1. Egyenes vonalú mozgások

Hasonló dokumentumok
Középszintű szóbeli érettségi kísérletei 2018

A középszintű fizika érettségi kísérleteinek képei 2017.

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások

Középszintű szóbeli érettségi kísérletei 2017

A hajdúnánási Kőrösi Csoma Sándor Református Gimnázium által szervezett középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései

1. Newton-törvényei. Az OH által ajánlott mérés

Középszintű fizika érettségi vizsga kísérleti eszközeinek listája tanév

Mechanika 1. Az egyenes vonalú mozgások

1. Newton törvényei Feladat: A kísérlet leírása:

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel!

Kísérletek, elemzések, eszközök

Középszintű fizika érettségi szóbeli vizsga kísérleti eszközeinek listája. 1. Newton törvényei

. T É M A K Ö R Ö K É S K Í S É R L E T E K

1. tétel. Newton törvényei

A mérések és kísérletek felsorolása

A Debreceni SZC Vegyipari Szakgimnáziumának középszintű szóbeli fizika érettségi vizsga témakörei illetve kísérletei és egyszerű mérései 2017.

Középszintű szóbeli tételek fizikából május

Tájékoztató a fizika középszintű szóbeli érettségihez A mérések és kísérletek felsorolása Gyulai Erkel Ferenc Gimnázium és Kollégium 2017.

FIZIKA. középszintű szóbeli tételekhez tartozó kísérletek leírásai Összeállította: Horváth Lajos

A Keszthelyi Vajda János Gimnázium által szervezett középszintű szóbeli fizika érettségi vizsga témakörei illetve kísérletei és elemzései 2016/2017

1. KÍSÉRLET Egyenes vonalú mozgások

2. Egyenes vonalú mozgások

A középszintű fizika érettségi vizsga szóbeli témakörei és kísérletei (2017. május-június)

1. Egyenes vonalú mozgások

1. Newton törvényei. Fizika érettségi középszint szóbeli tételek Öszeállította: Bólyáné Lehotai Katalin szaktanár

Fizika érettségi témakörök és a hozzájuk tartozó kísérleti összeállások

FIZIKA ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június

2017. Fizika szóbeli érettségi témakörök és kísérletek a Teleki Blanka Gimnáziumban

A Soproni Széchenyi István Gimnázium 12. ABCD osztálya fizika érettségi szóbeli tételeinek témakörei és a hozzájuk kapcsolódó mérések

1./ Egyenes vonalú mozgások

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok

A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Középszintű fizika érettségi közzéteendő mérés eszközei és azok képei

1. Egyenes vonalú mozgások

1./ Egyenes vonalú mozgások

1. NEWTON TÖRVÉNYEI. Szükséges eszközök: Befőttesüveg; pohár; azt lefedő kártyalap; egy pénzérme. A kísérlet leírása:

FIZIKA. középszintű érettségi. szóbeli vizsga. nyilvánosságra hozandó anyagai. Témakörök, kísérletek, eszközök. Körmendi Kölcsey Ferenc Gimnázium

Középszintű fizika érettségi kísérletek listája témakörök szerint, 2017

SZOSZSZC Horváth Boldizsár Közgazdasági és Informatikai Szakgimnáziuma Szóbeli érettségi témakörök és kísérletek fizikából

Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017

Mérések és kísérletek

1. Newton törvényei. 2. Egyenes vonalú mozgások

Szóbeli érettségi tételek fizikából 2016/2017-es tanév

Mérési és kísérleti feladatok a középszintű fizika érettségin (2018.)

1. Egyenes vonalú egyenletes mozgás

1. EGYENES VONALÚ MOZGÁSOK

1. Newton törvényei. Feladat:

Fizika középszintű szóbeli vizsga témakörei, kísérletei és egyszerű mérései május

FIZIKA. középszintű szóbeli tételekhez tartozó kísérletek leírásai Összeállította: Zajacz Lajos

Kísérletek, egyszerű mérések a évi középszintű fizika szóbeli érettségi vizsgához

A mérések és kísérletek felsorolása

A KÖZÉPSZINTŰ FIZIKA ÉRETTSÉGI TÉMAKÖREI ELTE RADNÓTI MIKLÓS GYAKORLÓISKOLA

FIZIKA Középszintű szóbeli érettségi A mérések és kísérletek felsorolása (12. abc)

KÖZÉPSZINTŰ FIZIKA ÉRETTSÉGI TÉTELSOR

SZÓBELI TÉMAKÖRÖK ÉS KÍSÉRLETLISTA A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGÁHOZ FIZIKÁBÓL 2018.

