OPTIKAI BIOÉRZÉKELÉS
|
|
- Benjámin Ernő Balla
- 8 évvel ezelőtt
- Látták:
Átírás
1 OPTIKAI BIOÉRZÉKELÉS Kozma Péter Janosov Milán PhD, tudományos munkatárs kutató diák Petrik Péter PhD, tudományos főmunkatárs, laborvezető MTA Energiatudományi Kutatóközpont Műszaki Fizikai és Anyagtudományi Intézet Történeti háttér Leland C. Clark és Champ Lyons 1962-ben megalkották az első bioérzékelőt, az ún. enzimelektródot, amellyel koszorúérműtétek során folyamatosan mérni tudták a páciensek véroxigén-szintjét (Clark Lyons, 1962). Munkájukkal szemléltették az ilyen és hasonló eszközök fejlesztésében rejlő hatalmas orvostudományi és biotechnológiai lehetőségeket, s útjára indítottak egy azóta is töretlenül fejlődő kutatási területet, a bioszenzorikát. Bár az elmúlt ötven év során számos új és egyre jobb bioérzékelő-összeállítást, prototípust és terméket mutattak be, egyre nő az igény az érzékelők árának és méretének csökkentésére, az érzékenységük növelésére, jobb kimutatási határok elérésére, jobb specificitásra és nagyobb stabilitásra, újabb és még komolyabb kihívásokat támasztva ezzel a jelen és jövő kutatói és mérnökei számára. A közismert és széles körben elterjedt, kisméretű, gyors, olcsó, könnyen használható és megbízható vércukorszintmérők számos cukorbetegségben szenvedő páciens életét könnyítik meg évtizedek óta. A sokrétű orvosbiológiai alkalmazásokon (például a terhes- ség-, bakteriális fertőzés-, koleszterin- vagy troponin T gyorsteszteken) túl a bioszenzorokat gyakran használják az igazságügy területén (például alkohol-, drog- és doppingtesztek elvégzésére), valamint az iparban is (például a gyógyszergyártásban, vagy víz- és ételminőség ellenőrzésére). Annak ellenére, hogy az orvosbiológiai kutatások már bizonyították a többparaméteres vizsgálatok előnyeit, a modern bioérzékelők jellemzően csak egyetlen, esetleg néhány paraméter együttes kvalitatív érzékelésére képesek. Több paramé ter egyidejű, helyszíni és kvantitatív detektálása ma még nehezen kivitelezhető. Jelenleg a legérzékenyebb bioérzékelők fluoreszcens, mágneses vagy radioaktív molekulajelölésen alapuló technikák. Segítségükkel a jelölő jelét követve akár egyetlen mo lekula útja is követhető a vizsgált térrészben. E módszerek széles körben elterjedtek, s nagyon népszerűek a biofizikai és biokémiai kutatásokban. Elvitathatatlan előnyeik mellett ezeknek ugyanakkor a jelölésmentes eljárásokkal szemben számos hátrányuk is van. A kémiai jelölés folyamata drága és költséges, idő- és laboratóriumigényes. Továbbá a csatolt jelölők hatással lehetnek a molekulák 1171
2 Magyar Tudomány 2015/10 tulajdonságaira, így módosíthatják a mérési eredményeket. Következésképpen, a jelölésmentes eljárások fontos alternatívát jelentenek a jelöléses technikák mellett, hiszen ezek, bár jelenlegi érzékenységük szerényebb, ugyanúgy specifikus és gyors méréseket tesznek lehetővé a fenti hátrányoktól mentesen. A jelölésmentes bioszenzorikai rendszerek érzékelési mechanizmusának alapját a célmolekula és a felismerőelem között létrejövő specifikus, molekuláris szinten lezajló reakció képezi, ugyanúgy, mint a jelöléses technikák esetén. Azonban a jelölő jelének követése helyett kihasználják, hogy a felismerés (azaz a célmolekula megkötése) valamilyen fizikaikémiai változást hoz létre a rendszerben, amely azután egy alkalmas jelátalakító egység segítségével detektálható és mérhető (1. ábra). Más szavakkal, a célmolekulákat is tartalmazó biológiai minta (oldat vagy gáz) a felismerőelemekkel borított bioszenzor érzékelőfelületét éri, ahol a felismerőelemek feladata a keresett célmolekulák kizárólagos és hatékony megkötése. A felismerőelemeket egy korábbi cikkünkben mutattuk be részletesen (Janosov Kozma, 2014). A bekötődés fizikai, illetve kémiai