelet (30%)

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. tanév. Az éves órakeret felosztása:

FIZIKA VIZSGATEMATIKA

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

TANTERV. A évfolyam emelt szintű fizika tantárgyához. 11. évfolyam: MECHANIKA. 38 óra. Egyenes vonalú egyenletes mozgás kinematikája

Boros Sámuel Szakközépiskola, Szakiskola. Helyi tanterv 2. kötet

V e r s e n y f e l h í v á s

Fizika vizsgakövetelmény

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika a gimnáziumok évfolyama számára és Fizika a szakközépiskolák évfolyama számára (2+2+2)

FIZIKA 4 ÉVFOLYAMOS HELYI TANTERVE

FIZIKA helyi tanterv Általános tantervű, 9-12 évfolyamos gimnáziumok számára. (készült a B kerettantervi változat alapján)

Osztályozó vizsga anyagok. Fizika

VÁLASZTHATÓ FIZIKA 9. évfolyam (gimnázium, 2 óra)

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Energetikai Szakgimnázium és Kollégium

FIZIKA. Helyi tanterv. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 14. melléklet alapján

mélységben elsajátíttatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz.

Fizika. Tanmenet. 7. osztály. ÉVES ÓRASZÁM: 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz::

Célok és feladatok. Fejlesztési feladatok

9. évfolyam I. MOZGÁSTAN

Célok és feladatok. Fejlesztési feladatok

Előzetes megjegyzések

A TAPOLCAI BATSÁNYI GIMNÁZIUM ÉS KOLLÉGIUM HELYI TANTERVE FIZIKA

HELYI TANTERV FIZIKA (B VÁLTOZAT) Tantárgy

Helyi tanterv Fizika

Legyen képes egyszerű megfigyelési, mérési folyamatok megtervezésére, tudományos ismeretek megszerzéséhez célzott kísérletek elvégzésére.

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Eötvös József Általános Iskola és AMI Helyi tanterv 2013 FIZIKA

Futball Akadémia évf. Fizika

FIZIKA. Heti óraszámok. komm. Kéttan- nyelvű. Mat-fiz Biolkém. Oszt. típus. Élsport. Tehets. Dráma. Angol. Emelt. gond. emelt. 9.

Kandó Kálmán Szakközépiskola Miskolc, Palóczy utca 3. FIZIKA

Helyi tanterv fizika biztosítja a fizika belső logikájának megtartását az elmúlt évtizedekben bevált szemléletmódot és módszereket

FIZIKA 7-8. évfolyam

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

TANMENET Fizika 7. évfolyam

Kerettantervi ajánlás a helyi tanterv készítéséhez

Ember és természet. műveltségterület. Fizika évfolyam

Fizika. Célok és feladatok

Fizika. A tanítási-tanulási folyamat középpontjában a tanulók állnak, ezért: Padányi Katolikus Gyakorlóiskola 1

évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: Tanítási órák száma: 1 óra/hét

EMELT FIZIKA (gimnázium, 3x3x4x3)

A Tanév itt kezdődik! EMBER ÉS TERMÉSZET MŰVELTSÉGTERÜLET A NAT-BAN ÉS A KERETTANTERVEKBEN

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, május-június

FIZIKA (206 órás, három évfolyamos B változat)

Fizika a gimnázium évfolyama számára (2+2+2)

Fizika a gimnázium évfolyama számára (2+2+2)

FIZIKA 6 ÉVFOLYAMOS HELYI TANTERVE

A mechanikai alaptörvények ismerete

Speciális mozgásfajták

9-12. évfolyam számára (B változat)

FIZIKA (206 órás, három évfolyamos B változat)

ÚJGENERÁCIÓS FIZIKATANKÖNYV 7. ÉVFOLYAM

FIZIKA (206 órás, három évfolyamos B változat)

A Baktay Ervin Gimnázium alap fizika tanterve a NYEK-es gimnáziumi osztályok számára heti óraszám éves óraszám

EMELT ÓRASZÁMÚ FIZIKA B (szakközépiskola, óra)

fiatalokkal, és mi az, amit mélyebben feldolgoz. Az Alkalmazások és a Jelenségek címszavak alatt felsorolt témák olyanok, amelyekről fontos, hogy

HELYI TANTERV. Mechanika

FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK

FIZIKA (206 órás, három évfolyamos B változat)

Pedagógiai Program (Helyi tanterv)

A fizika tantárgy szakközépiskolai helyi tanterve

Helyi tanterv Fizika az általános iskolák 7 8. évfolyama számára

9-10. évfolyam. A Baktay Ervin Gimnázium alap fizika tanterve a 4 és 5 évfolyamos gimnáziumi osztályok számára

FIZIKA B VÁLTOZAT (gimnázium, óra) Célok és feladatok

Fizika. helyi tanterv. általános tantervű osztályok számára heti óraszámra. Budapest, március 14.

A Baktay Ervin Gimnázium alap fizika tanterve a 4 évfolyamos gimnáziumi osztályok számára

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

Fizika tanterv a normál, kéttannyelvű és sportiskolai tantervi képzésben résztvevők számára 7 8.

Tanulmányok alatti vizsga Fizika Gimnázium

Fizika helyi tanterv

Pedagógiai Program Helyi tanterve

Fizika az általános iskolák 7 8. évfolyama számára

Fizika tantárgyi program

NT Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat

Követelmény fizikából Általános iskola

FIZIKA A GIMNÁZIUM ÉVFOLYAMAI SZÁMÁRA, EMELT ÓRASZÁMBAN TANULÓ OSZTÁLYOK RÉSZÉRE

FIZIKA TANTERV A GIMNÁZIUM ÉVFOLYAMAI SZÁMÁRA NYELVI ELŐKÉSZÍTŐ ÉVFOLYAMOS OSZTÁLYOK RÉSZÉRE

FIZIKA TANTERV A GIMNÁZIUM ÉVFOLYAMA SZÁMÁRA EMELT ÓRASZÁMÚ TANULÓCSOPORTOK

FIZIKA Célok és feladatok

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST

Mit nevezünk nehézségi erőnek?

A számonkérés értékelése: 25%-tól elégséges (2) 85%-tól jeles (5) a közbülső érdemjegyek megállapítása a helyi szokásoknak megfelelően történik.

Bolyai János Általános Iskola, Óvoda és Alapfokú Művészetoktatási Intézmény Fizika

Debreceni SZC Baross Gábor Középiskolája és Kollégiuma Debrecen, Budai Ézsaiás u. 8/A. OM azonosító: Pedagógiai program

FIZIKA Egy órával magasabb B változat

FIZIKA EMELTSZINTŰ ÉRETTSÉGIRE VALÓ FELKÉSZÍTÉS

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

Fizika Négy évfolyamos gimnázium

Átírás:

Tóparti Gimnázium és Művészeti Szakközépiskola Székesfehérvár Helyi tanterv Fizika Öt évfolyamos gimnázium nyelvi előkészítő osztály 9-12. évfolyam matematika - fizika irányultság HELYI TANTERVI ÓRASZÁMOK 5 évfolyamos gimnázium matematika-fizika irányultság Évfolyam: nyelvi előkészítő 9. 10. 11. 12. Heti óraszám: 0,5 3 3 2 1 Évi óraszám: 18 108 108 72 32