A mérések és kísérletek felsorolása

Szekszárdi I Béla Gimnázium Középszintű fizika szóbeli érettségi vizsga témakörei és kísérletei

A mérések és kísérletek felsorolása

A mérések és kísérletek felsorolása tanév május-június érettségi vizsgaidőszak

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag

Témakörök és kísérletek a fizika érettségi szóbeli részére. Középszint, május-június

Tájékoztató a KSzC Teleki Blanka Gimnáziuma, Szakgimnáziuma és Kollégiuma fizika középszintű szóbeli érettségihez

1. Tétel. Egyenes vonalú mozgások

1. A haladó mozgás fajtái, jellemzői és dinamikai feltételük

A fizika középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései. 3. Forgatónyomaték, merev test egyensúlya, egyszerű gépek

ELTE BOLYAI JÁNOS GYAKORLÓ ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK ÉS KÍSÉRLETEK FIZIKÁBÓL

1. PERIODIKUS MOZGÁSOK

Fizika érettségi mérések és kísérletek Tartalomjegyzék

1) Egyenes vonalú mozgások kinematikája

FIZIKA. középszintű szóbeli tételekhez tartozó kísérletek leírásai 2019.

1. Newton törvényei Feladat: A kísérlet leírása:

Témakörök és kísérletek a fizika érettségi szóbeli részére 12. B. Középszint, május-június

A mérések és kísérletek felsorolása

Kisbéri Táncsics Mihály Gimnázium, Szakgimnázium és Általános Iskola középszintű fizika szóbeli érettségi témakörei és kísérletei (2017)

Fizika tételek 2017 Kísérletek

1. Egyenes vonalú mozgások kinematikája

I. Mechanika. II. Hőtan. III. Elektromosságtan. IV. Optika. V. Atomfizika, magfizika. VI. Gravitáció, csillagászat

Középszintű érettségi mérések fizikából 2017/18 tanévben, a Péterfy Sándor Evangélikus Gimnáziumban

Feladat: A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Fizika Szóbeli érettségi kísérlet jegyzéke

A középszintű fizika érettségi méréseinek és kísérleteinek

FIZIKA. Középszintű érettségi vizsga szóbeli részén elvégzendő mérések, kísérletek 20 tételhez

Fizika középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései

A középszintű fizika szóbeli érettségi vizsga témakörei illetve kísérletei és egyszerű mérései Szegedi Deák Ferenc Gimnázium, 2018

Fizi ka kö zéps zi ntű érettségi s zóbeli tételeihe z s zü ksé ges eszkö zö k jegyzé ke, ill etve a z eze kkel kapcsol atos kísérl etek leírása

1. Newton törvényei. Fizika

Újpesti Károlyi István Általános Iskola és Gimnázium által szervezett középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései

FNPG Fizika középszintű szóbeli érettségi vizsga kísérletei és mérései 2017.

Kísérletek a fizika érettségi szóbeli részére. Középszint, május-június. Berzsenyi Dániel Evangélikus (Líceum) Gimnázium és Kollégium

Középszintű szóbeli tételek fizikából a Pécsi Leőwey Klára Gimnáziumban 2017-től

A középszintű fizika szóbeli érettségi vizsga témakörei illetve kísérletei és egyszerű mérései

A fizika középszintű szóbeli érettségi témakörei és a kapcsolódó mérések, kísérletek (Diák)

1. tétel - Központi 3. - Munka, mechanikai energia

A KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI KÍSÉRLETEI ÉS MÉRÉSEI FIZIKA TANTÁRGYBÓL 2018/2019.

