Fizika érettségi mérések és kísérletek Tartalomjegyzék

Hasonló dokumentumok
. T É M A K Ö R Ö K É S K Í S É R L E T E K

1. Newton törvényei Feladat: A kísérlet leírása:

1. tétel. Newton törvényei

A hajdúnánási Kőrösi Csoma Sándor Református Gimnázium által szervezett középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások

Középszintű szóbeli tételek fizikából május

FIZIKA ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június

Középszintű fizika érettségi vizsga kísérleti eszközeinek listája tanév

1. Egyenes vonalú mozgások

Középszintű szóbeli érettségi kísérletei 2017

Kísérletek, elemzések, eszközök

FIZIKA. középszintű érettségi. szóbeli vizsga. nyilvánosságra hozandó anyagai. Témakörök, kísérletek, eszközök. Körmendi Kölcsey Ferenc Gimnázium

A középszintű fizika érettségi kísérleteinek képei 2017.

A mérések és kísérletek felsorolása

1. Newton-törvényei. Az OH által ajánlott mérés

A középszintű fizika szóbeli érettségi vizsga témakörei illetve kísérletei és egyszerű mérései Szegedi Deák Ferenc Gimnázium, 2018

Fizika középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései

Mechanika 1. Az egyenes vonalú mozgások

2. Newton törvényei A rugós ütközőkkel ellátott kocsik és a rájuk rögzíthető nehezékek segítségével tanulmányozza a rugalmas ütközés jelenségét!

3. Egyenes vonalú egyenletes mozgás Egyenes vonalú egyenletes mozgás tanulmányozása Mikola-csővel elvégzendő kísérlet

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok

Tájékoztató a KSzC Teleki Blanka Gimnáziuma, Szakgimnáziuma és Kollégiuma fizika középszintű szóbeli érettségihez

2017. Fizika szóbeli érettségi témakörök és kísérletek a Teleki Blanka Gimnáziumban

FIZIKA. középszintű szóbeli tételekhez tartozó kísérletek leírásai Összeállította: Horváth Lajos

1. Egyenes vonalú egyenletes mozgás

A KÖZÉPSZINTŰ SZÓBELI ÉRETTSÉGI KÍSÉRLETEI ÉS MÉRÉSEI FIZIKA TANTÁRGYBÓL 2018/2019.

A mérések és kísérletek felsorolása

1. Newton törvényei. Feladat:

Középszintű szóbeli tételek fizikából a Pécsi Leőwey Klára Gimnáziumban 2017-től

Újpesti Károlyi István Általános Iskola és Gimnázium által szervezett középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései

A mérések és kísérletek felsorolása

Mérések és kísérletek

1. Newton törvényei. 2. Egyenes vonalú mozgások

1. EGYENES VONALÚ MOZGÁSOK

A Debreceni SZC Vegyipari Szakgimnáziumának középszintű szóbeli fizika érettségi vizsga témakörei illetve kísérletei és egyszerű mérései 2017.

1. PERIODIKUS MOZGÁSOK

1. NEWTON TÖRVÉNYEI. Szükséges eszközök: Befőttesüveg; pohár; azt lefedő kártyalap; egy pénzérme. A kísérlet leírása:

Fizika Szóbeli érettségi tételek

A mérések és kísérletek felsorolása

FIZIKA Középszintű szóbeli érettségi A mérések és kísérletek felsorolása (12. abc)

1./ Egyenes vonalú mozgások

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel!

1. Newton törvényei. Fizika érettségi középszint szóbeli tételek Öszeállította: Bólyáné Lehotai Katalin szaktanár

Mérési és kísérleti feladatok a középszintű fizika érettségin (2018.)

1./ Egyenes vonalú mozgások

ELTE BOLYAI JÁNOS GYAKORLÓ ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK ÉS KÍSÉRLETEK FIZIKÁBÓL

1. Newton törvényei. Fizika

1. Egyenes vonalú mozgások

Középszintű fizika érettségi közzéteendő mérés eszközei és azok képei

Szóbeli érettségi tételek fizikából 2016/2017-es tanév

2018. as Középszintű Fizika érettségi szóbeli tétel kísérletei

A középszintű fizika szóbeli érettségi témakörei illetve kísérletei és egyszerű mérései Szegedi Deák Ferenc Gimnázium, 2018