1. BEVEZETÉS Jelen helyi tanterv az 51/2012. (XII.21.) EMMI rendelet: 3. sz. melléklet: Kerettanterv a gimnáziumok 9-12. évfolyama számára 3.2.08.2-es sorszámú fizika kerettanterve B változat alapján készült. A helyi tanterv összeállításának fő szempontjai A fizika alaptudomány, amelynek saját fogalomrendszere, alapelvei és törvényei vannak. Ezeket a többi természettudomány is felhasználja a saját gondolati rendszere kimunkálásához, ezért vállalnunk kell a fizikai előismeretek biztosítását a többi reáltantárgy tanításához és az általános műveltség megalapozásához. a helyi igények és lehetőségek összehangolt figyelembevételének alapján határozni meg a célokat és feladatokat. a meglevő ismeretek és fogalmak elmélyítése; a természettudomány többi tantárgyi feldolgozásához nélkülözhetetlen fizikai alapismeret biztosítása; a témakörök feldolgozása elsősorban az általános műveltség megszerzését biztosítja, valamint a fizikára épülő élethivatást segíti elő (kiegészítve az érettségi előkészítőn) a magasabb szintű tudás elsajátításával; az új ismeretek megalapozása gyakorlati megfigyelésekre, tanári és tanulói kísérletek tapasztalataira épül; megfelelő időkeret biztosítása a tanári, bemutató kísérletek, valamint a tanulói kísérletek és mérések elvégzésére; az alap-kerettantervhez képest a megnövelt óraszámhoz igazodva néhány ismeret hangsúlyosabb tanítása és további fogalom, részegység bevezetése (az emelt tananyagokból kiegészítve), amelyek a fizikára jellemző gondolati ív logikus felépítését erősítik, vagy a későbbi évfolyamok munkáját alapozzák meg; segíti a felkészülést és a sikeres szereplést a versenyeken Az életkornak megfelelő szinten egyenlő mértékben kell hangsúlyt kapniuk a természettudomány alappilléreinek: a) az ismeretanyagnak (elvek, tények, törvények, elméletek, alkalmazások); b) a tudományos megismerés folyamatának (a módszernek, ahogyan feltárjuk a természet titkait, pl. tudatos megfigyelés, kísérlet, elemzés, szakirodalom használata stb.); c) annak a gondolkodási, viselkedési és szokásrendszernek, amely a szolidaritás igényének kialakulását, felelősségteljes, etikus magatartást, kreatív és kritikus gondolkodás megalapozását, valamint más emberi értékeket biztosítja. d) az ismereteknek, kompetenciáknak a mindennapi élettel és a társadalmi gyakorlattal való kapcsolatok fontosságának (az egészség- és környezetvédelem, a technika és a társadalom kapcsolatrendszere) felismerésének.) 1.1. A fizika tantárgy pedagógiai, feladatai A természettudományos kompetencia középpontjában a természetet és a természet működését megismerni igyekvő ember áll. A fizika tantárgy a természet működésének a tudomány által feltárt legalapvetőbb törvényszerűségeit igyekezik megismertetni a diákokkal. A törvényszerűségek harmóniáját és alkalmazhatóságuk hihetetlen széles skálatartományát megcsodálva, bemutatja, hogyan segíti a tudományos módszer a természet erőinek és javainak az ember szolgálatába állítását. Olyan ismeretek megszerzésére ösztönözzük a fiatalokat, amelyekkel egész életpályájukon hozzájárulnak majd a társadalom és a természeti környezet összhangjának fenntartásához, a tartós fejlődéshez és ahhoz, hogy a körülöttünk levő természetnek minél kevésbé okozzunk sérülést. Nem kevésbé fontos, hogy elhelyezzük az embert kozmikus környezetünkben. A természettudomány és a fizika ismerete segítséget nyújt az ember világban elfoglalt helyének megértésére, a világ jelenségeinek a természettudományos módszerrel történő rendszerbe foglalására. A természet törvényeinek az embert szolgáló sikeres alkalmazása gazdasági előnyöket jelent, de ezen túl szellemi, esztétikai örömöt és harmóniát is kínál.

A tantárgy tanulása során a tanulók megismerik az alapvető fizikai jelenségeket és az azokat értelmező modellek és elméletek történeti fejlődését, érvényességi határait, a hozzájuk vezető megismerési módszereket. A fizika tanítása során azt is be kell mutatnunk, hogy a felfedezések és az azok révén megfogalmazott fizikai törvények nemcsak egy-egy kiemelkedő szellemóriás munkáját, hanem sok tudós századokat átfogó munkájának koherens egymásra épülő tudásszövetét jelenítik meg. A törvények folyamatosan bővültek, és a modern tudományos módszer kialakulása óta nem kizárják, hanem kiegészítik egymást. Az egyre nagyobb teljesítőképességű modellekből számos alapvető, letisztult törvény nőtt ki, amelyet a tanulmányok egymást követő szakaszai a tanulók kognitív képességeinek megfelelő gondolati és formai szinten mutatnak be, azzal a célkitűzéssel, hogy a szakirányú felsőfokú képzés során eljussanak a választott terület tudományos kutatásának frontvonalába. A tantárgy tanulása során a tanulók megismerkedhetnek a természet tervszerű megfigyelésével, a kísérletezéssel, a megfigyelési és a kísérleti eredmények számszerű megjelenítésével, grafikus ábrázolásával, a kvalitatív összefüggések matematikai alakú megfogalmazásával. Ez utóbbi nélkülözhetetlen vonása a fizika tanításának, hiszen e tudomány fél évezred óta tartó diadalmenetének ez a titka. Fontos, hogy a tanulók a jelenségekből és a köztük feltárt kapcsolatokból leszűrt törvényeket a természetben újabb és újabb jelenségekre alkalmazva ellenőrizzék, megtanulják igazolásuk vagy cáfolatuk módját. A tanulók ismerkedjenek meg a tudományos tényeken alapuló érveléssel, amelynek része a megismert természeti törvények egy-egy tudománytörténeti fordulóponton feltárt érvényességi korlátainak megvilágítása. A fizikában használatos modellek alkotásában és fejlesztésében való részvételről kapjanak vonzó élményeket és ismerkedjenek meg a fizika módszerének a fizikán túlmutató jelentőségével is. A tanulóknak fel kell ismerniük, hogy a műszakitermészettudományi mellett az egészségügyi, az agrárgazdasági és a közgazdasági szakmai tudás szilárd megalapozásában sem nélkülözhető a fizika jelenségkörének megismerése. 1.2. A fizika tantárgy fejlesztési területei és nevelési A gazdasági élet folyamatos fejlődése érdekében létfontosságú a fizika tantárgy korszerű és további érdeklődést kiváltó tanítása. A tantárgy tanításának elő kell segítenie a közvetített tudás társadalmi hasznosságának megértését és technikai alkalmazásának jelentőségét. Nem szabad megfeledkeznünk arról, hogy a fizika eszközeinek elsajátítása nagy szellemi erőfeszítést, rendszeres munkát igénylő tanulási folyamat. A Nemzeti Alaptanterv természetismeret kompetenciában megfogalmazott fizikai ismereteket nem lehet egyenlő mélységben elsajátítatni. Így a tanárnak dönteni kell, hogy mi az, amit csak megismertet a fiatalokkal, és mi az, amit mélyebben feldolgoz. Az Alkalmazások és a Jelenségek címszavak alatt felsorolt témák olyanok, amelyekről fontos, hogy halljanak a tanulók, de mindent egyenlő mélységben - ebben az órakeretben - nincs módunk tanítani. Ahhoz, hogy a fizika tantárgy tananyaga személyesen megérintsen egy fiatalt, a tanárnak a tanítás módszereit a tanulók, tanulócsoportok igényeihez, életkori sajátosságaihoz, képességeik kifejlődéséhez és gondolkodásuk sokféleségéhez kell igazítani. A jól megtervezett megismerési folyamat segíti a tanulói érdeklődés felkeltését, a tanulási célok elfogadását és a tanulók aktív szerepvállalását is. A fizika tantárgy tanításakor a tanulási környezetet úgy kell tehát tervezni, hogy az támogassa a különböző aktív tanulási formákat, technikákat, a tanulócsoport összetétele, mérete, az iskolákban rendelkezésre álló feltételek függvényében. Így lehet reményünk arra, hogy a megfelelő kompetenciák és készségek kialakulnak a fiatalokban. A tehetséges diákok egy részének nincs lehetősége, hogy hat- vagy nyolc évfolyamos gimnáziumba járjon, bár egyértelműen felfedezhető a reál-műszaki érdeklődése. Az ilyen fiatalok számára kínál az érdeklődésüknek megfelelő optimális felkészülési és fejlődési programot a négy évfolyamos tehetséggondozó gimnáziumok fizika tanterve.