Fizika Szóbeli érettségi tételek

3. Egyenes vonalú egyenletes mozgás Egyenes vonalú egyenletes mozgás tanulmányozása Mikola-csővel elvégzendő kísérlet

1. A dinamika alaptörvényei törvényei. Kísérlet: Rugalmas ütközés vizsgálata

Hőtan. Elektromosságtan. Optika. Atomfizika, magfizika. Gravitáció, csillagászat. Fizika

Középszintű érettségi témakörök és kísérletek fizika

Átírás:

1. Egyenes vonalú mozgások Kísérleti feladat: A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést! Szükséges eszközök: Mikola-cső; dönthető állvány; befogó; stopperóra; mérőszalag. A kísérlet leírása: Rögzítse a Mikola-csövet a befogó segítségével az állványhoz, és állítsa pl. 20 -os dőlésszögre! Figyelje meg a buborék mozgását, amint az a csőben mozog! A stopperóra és a mérőszalag segítségével mérje meg, hogy mekkora utat tesz meg a buborék egy előre meghatározott időtartam (pl. 3 s) alatt! Ismételje meg a mérést még kétszer, és minden alkalommal jegyezze fel az eredményt! Utána mérje meg azt, hogy mennyi idő alatt tesz meg a buborék egy előre meghatározott utat (pl. 40 cm-t)! Ezt a mérést is ismételje meg még kétszer, eredményeit jegyezze fel! Utána növelje meg a Mikola-cső dőlésének szögét 45 -osra és az új elrendezésben ismét mérje meg háromszor, hogy adott idő alatt mennyit mozdul el a buborék, vagy azt, hogy adott távolságot mennyi idő alatt tesz meg!

2. Newton törvényei Kísérleti feladat: A rugós ütközőkkel ellátott kocsik és a rájuk rögzíthető súlyok segítségével tanulmányozza a rugalmas ütközés jelenségét! Szükséges eszközök: Két egyforma, könnyen mozgó iskolai kiskocsi rugós ütközőkkel; különböző, a kocsikra rögzíthető nehezékek; sima felületű asztal vagy sín. A kísérlet leírása: A kocsikat helyezze sima felületű vízszintes asztalra, illetve sínre úgy, hogy a rugós ütközők egymás felé nézzenek! A két kocsira rögzítsen egyforma tömegű nehezékeket, és az egyik kocsit meglökve ütköztesse azt a másik, kezdetben álló kocsival! Figyelje meg, hogy a kocsik hogyan mozognak közvetlenül az ütközés után! Ismételje meg a kísérletet úgy, hogy a kocsik szerepét felcseréli! Változtassa meg a kocsikra rögzített tömegeket úgy, hogy az egyik kocsi lényegesen nagyobb tömegű legyen a másik kocsinál! Végezze el az ütközési kísérletet úgy, hogy a kisebb tömegű kocsit löki neki a kezdetben álló, nagyobb tömegűnek! Ismételje meg a kísérletet úgy is, hogy a nagyobb tömegű kocsit löki neki a kezdetben álló, kisebb tömegűnek! Fogalmazza meg a kísérletek során szerzett tapasztalatait!

3. Munka, mechanikai energia Kísérleti feladat: Lejtőn leguruló kiskocsi segítségével tanulmányozza a mechanikai energiák egymásba alakulását! Szükséges eszközök: Erőmérő; kiskocsi; nehezékek; sín; szalagrugó (a kiskocsis mechanikai készletek része); mérőszalag (a sínre ragasztva, túloldalt ). A kísérlet leírása: Kis hajlásszögű (5-20 ) lejtőként elhelyezett sínen fekvő kocsi végére rögzítsen a sínnel párhuzamos síkban szalagrugót. A kiskocsit három különböző magasságból engedje el, és figyelje meg a rugó összenyomódását! Keresse meg azt az indítási magasságot, amikor a kiskocsi éppen teljesen összenyomja a rugót! A nehezékek segítségével duplázza, illetve triplázza meg a kiskocsi tömegét, és a megnövelt tömegek esetén is vizsgálja meg, milyen magasságból kell elengedni a kiskocsit, hogy a rugó éppen teljesen összenyomódjon!

4. Pontszerű és merev test egyensúlya, egyszerű gépek Kísérleti feladat: Erőmérővel kiegyensúlyozott karos mérleg segítségével tanulmányozza a merev testre ható forgatónyomatékokat és az egyszerű emelők működési elvét! Szükséges eszközök: Karos mérleg; erőmérő; súly; mérőszalag vagy vonalzó. A kísérlet leírása: Egy egyensúlyban lévő karos mérleg egyik oldalára akassza fel az ismert súlyú testet, és jegyezze fel a távolságot a rögzítési pont és a kar forgástengelye között! Rögzítse az erőmérőt a mérleg másik karján, a forgástengelytől ugyanekkora távolságra! Egyensúlyozza ki a mérleget függőleges irányú erővel, és a mért erőértéket jegyezze le! Változtassa meg az erőmérő rögzítési helyét (pl. a forgástengelytől felevagy harmadakkora távolságra, mint az első esetben), és ismét egyensúlyozza ki! A mért erőértéket és a forgástengelytől való távolságot ismét jegyezze fel! Készítsen értelmező rajzot, amely az elvégzett mérés esetében a mért erőértékek arányait és irányait magyarázza!