Hőtan. Elektromosságtan. Optika. Atomfizika, magfizika. Gravitáció, csillagászat. Fizika

1. Egyenes vonalú mozgások kinematikája

Középszintű szóbeli tételek fizikából a Pécsi Leőwey Klára Gimnáziumban 2017-től

Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017

A Keszthelyi Vajda János Gimnázium által szervezett középszintű szóbeli fizika érettségi vizsga témakörei illetve kísérletei és elemzései 2016/2017

1. A haladó mozgás fajtái, jellemzői és dinamikai feltételük

A középszintű fizika érettségi méréseinek és kísérleteinek

1) Egyenes vonalú mozgások kinematikája

FIZIKA. középszintű szóbeli tételekhez tartozó kísérletek leírásai Összeállította: Zajacz Lajos

SZOSZSZC Horváth Boldizsár Közgazdasági és Informatikai Szakgimnáziuma Szóbeli érettségi témakörök és kísérletek fizikából

14. Geometriai fénytan optikai eszközök 15. Hullámjelenségek, a polarizáció jelenségének bemutatása polárszűrővel

Középszintű szóbeli érettségi témakörei illetve kísérletei és egyszerű mérései fizikából 2017 DRK Dóczy Gimnáziuma

A Soproni Széchenyi István Gimnázium 12. ABCD osztálya fizika érettségi szóbeli tételeinek témakörei és a hozzájuk kapcsolódó mérések

Fizika szóbeli érettségi témakörök és kísérletek

1. A dinamika alaptörvényei törvényei. Kísérlet: Rugalmas ütközés vizsgálata

Középszintű fizika érettségi szóbeli vizsga kísérleti eszközeinek listája. 1. Newton törvényei

FIZIKA középszintű szóbeli érettségi témakörök, kísérletek június

1. Egyenes vonalú egyenletes mozgás

Újpesti Károlyi István Általános Iskola és Gimnázium által szervezett középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései

Kísérletek, egyszerű mérések a évi középszintű fizika szóbeli érettségi vizsgához

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag

Középszintű érettségi témakörök és kísérletek fizika

A középszintű fizika érettségi vizsga szóbeli témakörei és kísérletei (2017. május-június)

Szekszárdi I Béla Gimnázium Középszintű fizika szóbeli érettségi vizsga témakörei és kísérletei

KÖZÉPSZINTŰ FIZIKA ÉRETTSÉGI TÉTELSOR

Középszintű fizika érettségi kísérletek listája témakörök szerint, 2017

1. tétel. Egyenes vonalú mozgások

1. TÉTEL EGYENES VONALÚ MOZGÁSOK

Fizika középszintű szóbeli vizsga témakörei, kísérletei és egyszerű mérései május

Középszintű szóbeli érettségi kísérletei 2018

FIZIKA középszintű szóbeli érettségi témakörök, kísérletek június

1. Tétel. Egyenes vonalú mozgások

FIZIKA. Középszintű érettségi vizsga szóbeli részén elvégzendő mérések, kísérletek 20 tételhez

ELTE BOLYAI JÁNOS GYAKORLÓ ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM SZÓBELI ÉRETTSÉGI TÉMAKÖRÖK ÉS KÍSÉRLETEK FIZIKÁBÓL

A fizika középszintű szóbeli vizsga témakörei illetve kísérletei és egyszerű mérései. 3. Forgatónyomaték, merev test egyensúlya, egyszerű gépek

Fizika érettségi tételek

Mérések és kísérletek. Fizika szóbeli érettségi vizsga

2. Egyenes vonalú mozgások

1. TÉTEL EGYENES VONALÚ MOZGÁSOK

Feladat: A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Rugóra rögzített, rezgőmozgást végző test periódusidejének tömegfüggése elvégzendő kísérlet

1. Egyenes vonalú mozgások

Tájékoztató a fizika középszintű szóbeli érettségihez A mérések és kísérletek felsorolása Gyulai Erkel Ferenc Gimnázium és Kollégium 2017.