A négy évfolyamos tehetséggondozó gimnáziumok sajátos lehetősége, hogy a különböző iskolákból érkező tanulók tudását egységes szintre hozzák, ezt követően megfelelő fizikaképzésben részesüljenek, hogy felkészüljenek a továbbtanulásra. A kerettantervben több helyen teremtettünk lehetőséget, hogy a fizika tanítása során a diákok személyes aktivitására lehetőség nyíljon, ami feltétele a fejlesztésnek. Ezt az aktivitást kívánja segíteni félévente legalább 2 2 mérési gyakorlat beiktatása a tantervbe. Ezek tárgyát a tanár a félév aktuális témájához illeszkedve, az iskola lehetőségei és a tanulócsoport sajátosságai alapján választhatja meg. Hangsúlyozottan ajánlott, hogy a méréscsoport magját az érettségi mérési feladatai adják. A kerettanterv évente egy terjedelmesebb, kiscsoportos keretek közt megoldandó projektmunkát is tartalmaz. Ennek feladataira ajánlásokat fogalmaz meg. A kötelező órakereten kívül szervezett szakköri foglalkozásokon segítheti a tanár a tanulók felkészülését. A foglalkozások témáinak feldolgozásakor figyeljünk arra, hogy kapcsolódjanak az egyes tanulók személyes érdeklődéséhez, továbbtanulási irányához, többi természettudományi (pl. kémia, biológia és földrajz) tantárggyal való együttműködésre. 1.3. A fizika tantárgy szerepe a kulcskompetenciák fejlesztésében A fizika tantárgy a NAT-ban meghatározott fejlesztési területek és kulcskompetenciák közül különösen az alábbiak fejlesztéshez járul hozzá: Természettudományos kompetencia: A természettudományos törvények és módszerek hatékonyságának ismerete, az ember világbeli helye megtalálásának, a világban való tájékozódásának elősegítésére. A tudományos elméletek társadalmi folyamatokban játszott szerepének ismerete, megértése; a fontosabb technikai vívmányok ismerete; ezek előnyeinek, korlátainak és társadalmi kockázatainak ismerete; az emberi tevékenység természetre gyakorolt hatásának ismerete. Szociális és állampolgári kompetencia: a helyi és a tágabb közösséget érintő problémák megoldása iránti szolidaritás és érdeklődés; kompromisszumra való törekvés; a fenntartható fejlődés támogatása; a társadalmi-gazdasági fejlődés iránti érdeklődés. Anyanyelvi kommunikáció: hallott és olvasott szöveg értése, szövegalkotás a témával kapcsolatban, mind írásban, a különböző gyűjtőmunkák esetében, mind pedig szóban, a prezentációk alkalmával. Matematikai kompetencia: alapvető matematikai elvek alkalmazása az ismeretszerzésben és a problémák megoldásában, ami a 7 8. osztályban csak a négy alapműveletre és a különböző grafikonok rajzolására és elemzésére korlátozódik, a magasabb évfolyamokon ez fokozatosan bővül a matematika tantárgy keretében tanultaknak megfelelően. Digitális kompetencia: az alsóbb évfolyamokon információkeresés a témával kapcsolatban, adatok gyűjtése, feldolgozása, rendszerezése, a kapott adatok kritikus alkalmazása, felhasználása, grafikonok készítése, a gimnázium magasabb évfolyamain önálló internetes témakutatás, szimulációs programok, számítógépes mérőprogramok futtatása, adatfeldolgozás, függvényábrázolás. Hatékony, önálló tanulás: új ismeretek felkutatása, értő elsajátítása, feldolgozása és beépítése; munkavégzés másokkal együttműködve, a tudás megosztása; a korábban tanult ismeretek, saját és mások élettapasztalatainak felhasználása. Kezdeményezőképesség és vállalkozói kompetencia: az új iránti nyitottság, elemzési képesség, különböző szempontú megközelítési lehetőségek számbavétele. Esztétikai-művészeti tudatosság és kifejezőképesség: a saját prezentáció, gyűjtőmunka esztétikus kivitelezése, a közösség számára érthető tolmácsolása. 1.4. A pedagógiai szakaszok fejlesztési Fejlesztési célok a 9-10. évfolyamon A gimnáziumi fizikatanítás első ciklusában a közös szintre hozást, az ismerkedést szolgálja az alapozó mérési gyakorlatok beiktatása. Az egyes témák feldolgozása minden esetben a korábbi

ismeretek, hétköznapi tapasztalatok összegyűjtésével, a kísérletezéssel, méréssel indul, de az ismertszerzés fő módszere a tapasztalatokból szerzett információk rendszerezése, matematikai leírása, igazolása, ellenőrzése és az ezek alapján elsajátított ismeretanyag alkalmazása. Ez utóbbi lényegi része a feladatmegoldás és esetenként az eredmények kísérleti ellenőrzése is. A 9. évfolyamon először a kinematika, majd a dinamika, végül a folyadékok és gázok témaköre kerül feldolgozásra, sok kísérlettel, gyakorlati alkalmazással, lassan fokozódó tempóban. Célunk a korszerű természettudományos világkép alapjainak és a mindennapi élet szempontjából fontos gyakorlati fizikai ismeretek kellő mértékű elsajátítása. A tanuló érezze, hogy a fizikában tanultak segítséget adnak számára, hogy biztonságosabban közlekedjen, hogy majd energiatudatosan éljen, olcsóbban éljen, hogy a természeti jelenségeket megfelelően értse és tudja magyarázni, az áltudományos reklámok ígéreteit helyesen tudja kezelni stb. Ennek hatékony módja lehet a tanár által jól választott problémamegoldás, továbbá például a fakultatív felkészülés után tartott tanulói feldolgozások és kiselőadások, ismeretterjesztő szakanyagok közös megtekintése és megbeszélése. Fejlesztési célok a 11-12. évfolyamon A képzésnek ebben a szakaszában a diákok absztrakciós képességének fejlődése, matematikai ismereteinek bővülése lehetőséget ad a matematikailag igényesebb anyagrészek tárgyalására, esetenként a deduktív ismeretszerzési módszerek bemutatására is. Először az elektromágneses indukciót és a váltóáramú elektromos energiahálózatot tárgyalják, majd a hullámviselkedés kap kiemelt hangsúlyt. A mechanikai és elektrodinamikai rezgések és hullámok után a fény hullámtulajdonságai, majd a fény kettős természetének párhuzamaként bevezetett anyaghullámok tárgyalása vezet el az elektron hullámtermészetén alapuló kvantummechanikai atommodellig (ez utóbbi csak képszerűen, kvalitatív szinten szerepel a tantervben). Az atommodellek fejlődésének bemutatása jó lehetőséget ad a fizikai törvények feltárásában az alapvető modellezés lényegének koncentrált bemutatására. Az atomszerkezetek megismerésén keresztül jól kapcsolható a fizikai és a kémiai ismeretanyag, illetve megtárgyalható a kémiai kötésekkel összetartott kristályos és cseppfolyós anyagok mikroszerkezete és fizikai sajátságaik közti kapcsolat. Ez utóbbi témának fontos része a félvezetők tárgyalása. A 12. évfolyam anyaga a társadalmi közfigyelem középpontjában álló magfizika témakörével kezdődik, magába foglalva a nukleáris technika kérdéskörét, annak kockázati tényezőit is. A Csillagászat és asztrofizika fejezet a klasszikus csillagászati ismeretek rendszerezése után a magfizikához jól kapcsolódó csillagszerkezeti és kozmológiai kérdésekkel folytatódik. A Környezetfizika és a Fizika és társadalom témakörei a fizika mai legfontosabb gyakorlati alkalmazásait tárgyalja, ezzel mintegy szintézisbe is fogja a korábbiakban itt-ott már érintett kérdéseket. Kiemelt hangsúlyt kap az energia- és környezettudatosság kérdésköre, a kockázat fogalmának alapszintű megismerése. Fókuszáltan törekszünk a mindennapi eszközök működésének fizikai magyarázatára. Ez a szakasz az érettségire felkészítés időszaka is, ezért az érettségire készülőknek intenzívebb oktatást kell szervezni. Így emelt szintű oktatás szervezésével alkalmassá válhatnak arra, hogy fizika tárgyból emelt szinten érettségizzenek, és alkalmassá váljanak a műszaki pályán történő egyetemi szintű továbbtanulásra. Ehhez a felkészítéshez szükséges a megfelelő matematikai ismeretek megszerzése is.