5. Periodikus mozgások Kísérleti feladat: Különböző tömegű súlyok felhasználásával vizsgálja meg egy rugóra rögzített, rezgőmozgást végző test periódusidejének függését a test tömegétől! Szükséges eszközök: Bunsen-állványra rögzített rugó; legalább öt, ismert tömegű súly vagy súlysorozat; stopperóra; milliméterpapír. A kísérlet leírása: Rögzítse az egyik súlyt az állványról lelógó rugóra, majd függőleges irányban kissé kitérítve óvatosan hozza rezgésbe! Ügyeljen arra, hogy a test a mozgás során ne ütközzön az asztalhoz, illetve hogy a rugó ne lazuljon el teljesen! A rezgőmozgást végző test egyik szélső helyzetét alapul véve határozza meg a mozgás tíz teljes periódusának idejét, és ennek segítségével határozza meg a periódusidőt! A mérés eredményét jegyezze le, majd ismételje meg a kísérletet a többi súllyal is! A mérési eredményeket, valamint a kiszámított periódusidőket rögzítse táblázatban, majd ábrázolja a milliméterpapíron egy periódusidő-tömeg grafikonon! Tegyen kvalitatív megállapítást a rezgésidő tömegfüggésére!

6. Arkhimédész törvényének igazolása arkhimédészi hengerpárral Feladat: Az arkhimédészi hengerpár segítségével mérje meg a vízbe merülő testre ható felhajtóerő nagyságát! Szükséges eszközök: Arkhimédészi hengerpár (egy rugós erőmérőre akasztható üres henger, valamint egy abba szorosan illeszkedő, az üres henger aljára akasztható tömör henger); érzékeny rugós erőmérő; főzőpohár. A kísérlet leírása: Mérje meg az üres henger és az aljára akasztott tömör henger súlyát a levegőn rugós erőmérővel! Ismételje meg a mérést úgy, hogy a tömör henger teljes egészében vízbe lóg! Ezek után töltsön vizet az üres hengerbe úgy, hogy az csordultig megteljen, s ismételje meg a mérést így is! Írja fel mindhárom esetben a rugós erőmérő által mért értékeket!

7. A hőtágulás bemutatása golyó és lyuk hőtágulása Feladat: A felfüggesztett fémgolyó éppen átfér a fémgyűrűn (Gravesande-készülék). Melegítse Bunsen- égővel a fémgolyót, vizsgálja meg, hogy ekkor is átfér-e a gyűrűn! Mi történik akkor, ha a gyűrűt is melegíti? Vizsgálja meg a gyűrű és a golyó átmérőjének viszonyát lehűlés közben! Szükséges eszközök: Gravesande-készülék, Bunsen-égő; gyufa; hideg (jeges) víz. A mérőhelyszínen kerámia is lesz, amin a forró fémet tárolni lehet. A kísérlet leírása: Győződjön meg arról, hogy a golyó szobahőmérsékleten átfér a gyűrűn! Melegítse fel a golyót, és vizsgálja meg, átfér-e a gyűrűn! Melegítse fel a gyűrűt, és így végezze el a vizsgálatot! Hűtse le a gyűrűt a lehető legalacsonyabb hőmérsékletre, majd tegye rá a golyót, s hagyja fokozatosan lehűlni!