1. Egyenes vonalú mozgások

1. KÍSÉRLET Egyenes vonalú mozgások

Kiskunhalasi Református Kollégium. Szilády Áron Gimnázium. Fizika középszintű érettségi kísérletek

A mérések és kísérletek felsorolása tanév május-június érettségi vizsgaidőszak

Kisbéri Táncsics Mihály Gimnázium, Szakgimnázium és Általános Iskola középszintű fizika szóbeli érettségi témakörei és kísérletei (2017)

Átírás:

Tartalomjegyzék A mérések és kísérletek felsorolása... 2 1.TÉTEL... 3 2. TÉTEL... 4 3. TÉTEL... 5 4. TÉTEL... 6 5. TÉTEL... 7 6. TÉTEL... 8 7. TÉTEL... 9 8. TÉTEL... 10 9. TÉTEL... 11 10. TÉTEL... 12 11. TÉTEL... 13 12. TÉTEL... 14 13. TÉTEL... 15 14. TÉTEL... 16 15. TÉTEL... 17 16. TÉTEL... 18 17. TÉTEL... 19 18. TÉTEL... 20 19. TÉTEL... 21 20. TÉTEL... 22 1

A mérések és kísérletek felsorolása 1. Egyenes vonalú mozgások 2. Munka, mechanikai energia 3. Pontszerű és merev test egyensúlya, egyszerű gépek 4. Periodikus mozgások 5. A testek tehetetlenségének vizsgálata 6. Arkhimédész törvényének igazolása arkhimédészi hengerpárral 7. A hőtágulás bemutatása golyó és lyuk hőtágulása 8. A lecsapódás jelensége a gázok nyomása 9. A Boyle Mariotte-törvény szemléltetése 10. Testek elektromos állapota 11. Soros és párhuzamos kapcsolás 12. Egyenes vezető mágneses terének vizsgálata 13. Elektromágneses indukció 14. Geometriai fénytan optikai eszközök 15. A polarizáció jelenségének bemutatása 16. Színképek és atomszerkezet Bohr-modell 17. Az atommag stabilitása egy nukleonra jutó kötési energia 18. Sugárzások sugárvédelem 19. A gravitációs mező gravitációs kölcsönhatás 20. A Merkúr és a Vénusz összehasonlítása 2

1.TÉTEL Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést! Mikola-cső; dönthető állvány; befogó; stopperóra; mérőszalag. Rögzítse a Mikola-csövet a befogó segítségével az állványhoz, és állítsa pl. 20 -os dőlésszögre! Figyelje meg a buborék mozgását, amint az a csőben mozog! A stopperóra és a mérőszalag segítségével mérje meg, hogy mekkora utat tesz meg a buborék egy előre meghatározott időtartam (pl. 3 s) alatt! Ismételje meg a mérést még kétszer, és minden alkalommal jegyezze fel az eredményt! Utána mérje meg azt, hogy mennyi idő alatt tesz meg a buborék egy előre meghatározott utat (pl. 40 cm-t)! Ezt a mérést is ismételje meg még kétszer, eredményeit jegyezze fel! Utána növelje meg a Mikola-cső dőlésének szögét 45 -osra és az új elrendezésben ismét mérje meg háromszor, hogy adott idő alatt mennyit mozdul el a buborék, vagy azt, hogy adott távolságot mennyi idő alatt tesz meg! 3

2. TÉTEL Munka, mechanikai energia Lejtőn leguruló kiskocsi segítségével tanulmányozza a mechanikai energiák egymásba alakulását! Erőmérő; kiskocsi; nehezékek; sín; szalagrugó (a kiskocsis mechanikai készletek része); mérőszalag vagy kellően hosszú vonalzó. Kis hajlásszögű (5-20 ) lejtőként elhelyezett sín végére rögzítünk a sínnel párhuzamosan szalagrugót. A kiskocsit három különböző magasságból engedje el, és figyelje meg a rugó összenyomódását! Keresse meg azt az indítási magasságot, amikor a kiskocsi éppen teljesen összenyomja a rugót! A nehezékek segítségével duplázza, illetve triplázza meg a kiskocsi tömegét, és a megnövelt tömegek esetén is vizsgálja meg, milyen magasságból kell elengedni a kiskocsit, hogy a rugó éppen teljesen összenyomódjon! 4