1.5. A fizikatantárgy tanításának helyi sajátosságai az öt évfolyamos gimnáziumi, nyelvi előkészítő osztállyal induló, matematika fizika irányultságú csoportban A fizika tantárgy tanítása a nyelvi előkészítős osztály matematika-fizika irányultságú és biológiakémia irányultságú csoportjának 9NY évfolyamon és a 9-12. évfolyamon csoportbontásban történik. Az osztály matematika-fizika irányultságú csoportja ezen öt év alatt elsajátítja a négy évfolyamos gimnáziumi fizika kerettantervben megfogalmazott 9-11 évfolyamra előírt követelményeket az emelt óraszámú tananyag bizonyos elemeivel kiegészítve. Az óraszámok is ezért emelkednek az egyes részeknél. Fontos a számolási, grafikon leolvasási feladatok, valamint az érettségi teszt típusú feladok beépítése. Szintén lehetőség van a fizika és természettudományos versenyek feladattípusainak beépítésére. Külön hangsúlyt kap a fizika tantárgy matematikai leíró eszközkészletének időrendi összehangolása, szükséges ezt a 9NY évfolyamon előkészíteni, szükség esetén kiegészíteni. Itt szerepet kaphat projekt készítés. Fontos a mérési gyakorlatok beépítése, amelyhez szükséges a fizikaszertár eszközeinek karbantartása és az eszközállomány fejlesztése demonstrációs-, és különösen tanuló-kisérletek végzéséhez. Cél lehet az emeltszintű érettségihez szükséges mérések eszköztárának beszerzése. Ez lehetővé teszi a tanulóknak az érettség vizsgán, versenyeken a biztos eszközhasználatot, és a fizika gyakorlati irányának megerősítését, az esetleges kutató kedv kialakítását. Más osztályainknál pedig a tantárgyhoz való mind kedvezőbb viszony kialakítását. A 10. évfolyamban a tanulók dönthetnek, hogy tanulmányaikat kiegészítik-e az emeltszintű előkészítő tananyagával Ennek megfelelően csatlakoznak az iskola 11-12. évfolyamán kialakított emeltszintű érettségire felkészítő csoporthoz. A csoport kialakítása évfolyamszinten az igényekhez illeszkedő számban történik, ami azt jelenti, hogy a náluk kisebb óraszámban tanulókkal kerülnek várhatóan egy csoportba. Érettségire az előkészítő választásától függetlenül a törvényben megfogalmazottak szerint jelentkezhetnek. A sikeres emeltszintű érettségihez azonban szükséges a kiegészítő tananyagok elsajátítása, a tananyagrészek összekapcsolódásának megismerése, a jelenségek komplexitásának mind mélyebb megértése és értelmezése, amelyre az emelt szintű fizikacsoport tanterve ad lehetőséget. 2. TANTÁRGY TARTALMAK 2.1. A 9ny nyelvi előkészítő évfolyam tanterve Az éves órakeret felosztása Évi óraszám: 18 óra heti 0,5 óra A fejezetek címei Óraszámok mértékegységek,vektorok,grafikonok a fizikában 8 kísérlet, mérés, a fizikában 8 számonkérés 2 összesen: 18 Tematikai egység A tematikai egység nevelési- Órakeret: Kísérlet mérés a fizikában 8óra A 7 8. évfolyamon tanult fogalmak A kísérletezési kompetencia fejlesztése a legegyszerűbb kézi mérésektől a számítógépes méréstechnikáig. A tanult ismeretek gyakorlati alkalmazása

fejlesztési egyszerű hétköznapi jelenségekre, problémákra Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Egyszerű hétköznapi jelenségek a fizika nyelvezetének helyes ismertetése és magyarázata használata Könnyen elvégezhető kísérletek megfigyelések pontosítása és magyarázatuk a meglévő igény felébresztése pontos ismeretekkel megfigyelésre modell a fizikában a modell szerepének megértése Kulcsfogalma kísérlet, jelenség, modell k/ fogalmak Tematikai egység A tematikai egység nevelésifejlesztési Problémák, jelenségek, gyakorlati alkalmazások, ismeretek mértékegység, SI mértékegységrendszer, mennyiség normál alak és prefixumok vektorok összeadása, eredő fogalma mennyiségek kapcsolatának megadási módjai Egyes változók kifejezése fizikai, kémiai képletekből. Kulcsfogalmak / fogalmak Órakeret: 8 óra A 7 8. évfolyamon tanult alapfogalmak, függvényfogalom, a grafikus ábrázolás elemei, vektorok, egyenletrendezés. A tulajdonság és mennyiség kapcsolatának, valamint különbözőségének tudatos felismerése. Kapott összefüggések (grafikus) ábrázolása és matematikai leírása. A problémamegoldó képesség fejlesztése a grafikus ábrázolás és az ehhez kapcsolódó egyszerű feladatok megoldása során (is). A fizika már ismert matematikai eszközkészletének rendezése a fizika nyelvezetének helyes használata A korábban tanultak ismeretek felidézése, rendszerezése képletek átrendezése, ellenőrzése mértékegységgel A képlet értelmének, jelentőségének belátása. Helyettesítési érték kiszámítása képlet alapján. Matematika: vektorok, grafikonok, egyenlet, egyenletrendszer Informatika: táblázatok, kémia: képletek értelmezése.. matematika: egyenletrendezés a tanult mértékegységek, és váltásuk; vektor, vektorok összeadása, képletrendezés

2.2. A 9. évfolyam tanterve Évi óraszám: 108óra heti 3 óra Az éves órakeret felosztása A fejezetek címei Óraszámok 1. Minden mozog, a mozgás viszonylagos a mozgástan elemei 22 2. Ok és okozat (Arisztotelésztől Newtonig) A newtoni mechanika elemei 37 3. Folyadékok és gázok mechanikája 12 4. Erőfeszítés és hasznosság. Energia munka teljesítmény hatásfok 15 mérési gyakorlat 6 összefoglalás, írásbeli számonkérés 12 A tanév végi összefoglalás 4 összesen 108 Tematikai egység Előzetes tudás A tematikai egység nevelésifejlesztési 1. Minden mozog, a mozgás viszonylagos a mozgástan Órakeret: elemei 22 óra Hétköznapi mozgásokkal kapcsolatos gyakorlati ismeretek. A 7 8. évfolyamon tanult kinematikai alapfogalmak, az út- és időmérés alapvető módszerei, függvényfogalom, a grafikus ábrázolás elemei, egyenletrendezés. A tulajdonság és mennyiség kapcsolatának, valamint különbözőségének tudatos felismerése. A kinematikai alapfogalmak, mennyiségek kísérleti alapokon történő kialakítása, illetve bővítése, az összefüggések (grafikus) ábrázolása és matematikai leírása. A természettudományos megismerés Galilei-féle módszerének bemutatása. A kísérletezési kompetencia fejlesztése a legegyszerűbb kézi mérésektől a számítógépes méréstechnikáig. A problémamegoldó képesség fejlesztése a grafikus ábrázolás és az ehhez kapcsolódó egyszerű feladatok megoldása során (is). A tanult ismeretek gyakorlati alkalmazása hétköznapi jelenségekre, problémákra (pl. közlekedés, sport). Problémák, jelenségek, gyakorlati alkalmazások, ismeretek A már megismert mozgások áttekintése a mozgásokat megkülönböztető szempontok Alapfogalmak: a köznapi testek mozgásformái: haladó mozgás és forgás. Mennyiségek megadási formája Hely, hosszúság és idő mérése A tanuló legyen képes a mozgásokról tanultak és a köznapi jelenségek összekapcsolására, a fizikai fogalmak helyes használatára, egyszerű számítások elvégzésére. Ismerje a mérés lényegi jellemzőit, a szabványos és a gyakorlati mértékegységeket. Legyen képes gyakorlatban Matematika: függvény fogalma, grafikus ábrázolás, egyenletrendezés. Informatika: függvényábrázolás (táblázatkezelő használata). Testnevelés és sport:

Hosszúság, terület, térfogat, tömeg, sűrűség, idő, erő mérése. Hétköznapi helymeghatározás, úthálózat km-számítása. GPSrendszer létezése és alkalmazása. Egy test helyének meghatározásához szükséges ismeretek A mozgás viszonylagossága, a vonatkoztatási rendszer. Galilei relativitási elve. Mindennapi tapasztalatok egyenletesen mozgó vonatkoztatási rendszerekben (autó, vonat). Alkalmazások: földrajzi koordináták; GPS; helymeghatározás, távolságmérés radarral. Egyenes vonalú egyenletes mozgás kísérleti vizsgálata és mennyiségi jellemzői. Mikola Sándor (Mikola-cső) Grafikus leírás. Sebesség, átlagsebesség. Sebességrekordok a sportban, sebességek az élővilágban. Egyenes vonalú egyenletesen változó mozgás kísérleti vizsgálata és mennyiségi jellemzői. A szabadesés vizsgálata. A nehézségi gyorsulás meghatározása. alkalmazni a megismert mérési módszereket. Tudatosítsa a viszonyítási rendszer alapvető szerepét, megválasztásának szabadságát Értelmezze az egyenes vonalú egyenletes mozgást és jellemző mennyiségeit, tudja azokat grafikusan ábrázolni. Ismerje a változó mozgás általános fogalmát, értelmezze az átlag- és pillanatnyi sebességet. Ismerje a gyorsulás fogalmát, vektor-jellegét. Tudja ábrázolni az s-t, v-t, a-t grafikonokat. Tudjon egyszerű feladatokat megoldani. Ismerje Galilei modern tudományteremtő, történelmi módszerének lényegét: a jelenség megfigyelése, értelmező hipotézis felállítása, számítások elvégzése, az eredmény ellenőrzése célzott kísérletekkel. érdekes sebességadatok, érdekes sebességek, pályák technikai környezete. Biológia-egészségtan: élőlények mozgása, sebességei, reakcióidő. Művészetek; magyar nyelv és irodalom: mozgások ábrázolása. Technika, életvitel és gyakorlat: járművek sebessége és fékútja, követési távolság, közlekedésbiztonsági eszközök, technikai eszközök (autók, motorok), GPS, rakéták, műholdak alkalmazása, az űrhajózás célja. Történelem, társadalmi és állampolgári ismeretek: Galilei munkássága. Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek,

Összetett mozgások. Egymásra merőleges egyenletes mozgások összege. Vízszintes hajítás vizsgálata, értelmezése összetett mozgásként. Egyenletes körmozgás. A körmozgás mint periodikus mozgás. A mozgás jellemzői (kerületi és szögjellemzők). A centripetális gyorsulás értelmezése. Az emberiség történetében milyen megfigyelésekkel kezdődött a tudomány felé vezető út? A bolygók körmozgáshoz hasonló centrális mozgása, Kepler törvényei. A kopernikuszi világkép alapjai. Rögzített tengely körül forgó merev test mozgásának kinematikai leírása. Kulcsfogalmak / fogalmak Ismerje a mozgások függetlenségének elvét és legyen képes azt egyszerű esetekre (folyón átkelő csónak, eldobott labda pályája, a locsolócsőből kilépő vízsugár pályája) alkalmazni. Ismerje a körmozgást leíró kerületi és szögjellemzőket, illetve tudja alkalmazni azokat. Tudja értelmezni a centripetális gyorsulást. Mutasson be egyszerű kísérleteket, méréseket. Tudjon alapszintű feladatokat megoldani. A tanuló ismerje Kepler törvényeit, tudja azokat alkalmazni a Naprendszer bolygóira és a mesterséges holdakra. Ismerje a geocentrikus és a heliocentrikus világkép kultúrtörténeti dilemmáját és konfliktusát. Ismerje a tengellyel rögzített test forgó mozgásának kinematikai leírását, lássa a forgómozgás és a haladó mozgás leírásának hasonlóságát. Sebesség, átlagsebesség, pillanatnyi sebesség, gyorsulás, vektorjelleg, mozgások összegződése, periódusidő, szögsebesség, centripetális gyorsulás. Égitestek mozgása. Tematikai egység A tematikai egység nevelésifejlesztési 2. Okok és okozatok (Arisztotelésztől Newtonig) Órakeret: A newtoni mechanika elemei 37 óra A kölcsönhatás és a közelhatás fogalma. A távolhatás létrejöttének értelmezése. Az erőhatás és az erő fogalma, az erő mértékegysége, erőmérő, gyorsulás, tömeg, sűrűség. Az ösztönös arisztotelészi mozgásszemlélet tudatos lecserélése a newtoni dinamikus szemléletre. Az új szemléletű gondolkodásmód kiépítése. Az általános iskolában megismert, elsősorban sztatikus jellegű erőfogalom felcserélése a dinamikai szemléletűvel, rámutatva a két szemlélet összhangjára.

Problémák, jelenségek, gyakorlati alkalmazások, ismeretek egy test mozgásállapotának megváltoztatása és módjai A tehetetlenség törvénye (Newton I. axiómája). Mindennapos közlekedési tapasztalatok hirtelen fékezésnél, a biztonsági öv szerepe. A tehetetlenség, az azt jellemző tömeg fogalma és mértékegysége. Az űrben, űrhajóban szabadon mozgó testek. Az anyag sűrűségének fogalma és mennyiségi jellemzője. A mozgásállapot fogalma és jellemző mennyisége a lendület. A zárt rendszer. Lendületmegmaradás párkölcsönhatás (zárt rendszer) esetén. Jelenségek, gyakorlati alkalmazások: erőhatás és a rugalmas test alakja Az erő fogalma. A lendületváltozás és az erőhatás kapcsolata. Lendülettétel. Az erőhatás mozgásállapotváltoztató (gyorsító) hatása. Az erő a mozgásállapotváltoztató hatás mennyiségi jellemzője. Legyen képes az arisztotelészi mozgásértelmezés elvetésére. Ismerje a tehetetlenség fogalmát és legyen képes az ezzel kapcsolatos hétköznapi jelenségek értelmezésére. Ismerje az inercia- (tehetetlenségi) rendszer fogalmát. Ismerje a tehetetlen tömeg fogalmát. Értse a tömegközéppont szerepét a valóságos testek mozgásának értelmezése során. Tudja, hogy a sűrűség az anyag jellemzője, és hogyan lehet azt mennyiséggel jellemezni. Tudjon sűrűséget számolással és méréssel is meghatározni, illetve táblázatból kikeresni. Ismerje a lendület fogalmát, vektorjellegét, a lendületváltozás és az erőhatás kapcsolatát. Ismerje a lendületmegmaradás törvényét párkölcsönhatás esetén. Tudjon értelmezni egyszerű köznapi jelenségeket a lendület megmaradásának törvényével. Legyen képes egyszerű számítások és mérési feladatok megoldására. golyók, korongok ütközése. Ütközéses balesetek a közlekedésben. Az utas biztonságát védő technikai megoldások (biztonsági öv, légzsák, a gyűrődő karosszéria). A tanuló ismerje az erőhatás és az erő fogalmát, kapcsolatukat és a köztük levő különbséget, az erő mérését, mértékegységét, vektor-jellegét. Legyen képes erőt mérni rugós erőmérővel. Értse az erőt mint a lendületváltozás sebességét. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Technika, életvitel és gyakorlat: Takarékosság; légszennyezés, zajszennyezés; közlekedésbiztonsági eszközök, közlekedési szabályok, GPS, rakéták, műholdak alkalmazása, az űrhajózás célja. Biztonsági öv, ütközéses balesetek, a gépkocsi biztonsági felszerelése, a biztonságos fékezés. Nagy sebességű utazás egészségügyi hatásai. Biológia-egészségtan: reakcióidő, az állatok mozgása (pl. medúza).