8. A Boyle Mariotte-törvény szemléltetése Feladat: Elzárt gázt összenyomva tanulmányozza a gáz térfogata és nyomása közti összefüggést állandó hőmérsékleten! Szükséges eszközök: Tű nélküli orvosi műanyag fecskendő. A kísérlet leírása: A fecskendő dugattyúját húzza ki a legutolsó térfogatjelzésig, majd szorítsa ujját a fecskendő csőrére olyan erősen, hogy légmentesen elzárja azt! Nyomja erősen befelé a dugattyút anélkül, hogy a fecskendő csőrén kiengedné a levegőt! Mit tapasztal? Mekkora térfogatúra tudta összepréselni a levegőt? A dugattyún a nyomást fenntartva hirtelen engedje el a fecskendő csőrét! Halk hangot hallhat a fecskendőből. Mi lehet a hanghatás oka? Húzza ki ismét a dugattyút a felső állásba, fogja be ismét a fecskendő csőrét, és nyomja be erősen a dugattyút! A fecskendő csőrét továbbra is befogva engedje el a dugattyút! Mi történik? Végezze el a kísérletet úgy is, hogy az összenyomott fecskendő csőrét befogja, ezután kifelé húzza a dugattyút, majd ebből a helyzetből engedi el! Mi tapasztal?

9. Halmazállapot-változások Feladat: Tanulmányozza szilárd, illetve folyékony halmazállapotú anyag gáz halmazállapotúvá történő átalakulását! Szükséges eszközök, anyagok: Borszeszégő; kémcső; kémcsőfogó csipesz; vizes papír zsebkendő; könnyen szublimáló kristályos anyag (jód); tű nélküli orvosi műanyag fecskendő; meleg víz. A kísérlet leírása: a) Szórjon kevés jódkristályt a kémcső aljára, a kémcső felső végét pedig dugaszolja el lazán a hideg, vizes papír zsebkendővel! A kémcsövet fogja át a kémcsőcsipesszel, és ferdén tartva melegítse óvatosan az alját a borszeszlángban! Figyelje meg a kémcsőben zajló folyamatot! Külön figyelje meg a jódkristályok környezetét és a kémcsövet lezáró vizes papír zsebkendő környezetét is! b) A műanyag orvosi fecskendőbe szívjon kb. negyed-ötöd részig meleg vizet, majd a fecskendő csőrét fölfelé tartva a víz feletti levegőt a dugattyúval óvatosan nyomja ki! Ujjával légmentesen fogja be a fecskendő csőrének nyílását! Húzza hirtelen mozdulattal kifelé a dugattyút! Figyelje meg, hogy mi történik eközben a fecskendőben lévő vízzel! Mit tapasztal?

10. Elektrosztatikus megosztás és árnyékolás Feladat: Egy iránytűt térítsen ki elektromos tér segítségével! Egy alumínium hegy segítségével igazolja, hogy a jelenségnek nincs köze a mágnességhez! Ezt követően mutassa be, hogy az üveg nem árnyékolja le az elektromos teret, az alumíniumborítás viszont igen! Szükséges eszközök: Iránytű állvánnyal; alumínium hegy (illetve alumínium kétkarikás eszköz); az iránytűt kényelmesen befedő főzőpohár; a főzőpohár palástjára éppen ráhúzható alumíniumhenger; plexirúd; posztó vagy szőrme. Megjegyzés: Az iránytű elforduló acéltűjéhez hasonló, könnyen elforduló, jól formálható alumínium tű készíthető például gyógyszertabletták alumínium csomagolóanyagából. A főzőpohárra húzható alumíniumborítást alufóliából készíthetjük. A kísérlet leírása: Dörzsölje meg a plexirudat, és mutassa meg, hogy a keletkező elektromos tér kitéríti az iránytűt! Az acélhegyet a saját készítésű alumínium hegyre cserélve igazolja, hogy a kitérésnek nincs köze a mágnességhez! Az iránytűt a mérőhengerrel lefedve mutassa meg, hogy a henger üvegfala nem árnyékolja le az elektromos teret! A mérőhengerre ráhúzva az alumínium palástot igazolja, hogy az alumíniumborítás leárnyékolja az elektromos teret!

11. Citromelem készítése Feladat: Készítsen galvánelemet citrom, acélszög és rézdarab segítségével! Vizsgálja az elem működésének jellemzőit soros kapcsolás esetén, illetve fogyasztóra kapcsolva! Mérje meg az elem feszültségét és az áram erősségét az áramkörben! Szükséges eszközök: Acél- vagy vasszög; rézpénz vagy rézdarab; krokodilcsipesz; drótok; érzékeny multiméter; LED-izzó, két citrom. A vasat alumínium, a rezet nikkel is helyettesítheti. A kísérlet leírása: Az ábrának megfelelően készítse el a citromelemet! Mérje meg a kapott feszültséget egy, illetve két sorba kapcsolt elem esetében! Mérje meg a mérőműszeren keresztülfolyó áram erősségét! Működtessen a teleppel valamilyen elektromos eszközt, pl. LED-izzót!