3. TÉTEL Pontszerű és merev test egyensúlya, egyszerű gépek Erőmérővel kiegyensúlyozott karos mérleg segítségével tanulmányozza a merev testre ható forgatónyomatékokat és az egyszerű emelők működési elvét! Karos mérleg; erőmérő; súly; mérőszalag vagy vonalzó. Egy egyensúlyban lévő karos mérleg egyik oldalára akassza fel az ismert súlyú testet, és jegyezze fel a távolságot a rögzítési pont és a kar forgástengelye között! Rögzítse az erőmérőt a mérleg másik karján, a forgástengelytől ugyanekkora távolságra! Egyensúlyozza ki a mérleget függőleges irányú erővel, és a mért erőértéket jegyezze le! Változtassa meg az erőmérő rögzítési helyét (pl. a forgástengelytől felevagy harmadakkora távolságra, mint az első esetben), és ismét egyensúlyozza ki! A mért erőértéket és a forgástengelytől való távolságot ismét jegyezze fel! Készítsen értelmező rajzot, amely az elvégzett mérés esetében a mért erőértékek arányait és irányait magyarázza! 5

4. TÉTEL Periodikus mozgások Különböző tömegű súlyok felhasználásával vizsgálja meg egy rugóra rögzített, rezgőmozgást végző test periódusidejének függését a test tömegétől! Bunsen-állványra rögzített rugó; legalább öt, ismert tömegű súly vagy súlysorozat; stopperóra; milliméterpapír. Rögzítse az egyik súlyt az állványról lelógó rugóra, majd függőleges irányban kissé kitérítve óvatosan hozza rezgésbe! Ügyeljen arra, hogy a test a mozgás során ne ütközzön az asztalhoz, illetve hogy a rugó ne lazuljon el teljesen! A rezgőmozgást végző test egyik szélső helyzetét alapul véve határozza meg a mozgás tíz teljes periódusának idejét, és ennek segítségével határozza meg a periódusidőt! A mérés eredményét jegyezze le, majd ismételje meg a kísérletet a többi súllyal is! A mérési eredményeket, valamint a kiszámított periódusidőket rögzítse táblázatban, majd ábrázolja a milliméterpapíron egy periódusidő-tömeg grafikonon! Tegyen kvalitatív megállapítást a rezgésidő tömegfüggésére! 6

5. TÉTEL A testek tehetetlenségének vizsgálata Helyezzen a nyitott üveg szájára kártyalapot (névjegyet, keménypapírt), és a lapra egy pénzérmét! Pöckölje ki vagy rántsa ki hirtelen a kártyalapot a pénz alól, és az érme az üvegbe hullik. Befőttesüveg; pohár; azt lefedő kártyalap; egy pénzérme. A kártyalap gyors mozdulattal kipöckölhető vagy kirántható a pénz alól úgy, hogy az az edénybe belehull. A pénzérmére ható erők részletes vizsgálatával magyarázza a kísérletben bemutatott jelenséget! Magyarázza a kártya sebességének szerepét! 7

6. TÉTEL Arkhimédész törvényének igazolása arkhimédészi hengerpárral Az arkhimédészi hengerpár segítségével mérje meg a vízbe merülő testre ható felhajtóerő nagyságát! Arkhimédészi hengerpár (egy rugós erőmérőre akasztható üres henger, valamint egy abba szorosan illeszkedő, az üres henger aljára akasztható tömör henger); érzékeny rugós erőmérő; főzőpohár. Mérje meg az üres henger és az aljára akasztott tömör henger súlyát a levegőn rugós erőmérővel! Ismételje meg a mérést úgy, hogy a tömör henger teljes egészében vízbe lóg! Ezek után töltsön vizet az üres hengerbe úgy, hogy az csordultig megteljen, s ismételje meg a mérést így is! Írja fel mindhárom esetben a rugós erőmérő által mért értékeket! 8

7. TÉTEL A hőtágulás bemutatása golyó és lyuk hőtágulása A felfüggesztett fémgolyó éppen átfér a fémgyűrűn (Gravesande-készülék). Melegítse Bunsenégővel a fémgolyót, vizsgálja meg, hogy ekkor is átfér-e a gyűrűn! Mi történik akkor, ha a gyűrűt is melegíti? Vizsgálja meg a gyűrű és a golyó átmérőjének viszonyát lehűlés közben! Gravesande-készülék; Bunsen-égő; hideg (jeges) víz. Győződjön meg arról, hogy a golyó szobahőmérsékleten átfér a gyűrűn! Melegítse fel a golyót, és vizsgálja meg, átfér-e a gyűrűn! Melegítse fel a gyűrűt, és így végezze el a vizsgálatot! Hűtse le a gyűrűt a lehető legalacsonyabb hőmérsékletre, majd tegye rá a golyót, s hagyja fokozatosan lehűlni! 9