Erőmérés rugós erőmérővel. Newton II. axiómája. Ismert erőhatások hasonlóságok és különbségek közöttük Erőtörvények, a dinamika alapegyenlete. A rugó erőtörvénye. A gravitációs erőtörvény. A nehézségi erőhatás fogalma és hatása. Tapadási és csúszási súrlódás. Alkalmazások: A súrlódás szerepe az autó gyorsításában, fékezésében. Szabadon eső testek súlytalansága. Az egyenletes körmozgás és más mozgások dinamikai feltétele. Jelenségek, gyakorlati alkalmazások: kanyarban kifelé csúszó autó vizsgálata,vezetés kanyarban, út megdöntése kanyarban, hullámvasút; függőleges síkban átforduló kocsi; műrepülés, körhinta, centrifuga. Newton gravitációs törvénye. Jelenségek, gyakorlati alkalmazások: A nehézségi gyorsulás változása a Földön. Az árapályjelenség kvalitatív magyarázata. A mesterséges holdak mozgása és a szabadesés. A súlytalanság értelmezése az űrállomáson. Geostacionárius műholdak, hírközlési műholdak. Tudja Newton II. törvényét, lássa kapcsolatát az erő szabványos mértékegységével. Ismerje és tudja alkalmazni a tanult egyszerű erőtörvényeket. Legyen képes egyszerű feladatok megoldására, néhány egyszerű esetben: állandó erővel húzott test, mozgás lejtőn, a súrlódás szerepe egyszerű mozgások esetén. Értse, hogy az egyenletes körmozgás végző test mozgása gyorsuló mozgás. Gyorsulását (a centripetális gyorsulást) a testet érő erőhatások eredője hozza létre, ami állandó nagyságú, változó irányú, mert mindig a kör középpontja felé mutat. Ismerje Newton gravitációs törvényét. Tudja, hogy a gravitációs kölcsönhatás a négy alapvető fizikai kölcsönhatás egyike, meghatározó jelentőségű az égi mechanikában. Legyen képes a gravitációs erőtörvényt alkalmazni egyszerű esetekre. Értse a gravitáció szerepét az űrkutatással, űrhajózással kapcsolatos közismert jelenségekben. Földrajz: a Naprendszer szerkezete, az égitestek mozgása, csillagképek, A kerék feltalálásának jelentősége

Eötvös Loránd (torziós inga) Pontrendszerek mozgásának vizsgálata, dinamikai értelmezése. A kölcsönhatás törvénye (Newton III. axiómája). A rakétameghajtás elve Pontszerű test egyensúlya. A kiterjedt test egyensúlya. A kierjedt test, mint speciális pontrendszer, tömegközéppont. annak feltétele, hogy egy rögzített tengelyen levő merev test forgása megváltozzon Forgatónyomaték. Jelenségek, gyakorlati alkalmazások: emelők, tartószerkezetek, építészeti érdekességek (pl. gótikus támpillérek, boltívek). Deformálható testek egyensúlyi állapota. Pontrendszerek mozgásának vizsgálata, dinamikai értelmezése. Tudja, hogy az egymással kölcsönhatásban lévő testek mozgását az egyes testekre ható külső erők és a testek közötti kényszerkapcsolatok figyelembevételével lehetséges értelmezni. jelenségekben. Ismerje Newton III. axiómáját, és egyszerű példákkal tudja azt illusztrálni. Értse, hogy az erőhatás mindig párosával lép fel. Legyen képes az erő és ellenerő világos megkülönböztetésére. Értse a rakétameghajtás lényegét. A tanuló ismerje, és egyszerű esetekre tudja alkalmazni a pontszerű test egyensúlyi feltételét. Legyen képes erővektorok összegzésére. Ismerje a kiterjedt test és a tömegközéppont fogalmát, tudja a kiterjedt test egyensúlyának kettős feltételét. Ismerje az erőhatás forgómozgást megváltoztató képességét, a létrejöttének feltételeit és annak mennyiségi jellemzőjét, a forgatónyomatékot. Legyen képes a forgatónyomatékkal kapcsolatos jelenségek felismerésére, egyszerű számítások, mérések, szerkesztések elvégzésére. Ismerje Hooke törvényét, értse a rugalmas alakváltozás és a belső erők kapcsolatát. Tudja, hogy az egymással kölcsönhatásban lévő testek mozgását az egyes testekre ható külső erők és a testek közötti kényszerkapcsolatok figyelembevételével lehetséges értelmezni.

Forgó mozgás dinamikai leírása Egyenletes forgó mozgás Az egyenletesen változó forgómozgás. Tehetetlenségi nyomaték. A perdület, perdülettétel, perdület-megmaradás. Alkalmazások: pörgettyűhatás, a Naprendszer eredő perdülete. Forgási energia. Kulcsfogalmak/ fogalmak Ismerje a forgómozgás dinamikai leírását. Tudja, hogy a test forgásának megváltoztatása a testre ható forgatónyomatékok hatására történik. Lássa a párhuzamot a haladó mozgás és a fogómozgás dinamikai leírásában. Ismerje a tehetetlenségi nyomaték fogalmát és meghatározását egyszerű speciális esetekben. Ismerje a perdület fogalmát, legyen képes megfogalmazni a perdület-tételt, ismerje a perdület megmaradásának feltételrendszerét. A haladó mozgás kinetikus energiájának analógiájára ismerje a forgási energia fogalmát és tudja azt használni egyszerű problémák megoldásában. Tehetetlenség, tömeg, sűrűség. Mozgásállapot, lendület, lendületváltozás, lendületmegmaradás. Erőhatás, erő, párkölcsönhatás, erőtörvény, mozgásegyenlet, pontrendszer, rakétamozgás, ütközés. Forgatónyomaték. Egyensúly. Tematikai egység A tematikai egység nevelésifejlesztési Órakeret: 3.Folyadékok és gázok mechanikája 12 óra A nyomás fogalma és mennyiségi jellemzése. Hidrosztatikai és aerosztatikai alapismeretek, sűrűség, légnyomás, felhajtóerő, kémia: anyagmegmaradás, halmazállapotok, földrajz: tengeri, légköri áramlások. A témakör jelentőségének bemutatása, mint a fizika egyik legrégebbi területe, és egyúttal a legújabb kutatások színtere (pl. tengeri és légköri áramlások, a vízi és szélenergia hasznosítása). A megismert fizikai törvények összekapcsolása a gyakorlati alkalmazásokkal. Önálló tanulói kísérletezéshez szükséges képességek fejlesztése, hétköznapi jelenségek fizikai értelmezésének gyakoroltatása. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Légnyomás kimutatása és mérése. Jelenségek, gyakorlati alkalmazások: Horror vacui mint egykori tudományos hipotézis. (Torricelli kísérlete vízzel, Guericke vákuum-kísérletei) A légnyomás változásai. A légnyomás szerepe az időjárási Ismerje a légnyomás fogalmát, mértékegységeit. Ismerjen a levegő nyomásával kapcsolatos, gyakorlati szempontból is fontos jelenségeket. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Kémia: folyadékok, felületi feszültség, kolloid rendszerek,

jelenségekben, a barométerek működése. A gyakorlati életben alkalmazott hidrosztatikai eszközök,melyek működése a levegő és a folyadékok nyomásán alapszik Pascal törvénye, hidrosztatikai nyomás. Hidraulikus gépek. Felhajtóerő nyugvó folyadékokban és gázokban. Búvárharang, tengeralattjáró, Léghajó, hőlégballon. Molekuláris erők folyadékokban (kohézió és adhézió). Felületi feszültség. Jelenségek, gyakorlati alkalmazások: habok különleges tulajdonságai, mosószerek hatásmechanizmusa. Folyadékok és gázok áramlása Jelenségek, gyakorlati alkalmazások: légköri áramlások, a szél értelmezése a nyomásviszonyok alapján, nagy tengeráramlásokat meghatározó környezeti hatások. Bernoulli-hatás. Közegellenállás Az áramló közegek energiája, a szélés a vízi energia hasznosítása. vízben és levegőben futás összehasonlítása kerékpározás és közegellenállás Kulcsfogalma k/ fogalmak Tudja alkalmazni hidrosztatikai ismereteit köznapi jelenségek értelmezésére. A tanult ismeretek alapján legyen képes (pl. hidraulikus gépek alkalmazásainak bemutatása). Legyen képes alkalmazni hidrosztatikai és aerosztatikai ismereteit köznapi jelenségek értelmezésére. Ismerje a felületi feszültség fogalmát. Ismerje a határfelületeknek azt a tulajdonságát, hogy minimumra törekszenek. Legyen tisztában a felületi jelenségek fontos szerepével az élő és élettelen természetben. Tudja, hogy az áramlások oka a nyomáskülönbség. Legyen képes köznapi áramlási jelenségek kvalitatív fizikai értelmezésére. Tudja értelmezni az áramlási sebesség változását a keresztmetszettel az anyagmegmaradás (kontinuitási egyenlet) alapján. Ismerje a Bernoulli-hatást és tudja azt egyszerű kísérlettel demonstrálni, legyen képes kvalitatív szinten alkalmazni a törvényt köznapi jelenségek magyarázatára. Ismerje a közegellenállás jelenségét, tudja, hogy a közegellenállási erő sebességfüggő. Legyen tisztában a vízi és szélenergia jelentőségével hasznosításának múltbeli és korszerű lehetőségeivel. A megújuló energiaforrások aktuális hazai hasznosítása. gázok, levegő, viszkozitás, alternatív energiaforrások. Történelem, társadalmi és állampolgári ismeretek: a hajózás szerepe, a légi közlekedés szerepe. Technika, életvitel és gyakorlat: vízi járművek legnagyobb sebességeinek korlátja, légnyomás, repülőgépek közlekedésbiztonsági eszközei, vízi és légi közlekedési szabályok. Biológia-egészségtan: Vízi élőlények, madarak mozgása, sebességei, reakcióidő. A nyomás és változásának hatása az emberi szervezetre (pl. súlyfürdő, keszonbetegség, hegyi betegség). A nyomás fogalma, mérése és kiszámítása. Hidrosztatikai nyomás, felhajtóerő, úszás, viszkozitás, felületi feszültség, légnyomás, légáramlás, áramlási sebesség, aerodinamikai felhajtóerő, közegellenállás, szél- és vízi energia, szélerőmű, vízerőmű.