12. Soros és párhuzamos kapcsolás Feladat: Egy áramforrás és két zseblámpaizzó segítségével tanulmányozza a soros, illetve a párhuzamos kapcsolás feszültség- és teljesítményviszonyait! Szükséges eszközök: 4,5V-os zsebtelep (vagy helyettesítő áramforrás); két egyforma zsebizzó foglalatban; kapcsoló; vezetékek; feszültségmérő műszer, áramerősség-mérő műszer (digitális multiméter). A kísérlet leírása: Készítsen kapcsolási rajzot két olyan áramkörről, amelyben a két izzó sorosan, illetve párhuzamosan van kapcsolva! A rendelkezésre álló eszközökkel állítsa össze mindkét áramkört! Mérje meg a fogyasztókra eső feszültségeket és a fogyasztókon átfolyó áram erősségét mindkét kapcsolás esetén! Figyelje meg az izzók fényerejét mindkét esetben!

13. Egyenes vezető és elektromágnes mágneses terének vizsgálata Feladat: Egyenes vezetőben indítson áramot! Az árammal átjárt vezető egyenes szakaszának környezetében vizsgálja a vezető mágneses terének szerkezetét egy iránytű segítségével! A kísérletet végezze el légmagos illetve vasmagos tekerccsel is. Szükséges eszközök: Áramforrás; vezető; tekercs, vasmag, iránytű; állvány. A kísérlet leírása: Közelítsük meg a függőleges helyzetű áramjárta vezetőt, majd az áramjárta tekercset, végül az áramjárta vasmagos tekercset az iránytűvel, figyeljük meg viselkedését, az eszköz segítségével mérjük fel a mágneses tér irányát és erősségét a vezető közelében a hely függvényében. Legalább az egyik esetet vizsgáljuk meg fordított áramiránnyal is!

14. Elektromágneses indukció Feladat: Légmagos tekercs és mágnesek segítségével tanulmányozza az elektromágneses indukció jelenségét! Szükséges eszközök: Középállású demonstrációs áramerősség-mérő; különböző menetszámú, vasmag nélküli tekercsek (például 300, 600 és 1200 menetes); 2 db rúdmágnes; vezetékek. A kísérlet leírása: Csatlakoztassa a tekercs két kivezetését az árammérőhöz! Dugjon be egy mágnest a tekercs hossztengelye mentén a tekercsbe! Hagyja mozdulatlanul a mágnest a tekercsben, majd húzza ki a mágnest körülbelül ugyanakkora sebességgel, mint amekkorával bedugta! Figyelje közben az áramerősségség-mérő műszer kitérését! Ismételje meg a kísérletet fordított polaritású mágnessel is! Ismételje meg a kísérletet úgy, hogy gyorsabban (vagy lassabban) mozgatja a mágnest! Ezután fogja össze a két mágnest és a kettőt együtt mozgatva ismételje meg a kísérleteket! Ismételje meg a kísérletet kisebb és nagyobb menetszámú tekerccsel is! Röviden foglalja össze tapasztalatait!

15. Rézcsőbe ejtett mágnes mozgásának vizsgálata Feladat: Vizsgálja meg a három különböző csőbe ejtett mágnes mozgását! Mérje meg a csőben az esés idejét mindhárom esetben! Szükséges eszközök: Rézcső, üvegcső, alumínium cső, erős mágnes; stopperóra, puha szivacs vagy párna, amire a mágnes rápottyan. A kísérlet leírása: Vizsgálja meg, hogy a rézcső fala nem vonzza a mágnest! Ejtse bele a mágnest a rézcsőbe, figyelje meg a mozgását! Mérje meg a csövek hosszát! Indítsa el a stopperórát, fogja függőlegesen a rézcsövet, és amikor az időmérés 30 másodpercnél tart, ejtse bele a csőbe a mágnest! A csövet állandó magasságban tartva állítsa meg a stopperórát akkor, amikor a mágnes kiért a cső alján! (Vigyázzon, hogy a törékeny mágnes ne sérüljön meg!) Állapítsa meg a mágnes esésének idejét, majd jegyezze föl a mért adatokat! Ismételje meg a mérést a többi csővel is!