8. TÉTEL A lecsapódás jelensége a gázok nyomása A lombikból kevés víz forralásával hajtsa ki a levegőt! A lombikot zárja le egy léggömbbel, majd a lombikban rekedt vízgőzt hűtéssel csapassa le! Így a lombikban leesik a nyomás, a léggömb a lombikba beszívódik. Hőálló lombik; léggömb; vízmelegítésre alkalmas eszköz (vas háromláb, azbesztlap, facsipesz stb.); hideg víz egy edényben, hűtés céljára; védőkesztyű. A lombik aljára tegyen egy kevés vizet, és forralja fel! Fél perc forrás után vegye le a lombikot a tűzről, és feszítsen a szájára egy léggömböt úgy, hogy a léggömb kilógjon a lombikból! A lombikot hagyja lehűlni (hideg vízzel hűtse le)! Figyelje meg, mi történik a léggömbbel! Magyarázza a kísérletben bemutatott jelenséget! Javaslat a kísérlet értelmezésére: - Mi történik a lombikban a víz forralásakor? - Milyen halmazállapot-változás történik a lombikban hűtés hatására? - Magyarázza meg, hogy miért szívódott be a léggömb! 10

9. TÉTEL A Boyle Mariotte-törvény szemléltetése Elzárt gázt összenyomva tanulmányozza a gáz térfogata és nyomása közti összefüggést állandó hőmérsékleten! Tű nélküli orvosi műanyag fecskendő. A fecskendő dugattyúját húzza ki a legutolsó térfogatjelzésig, majd szorítsa ujját a fecskendő csőrére olyan erősen, hogy légmentesen elzárja azt! Nyomja erősen befelé a dugattyút anélkül, hogy a fecskendő csőrén kiengedné a levegőt! Mit tapasztal? Mekkora térfogatúra tudta összepréselni a levegőt? A dugattyún a nyomást fenntartva hirtelen engedje el a fecskendő csőrét! Halk hangot hallhat a fecskendőből. Mi lehet a hanghatás oka? Húzza ki ismét a dugattyút a felső állásba, fogja be ismét a fecskendő csőrét, és nyomja be erősen a dugattyút! A fecskendő csőrét továbbra is befogva engedje el a dugattyút! Mi történik? Végezze el a kísérletet úgy is, hogy az összenyomott fecskendő csőrét befogja, ezután kifelé húzza a dugattyút, majd ebből a helyzetből engedi el! Mi tapasztal? 11

10. TÉTEL Testek elektromos állapota Különböző anyagok segítségével tanulmányozza a sztatikus elektromos töltés és a töltésmegosztás jelenségét! Két elektroszkóp; ebonit- vagy műanyag rúd; ezek dörzsölésére szőrme vagy műszálas textil; üvegrúd; ennek dörzsölésére bőr vagy száraz újságpapír. a) Dörzsölje meg az ebonitrudat a szőrmével (vagy műszálas textillel), és közelítse az egyik elektroszkóphoz úgy, hogy ne érjen hozzá az elektroszkóp fegyverzetéhez! Mit tapasztal? Mi történik akkor, ha a töltött rudat eltávolítja az elektroszkóptól? Ismételje meg a kísérletet papírral dörzsölt üvegrúddal! Mit tapasztal? b) Ismételje meg a kísérletet úgy, hogy a megdörzsölt ebonitrudat érintse hozzá az egyik elektroszkóphoz! Mi történik az elektroszkóp lemezkéivel? Dörzsölje meg az üvegrudat a bőrrel (vagy újságpapírral), és érintse hozzá a másik elektroszkóphoz! Mi történik az elektroszkóp lemezkéivel? Érintse össze vagy kösse össze vezetővel a két elektroszkópot! Mi történik? 12

11. TÉTEL Soros és párhuzamos kapcsolás Egy áramforrás és két zseblámpaizzó segítségével tanulmányozza a soros, illetve a párhuzamos kapcsolás feszültség- és teljesítményviszonyait! 4,5V-os zsebtelep (vagy helyettesítő áramforrás); két egyforma zsebizzó foglalatban; kapcsoló; vezetékek; feszültségmérő műszer, áramerősség-mérő műszer. Készítsen kapcsolási rajzot két olyan áramkörről, amelyben a két izzó sorosan, illetve párhuzamosan van kapcsolva! A rendelkezésre álló eszközökkel állítsa össze mindkét áramkört! Mérje meg a fogyasztókra eső feszültségeket és a fogyasztókon átfolyó áram erősségét mindkét kapcsolás esetén! Figyelje meg az izzók fényerejét mindkét esetben! 13