Tematikai egység A tematikai egység nevelésifejlesztési 4. Erőfeszítés és hasznosság Órakeret: Energia Munka Teljesítmény Hatásfok 15 óra A newtoni dinamika elemei, a fizikai munkavégzés tanult fogalma. Az energia, a munka és a hőmennyiség közös mértékegysége. A teljesítmény és a hatásfok elemi ismerete. Az általános iskolában tanult energia, energiaváltozás, munka- és mechanikaienergia-fogalom elmélyítése és bővítése, a mechanikai energiamegmaradás igazolása speciális esetekre és az energiamegmaradás törvényének általánosítása. Az elméleti megközelítés mellett a fizikai ismeretek mindennapi alkalmazásának bemutatása, gyakorlása. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek mennyiségileg a testek kölcsönható, változtató képességenek jellemezése az általános iskolában megismert energiafajták Az energia fogalma és az energiamegmaradás tétele. különbség a köznapi szóhasználatban és a fizikában használt munkavégzés kifejezés jelentése között Fizikai munkavégzés, és az azt jellemző munka fogalma, mértékegysége. Mechanikai energiafajták (helyzeti energia, mozgási energia, rugalmas energia). Munkatétel. A mechanikai energiamegmaradás törvénye. A teljesítmény és a hatásfok. Egyszerű gépek, hatásfok. Érdekességek, alkalmazások. - Ókori gépezetek, mai alkalmazások. Az egyszerű gépek elvének felismerése az élővilágban. Egyszerű gépek az emberi szervezetben. - Alkalmazások, jelenségek: a fékút és a sebesség kapcsolata, A tanuló értse a fizikai munkavégzés és a teljesítmény fogalmát, ismerje mértékegységeiket. Legyen képes egyszerű feladatok megoldására. Ismerje a munkatételt, és tudja azt egyszerű esetekre alkalmazni. Ismerje az alapvető mechanikai energiafajtákat, és tudja azokat a gyakorlatban értelmezni Tudja egyszerű zárt rendszerek példáin keresztül értelmezni a mechanikai energiamegmaradás törvényét. Tudja, hogy a mechanikai energia-megmaradás nem teljesül súrlódás, közegellenállás esetén, mert a rendszer mechanikailag nem zárt. Ilyenkor a mechanikai energiaveszteség a súrlódási erő munkájával egyenlő. Tudja a gyakorlatban használt egyszerű gépek működését értelmezni, ezzel kapcsolatban feladatokat megoldani. Értse, hogy az egyszerű gépekkel munka nem takarítható meg. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés. Testnevelés és sport: a sportolók teljesítménye, a sportoláshoz használt pályák energetikai viszonyai és a sporteszközök energetikája. Technika, életvitel és gyakorlat: járművek fogyasztása, munkavégzése, közlekedésbiztonsági eszközök, technikai eszközök (autók, motorok). Biológia-egészségtan: élőlények mozgása, teljesítménye.

a követési távolság meghatározása. Energia és egyensúlyi állapot. Kulcsfogalmak/ fogalmak Ismerje a stabil, labilis és közömbös egyensúlyi állapot fogalmát, és tudja alkalmazni egyszerű esetekben. Energia, munkavégzés, munka; helyzeti energia, mozgási energia, rugalmas energia, munkatétel, mechanikai energiamegmaradás. Teljesítmény, hatásfok. Tematikai egység Mérési gyakorlatok Órakeret 6 óra A tematikai egység nevelésifejlesztési Alapmértékegységek. Az általános iskolában tanultak ismétlése, alapvető kísérletező, mérő kompetencia fejlesztése. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Egyszerű mérések, valamint egy összetettebb mérési feladat Hosszúság, terület, térfogat, tömeg, sűrűség, idő, erő mérése Mérések laboratóriumi formában és a szabadban nagy távolságok mérése digitális fotó alapján (a kamera látószögre való kalibrálása alapján). Távolságmérés lézeres kézi mérőműszerrel. Időmérés a közlekedésben. Mikroszkopikus távolságok mérése (pl. számítógépes szoftver és kamera segítségével). Időmérési feladatok a közlekedésben és a sportudvaron. Kulcsfogalmak / fogalmak A tanuló legyen tisztában a mérésekkel kapcsolatos alapvető elméleti ismeretekkel. Tudjon mérési jegyzőkönyvet készíteni. Ismerje a mérés lényegi jellemzőit, a szabványos és a gyakorlati mértékegységeket, a mérési pontosság fogalmát, a hiba okait. Legyen képes gyakorlatban alkalmazni a megismert mérési módszereket. Matematika: a függvény fogalma, grafikus ábrázolás, egyenletrendezés, mértékegységek. Történelem, társadalmi és állampolgári ismeretek: a mértékegységek kialakulása. Mérés, mérőeszköz, érzékenység, pontosság, mérési hiba, mértékegység.

2.3. A 10. évfolyam tanterve Az éves órakeret felosztása Évi óraszám: 72 óra heti 2 óra A fejezetek címe Óraszámok 1. Közel és távolhatás Elektromos töltés, elektromos mező 11 2. A mozgó töltések elektromos tulajdonságú részecskék egyenáram vezetési típusok 25 3. Hőhatások és állapotváltozások hőtani alapjelenségek, gáztörvények 10 4. Részecskék rendezett és rendezetlen mozgása A molekuláris hőelmélet elemei 5 5. Energia, hő és munka a hőtan főtételei 22 6. Hőfelvétel hőmérséklet-változás nélkül halmazállapot-változások 9 7. Mindennapok hőtana 5 mérési gyakorlat 6 összefoglalás, írásbeli számonkérés 10 A tanév végi összefoglalás 5 összesen 108 Tematikai egység A tematikai egység nevelésifejlesztési Órakeret 1. Közel- és távolhatás Elektromos töltés és erőtér 11 óra Erő, munka, energia, elektromos tulajdonság, elektromos állapot, elektromos töltés, elektromos kölcsönhatások, a feszültség elemi fogalma. Az elektrosztatikus mező fizikai valóságként való elfogadtatása. A mező jellemzése a térerősség, potenciál és erővonalak segítségével. A problémamegoldó képesség fejlesztése jelenségek, kísérletek, mindennapi alkalmazások értelmezésével. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Elektrosztatikai alapjelenségek. Elektromos kölcsönhatás. Elektromos tulajdonságú részecskék, elektromos állapot. Elektromos töltés. Mindennapi tapasztalatok (vonzás, taszítás, pattogás, szikrázás öltözködésnél, fésülködésnél, fémek érintésénél). Vezetők, szigetelők, földelés. az elektromos test vonzza A tanuló ismerje az elektrosztatikus alapjelenségeket, pozitív és negatív elektromos tulajdonságú részecskéket, ezek szerepét az elektromos állapot létrejöttében, az elektromos megosztás jelenségét. Tudjon ezek alapján egyszerű kísérleteket, jelenségeket értelmezni. Kémia: elektron, proton, elektromos töltés, az atom felépítése, elektrosztatikus kölcsönhatások, kristályrácsok szerkezete. Kötés, polaritás, molekulák polaritása, fémes kötés, fémek elektromos vezetése. Matematika: egyenes és