16. Geometriai fénytan optikai eszközök Feladat: Mérje meg a kiadott üveglencse fókusztávolságát és határozza meg dioptriaértékét! Szükséges eszközök: Ismeretlen fókusztávolságú üveglencse; sötét, lehetőleg matt felületű fémlemez (ernyőnek); gyertya; mérőszalag; optikai pad vagy az eszközök rögzítésére alkalmas rúd és rögzítők. A kísérlet leírása: Helyezze a gyertyát az optikai pad tartójára, és gyújtsa meg! Helyezze el az optikai padon a papírernyőt, az ernyő és a gyertya közé pedig a lencsét! Mozgassa addig a lencsét és az ernyőt, amíg a lángnak éles képe jelenik meg az ernyőn! Mérje le ekkor a kép- és tárgytávolságot, és a leképezési törvény segítségével határozza meg a lencse fókusztávolságát! A mérés eredményét felhasználva határozza meg a kiadott üveglencse dioptriaértékét!

17. A fénytörés Feladat: A Hartl-korong segítségével mutassa be a fénytörés jelenségét, mérje meg a korong anyagának törésmutatóját! Szükséges eszközök: lézer vonalfényforrás, Hartl-korong, optikai pad. A kísérlet leírása: Ejtsük a lézernyalábot a Hartl-korong sík felületű oldalának közepére, majd különböző beesési szögek esetén mérjük meg a hozzájuk tartozó törési szögeket. Eredményeinket foglaljuk táblázatba, majd segítségükkel számítsuk ki a korong anyagának törésmutatóját! A kísérletet ismételjük meg úgy is, hogy a korong félkörívére ejtsük a sugarat úgy, hogy az a korongban a félkör középpontja felé tartson. Mit tapasztalunk kisebb illetve nagyobb beesési szögek esetén?

18. Atommodellek, az atom elektronszerkezete Feladat: A kiadott anyagokat lángba tartva figyelje meg és értelmezze a létrejövő jelenséget! Szükséges eszközök: PB kemping gázpalack (vagy vezetékes gáz); gázégő; gyufa; különböző fémek (pl. Na, Ca) sói; égetőkanál vagy égetődrót. A kísérlet leírása: A gázégőt óvatosan gyújtsa meg! A kiadott anyagokat az égetőkanál vagy égetődrót segítségével tartsa a gázlángba, és tartsa ott, amíg a minta fényes izzásba nem jön (kb. 1000-1400 C hőmérsékleten)! Mi történik a lánggal? Végezze el a kísérletet az összes előkészített anyaggal! Megfigyeléseit jegyezze le!

19. Az atommag összetétele, radioaktivitás Feladat: Elemezze és értelmezze a mellékelt ábrán feltüntetett bomlási sort! Szempontok az elemzéshez: Mit jelölnek a számok a grafikon vízszintes, illetve függőleges tengelyén? Mi a kiinduló elem és mi a végső (stabil) bomlástermék? Milyen bomlásnak felelnek meg a különböző irányú nyilak, hogyan változnak a jellemző adatok ezen bomlások során? Hány bomlás történik az egyik és hány a másik fajtából?

20. Az atommag stabilitása egy nukleonra jutó kötési energia Feladat: Az alábbi grafikon segítségével elemezze, hogyan változik az atommagokban lévő nukleonok kötési energiája az atommag tömegszámának változásával! Értelmezze ennek hatását a lehetséges magátalakulásokra! Nevezze meg az a), b) és c) jelű nyilak által mutatott magátalakulásokat, valamint előfordulásukat a természetben és a technika világában!

21. A gravitációs mező gravitációs kölcsönhatás Feladat: Fonálinga lengésidejének mérésével határozza meg a gravitációs gyorsulás értékét! Szükséges eszközök: Fonálinga: legalább 30-40 cm hosszú fonálon kisméretű nehezék; stopperóra; mérőszalag; állvány. A kísérlet leírása: A fonálingát rögzítse az állványra, majd mérje meg a zsinór hosszát és jegyezze le! Kis kitérítéssel hozza az ingát lengésbe! Ügyeljen arra, hogy az inga maximális kitérése 20 foknál ne legyen nagyobb! Tíz lengés idejét stopperrel lemérve határozza meg az inga periódusidejét! Mérését ismételje meg még legalább négyszer! A mérést végezze el úgy is, hogy az inga hosszát megváltoztatja az új hosszal történő mérést is legalább ötször végezze el!