12. TÉTEL Egyenes vezető mágneses terének vizsgálata Egyenes vezetőben indítson áramot! Az árammal átjárt vezető egyenes szakaszának környezetében vizsgálja a vezető mágneses terének szerkezetét egy iránytű segítségével! Áramforrás; vezető; iránytű; állvány. Az ábrákon szereplő megoldásban árammal átjárt egyenes vezetőt alatt iránytű van. Először a vezető iránya észak-déli legyen, másodszor kelet-nyugati! Figyelje meg mindkét esetben az iránytű viselkedését! Végezze el a kísérletet fordított áramiránnyal is! 14

13. TÉTEL Elektromágneses indukció Légmagos tekercs és mágnesek segítségével tanulmányozza az elektromágneses indukció jelenségét! Középállású demonstrációs áramerősség-mérő; különböző menetszámú, vasmag nélküli tekercsek (például 300, 600 és 1200 menetes); 2 db rúdmágnes; vezetékek. Csatlakoztassa a tekercs két kivezetését az árammérőhöz! Dugjon be egy mágnest a tekercs hossztengelye mentén a tekercsbe! Hagyja mozdulatlanul a mágnest a tekercsben, majd húzza ki a mágnest körülbelül ugyanakkora sebességgel, mint amekkorával bedugta! Figyelje közben az áramerősségség-mérő műszer kitérését! Ismételje meg a kísérletet fordított polaritású mágnessel is! Ismételje meg a kísérletet úgy, hogy gyorsabban (vagy lassabban) mozgatja a mágnest! Ezután fogja össze a két mágnest és a kettőt együtt mozgatva ismételje meg a kísérleteket! Ismételje meg a kísérletet kisebb és nagyobb menetszámú tekerccsel is! Röviden foglalja össze tapasztalatait! 15

14. TÉTEL Geometriai fénytan optikai eszközök Feladat: Mérje meg a kiadott üveglencse fókusztávolságát és határozza meg dioptriaértékét! Ismeretlen fókusztávolságú üveglencse; sötét, lehetőleg matt felületű fémlemez (ernyőnek); gyertya; mérőszalag; optikai pad vagy az eszközök rögzítésére alkalmas rúd és rögzítők. Helyezze a gyertyát az optikai pad tartójára, és gyújtsa meg! Helyezze el az optikai padon a papírernyőt, az ernyő és a gyertya közé pedig a lencsét! Mozgassa addig a lencsét és az ernyőt, amíg a lángnak éles képe jelenik meg az ernyőn! Mérje le ekkor a kép- és tárgytávolságot, és a leképezési törvény segítségével határozza meg a lencse fókusztávolságát! A mérés eredményét felhasználva határozza meg a kiadott üveglencse dioptriaértékét! 16

15. TÉTEL A polarizáció jelenségének bemutatása A polariszkóp segítségével tanulmányozza a fénypolarizáció jelenségét! Állítsa be a készüléket a leírás alapján, majd a tükrök forgatásával, egymáshoz viszonyított helyzetük alapján magyarázza meg a látott jelenséget! Polariszkóp, a készülékhez tartozó fényforrás, 2 fekete tükör, 2 szögmérő A készülék két szárát nyissuk szét 2x56 -ra. A beállításhoz a szögmérős asztalkát használja. A fokok leolvasását a szárak belső éleinél végezze. A 0 iránya /beesési merőleges/ mindig a képzeletbeli szögfelező irányával egyezzen! Az összeállítás legyen a fenti ábrának megfelelő. A fényforrást kapcsolja be(2), a szögosztásos ernyő (7) merőleges legyen az optikai tengelyre /a készülék szárára/. Ekkor az ábra szerinti éles fényfoltnak kell látszódni az ernyőn. Ha nem így lenne, akkor lazítsa ki a fényforrást rögzítő csavart (2A) és a fényforrás mozgatásával /előre-hátracsúsztatás illetve forgatás/ keresse meg az optimális helyzetet, majd rögzítse a beállítást. Forgassa az analizátort (6) Mit tapasztal forgatás közben? Ha az analizátor (6) párhuzamos, illetve merőleges a polarizátorral (5), akkor mit mondhatunk a rá beeső és a róla visszavert fény erősségéről? Magyarázza meg a jelenséget! A fény milyen tulajdonságát bizonyítja a kísérlet? 17