a semleges testeket A fénymásoló, lézernyomtató működése, Selényi Pál szerepe. Légköri elektromosság, a villám, védekezés a villámcsapás ellen. Coulomb törvénye. (az első mennyiségi összefüggés az elektromosságtan történetében) Az elektromos és gravitációs kölcsönhatás összehasonlítása. A töltés mint az elektromos állapot mennyiségi jellemzője és mértékegysége. A töltésmegmaradás törvénye. Az elektromos erőtér(mező),mint a kölcsönhatás közvetítője. Kieg.: A szuperpozíció elve. Az elektromos térerősség mint az elektromos mezőt jellemző vektormennyiség; a tér szerkezetének szemléltetése erővonalakkal. A homogén elektromos mező. Kieg.: Az elektromos fluxus. Az elektromos mező munkája homogén mezőben. Az elektromos feszültség fogalma. Feszültségértékek a gyakorlatban. Kieg.: A potenciál, ekvipotenciális felületek. Töltés eloszlása fémes vezetőn. Jelenségek, gyakorlati alkalmazások: csúcshatás, villámhárító, elektromos koromleválasztó. Benjamin Franklin munkássága. Segner-kerék, Segner János András. Faraday-kalitka, árnyékolás. Az autó karosszériája miért véd a villámtól? Ismerje a Coulomb-féle erőtörvényt, értse a töltés mennyiségi fogalmát és a töltésmegmaradás törvényét. Ismerje a mező fogalmát, és létezését fogadja el anyagi objektumként. Tudja, hogy a sztatikus elektromos mező forrása/i az elektromos tulajdonságú részecskék. Ismerje a mezőt jellemző térerősséget, értse az erővonalak jelentését. Ismerje a homogén elektromos mező fogalmát és jellemzését. Ismerje az elektromos feszültség fogalmát. Tudja, hogy a töltés mozgatása során végzett munka nem függ az úttól, csak a kezdeti és végállapotok helyzetétől. Legyen képes homogén elektromos térrel kapcsolatos elemi feladatok megoldására. Tudja, hogy a fémre felvitt töltések a felületen helyezkednek el. Ismerje az elektromos csúcshatás jelenségét, a Faraday-kalitka és a villámhárító működését, valamint gyakorlati jelentőségét. fordított arányosság, alapműveletek, egyenletrendezés, számok normálalakja, vektorok függvények. Technika, életvitel és gyakorlat: balesetvédelem, földelés.

Vezetékek elektromos zavarvédelme. Az emberi test elektromos feltöltődésének következménye. A kapacitás fogalma. A síkkondenzátor kapacitása. Kondenzátorok kapcsolása. A kondenzátor energiája. Az elektromos mező energiája. Kondenzátorok gyakorlati alkalmazásai (vaku, defibrillátor). Kulcsfogalma k/ fogalmak Ismerje a kapacitás fogalmát, a síkkondenzátor terét. Tudja értelmezni kondenzátorok soros és párhuzamos kapcsolását. Egyszerű kísérletek alapján tudja értelmezni, hogy a feltöltött kondenzátornak, azaz a kondenzátor elektromos terének energiája van. Elektromos tulajdonság, elektromos állapot. Töltés, elektromos erőtér (mező), térerősség, erővonalrendszer, feszültség, potenciál, kondenzátor, az elektromos tér mező energiája. Tematikai egység A tematikai egység nevelésifejlesztési 2. A mozgó töltések egyenáram vezetési típusok Órakeret 25 óra Telep (áramforrás), áramkör, fogyasztó, áramerősség, feszültség. Az egyenáram értelmezése mint az elektromos tulajdonságú részecskék áramlása. Az elektromos áram jellemzése hatásain keresztül (hőhatás, mágneses, vegyi és biológiai hatás). Az elméleten alapuló gyakorlati ismeretek kialakítása (egyszerű hálózatok ismerete, ezekkel kapcsolatos egyszerű számítások, telepek, akkumulátorok, elektromágnesek, motorok). Az energiatudatos, egészségtudatos és környezettudatos magatartás fejlesztése. Problémák, jelenségek, gyakorlati alkalmazások, ismeretek Az elektromos áram fogalma, kapcsolata a fémes vezetőkben zajló elektromos tulajdonságú részecskék rendezett mozgásával. A zárt áramkör. Jelenségek, alkalmazások: Voltaoszlop, laposelem, rúdelem, napelem. Volta és Ampère munkásságának jelentősége. A tanuló ismerje az elektromos áram fogalmát, az áramerősség mértékegységét, az áramerősség és feszültség mérését. Tudja, hogy az egyenáramú áramforrások feszültségét, pólusainak polaritását nem elektromos jellegű belső folyamatok (gyakran töltésátrendeződéssel járó kémiai vagy más folyamatok) biztosítják. Ismerje az elektromos áramkör legfontosabb részeit, az áramkör ábrázolását kapcsolási rajzon. Kémia: elektromos áram, elektromos vezetés, rácstípusok tulajdonságai és azok anyagszerkezeti magyarázata. Galvánelemek működése, elektromotoros erő. Ionos vegyületek elektromos vezetése olvadékban és oldatban, elektrolízis. Vas mágneses tulajdonsága.

Ohm törvénye, áram- és feszültségmérés. Analóg és digitális mérőműszerek használata. Fogyasztók (vezetékek) ellenállása. Fajlagos ellenállás. Fémek elektromos vezetése. Jelenség: szupravezetés. Az elektromos mező munkája az áramkörben. Az elektromos teljesítmény. Az elektromos áram hőhatása. Fogyasztók a háztartásban, fogyasztásmérés, az energiatakarékosság lehetőségei. Költségtakarékos világítás (hagyományos izzó, halogénlámpa, kompakt fénycső, LED-lámpa összehasonlítása) Összetett hálózatok. Ellenállások kapcsolása. Az eredő ellenállás fogalma, számítása. Ohm törvénye teljes áramkörre Kirchoff I. és II. törvénye. Elektromotoros erő (üresjárási feszültség) kapocsfeszültség, a belső ellenállás fogalma. Tudja Ohm törvényét. Legyen képes egyszerű számításokat végezni Ohm törvénye alapján. Ismerje az elektromos ellenállás mindhárom jelentését (test, annak egy tulajdonsága, és az azt jellemző mennyiség), fajlagos ellenállás fogalmát, mértékegységét és mérésének módját. Legyen kvalitatív képe a fémek elektromos ellenállásának klasszikus értelmezéséről. Tudja értelmezni az elektromos áram teljesítményét, munkáját. Legyen képes egyszerű számítások elvégzésére. Tudja értelmezni a fogyasztókon feltüntetett teljesítményadatokat. Az energiatakarékosság fontosságának bemutatása. Tudja a hálózatok törvényeit alkalmazni ellenállás-kapcsolások eredőjének számítása során. Ismerje a telepet jellemző elektromotoros erő (ürejárási feszültség) és a belső ellenállás fogalmát, Ohm törvényét teljes áramkörre. Ismerje Kirchoff törvényeit, tudja alkalmazni azokat ellenálláskapcsolások eredőjének számítása során Matematika: alapműveletek, egyenletrendezés, számok normálalakja, egyenes arány.. Biológia- egészségtan: Az emberi test áramvezetése, áramütés hatása, hazugságvizsgáló, orvosi diagnosztika és terápiás kezelések. Technika, életvitel és gyakorlat: áram biológiai hatása, elektromos áram a háztartásban, biztosíték, fogyasztásmérők, balesetvédelem. Világítás fejlődése és korszerű világítási eszközök. Korszerű elektromos háztartási készülékek, energiatakarékosság. Környezetvédelem. Informatika: mikroelektronikai áramkörök, mágneses információrögzítés.