16. TÉTEL Színképek és atomszerkezet Bohr-modell Feladat: Az ábra alapján mutassa be Bohr atommodelljének legfontosabb jellemzőit a hidrogénatom esetében! Értelmezze a hidrogén vonalas színképét a Bohr-modell alapján! + Látható tartomány 18

17. TÉTEL Az atommag stabilitása egy nukleonra jutó kötési energia Feladat: Az alábbi grafikon segítségével elemezze, hogyan változik az atommagokban lévő nukleonok kötési energiája az atommag tömegszámának változásával! Értelmezze ennek hatását a lehetséges magátalakulásokra! Nevezze meg az a), b) és c) jelű nyilak által mutatott magátalakulásokat, valamint előfordulásukat a természetben és a technika világában! Forrás: Mozaweb 19

18. TÉTEL Sugárzások sugárvédelem Feladat: Vizsgálja meg és értelmezze az alábbi diagramot! Fejtse ki a sugárzások sugárvédelem témakörét a megadott szempontok alapján, a diagram elemzését felhasználva! Természetes eredetű sugárzás forrásai 2% 26% 55% Táplálék Kozmikus sugárzás Építőanyagok sugárzása A talaj sugárzása 17% Az átlagos természetes eredetű sugárterhelés: 2,4 msv/év. Szempontok az elemzéshez: Ismertesse az aktivitás fogalmát! Mutassa be röviden a radioaktív sugárzások fajtáit és azok biológiai hatását! Ismertesse az elnyelt sugárdózis, valamint a dózisegyenérték fogalmát, adja meg mértékegységét! Mondjon példát a táplálék eredetű sugárterhelésre! Mi a kozmikus háttérsugárzás forrása? Mi az oka a természetes talajsugárzásnak, illetve az építőanyagokból származó sugárzásnak? 20

19. TÉTEL A gravitációs mező gravitációs kölcsönhatás Fonálinga lengésidejének mérésével határozza meg a gravitációs gyorsulás értékét! Fonálinga: legalább 30-40 cm hosszú fonálon kisméretű nehezék; stopperóra; mérőszalag; állvány. A fonálingát rögzítse az állványra, majd mérje meg a zsinór hosszát és jegyezze le! Kis kitérítéssel hozza az ingát lengésbe! Ügyeljen arra, hogy az inga maximális kitérése 20 foknál ne legyen nagyobb! Tíz lengés idejét stopperrel lemérve határozza meg az inga periódusidejét! Mérését ismételje meg még legalább négyszer! A mérést végezze el úgy is, hogy az inga hosszát megváltoztatja az új hosszal történő mérést is legalább ötször végezze el! 21

20. TÉTEL A Merkúr és a Vénusz összehasonlítása Az alábbi táblázatban szereplő adatok segítségével elemezze a Merkúr és a Vénusz közötti különbségeket, illetve hasonlóságokat! Merkúr Vénusz 1. Közepes naptávolság 57,9 millió km 108,2 millió km 2. Tömeg 0,055 földtömeg 0,815 földtömeg 3. Egyenlítői átmérő 4 878 km 12 102 km 4. Sűrűség 5,427 g/cm³ 5,204 g/cm³ 5. Felszíni gravitációs gyorsulás 3,701 m/s² 8,87 m/s² 6. Szökési sebesség 4,25 km/s 10,36 km/s 7. Legmagasabb hőmérséklet 430 C 470 C 8. Legalacsonyabb hőmérséklet 170 C 420 C 9. Légköri nyomás a felszínen ~ 0 Pa ~ 9 000 000 Pa A Vénusz A Merkúr felszíne A feladat leírása: Tanulmányozza a Merkúrra és a Vénuszra vonatkozó adatokat! Mit jelentenek a táblázatban megadott fogalmak? Hasonlítsa össze az adatokat a két bolygó esetében, és értelmezze az eltérések okát a táblázatban található adatok felhasználásával! 22