változásokat okoz az érzékelőfelületen, amelyeket a jelátalakító egység erősít fel, s alakítja át például elektromosan feldolgozható jellé. Összegezve, a bioérzékelők feladata valamilyen célmolekula specifikus kimutatása a vizsgált környezetben (mintában). Az imént bemutatott gondolatmenetet követve a bioszenzorikai mérések általános elve a következő: a bioérzékelő válaszjelét az érzékelőréteg mintabevitel előtt mért alapállapotához viszonyítjuk, azaz első lépésben rögzítjük az ún. alapvonalat. Ezt követően a minta rendszerbe juttatásával megkezdődik a célmolekula felismerése. Az egyre növekedő, exponenciális jelleggel telítődő jel a felismerés kinetikájára és a célmolekulák koncentrációjára jellemző. A következő fázis az ún. lemosás, amelynek során eltávolítják a szenzor felületéről (és a rendszerből) a meg nem kötött molekulákat, hogy megkapják a bioérzékelési folyamat során létrejött molekulakomplexek (felismerőelem célmolekula ábra A bioérzékelők működésének elvi vázlata (balra) (Janosov Kozma, 2014) és a bioszenzorikai mérések általános folyamata (jobbra) (Cooper, 2002)
3 pá rok) valódi mérési jelét. Ezt a jelet a mérés elején rögzített alapvonalhoz viszonyítják. A komplexek környezetét jellemző tulajdonságok (például: ph-érték, hőmérséklet) célzott megváltozásával a lemosás után lehetséges a felület regenerálása, amelynek eredményeképpen a szenzorfelület visszakerül eredeti állwapotába. A folyamat sematikus vázlatát az 1. ábra jobb oldala mutatja be. A felismerőelemekhez fejlesztett jelátalakítók számos típusa lelhető fel a tudományos és ismeretterjesztő irodalomban és a fejlesztő cégek kínálatában. Ezek többnyire tömeg-, hőmennyiség-, elektrokémiai vagy optikai változások kimutatásán alapuló mérési eljárások, amelyek közül az optikai módszerek jóval keresettebbek társaiknál. Ennek fő oka, hogy ezek az imént felsoroltak előnyeit költséghatékony módon egyesítik: a célmolekula bekötődési eseményeit kis teljesítményű elektromágneses mező segítségével roncsolás- és egyéb mellékhatás mentesen, azonnal és nagy mintavételezési frekvencia mellett detektálják. A felületegységre jutó érzékenységük kiemelkedően jó, valamint könnyen tömbbe rendezhetőek, így lehetőséget nyitnak nagyszámú párhuzamos mérés elvégzésére is. Az érzékelőfelületeik kialakításának technológiaigénye a versenytársakhoz képest viszonylag alacsony. Továb bá az eszközök méretének gyors csökkenésével, kedvezőbb mennyiségű min ta és reagens felhasználásával és a gyors mérésekkel gyakran alkalmasak akár páciensközeli vizsgálatok hatékony elvégzésére is. Optikai bioérzékelők és működésük Az optikai jelátalakítók működésének alapja, hogy a célmolekulák bekötődésükkel kiszorítják a jelátalakító felületén elhelyezett felismerőelemeket körülvevő eltérő törésmutatójú közeg (általában valamilyen oldat) molekuláit, így e fizikai mennyiségek átlagos értékét megváltoztatják a felületközeli rétegben. A törésmutató és az azzal kapcsolatban álló fizikai mennyiségek (a haladó elektromágneses mező fázissebessége és hullámhossza, a rendszeren áthaladó fény intenzitása, polarizációs állapota stb.) a megkötött célmolekulák mennyiségével arányosan változik. Az optikai jelátalakítók e különbséget formálják mérhető jellé. Számos különféle konstrukciójú érzékelő látott már napvilágot, azonban a következőkben terjedelmi korlátok miatt csupán a legismertebb és legsikeresebb optikai jelátalakítók rövid bemutatására szorítkozunk. Hullámvezetés Kísérleti úton Jean-Daniel Colladon mutatta ki elsőként 1842-ben, hogy a fény határfelülethez érve akár teljes visszaverődést is szenvedhet. Abban az esetben ugyanis, ha egy a fény számára átjárható közeget egy nála kisebb törésmutatójúval határolunk, a nagyobb optikai sűrűségű közeg felől a határfelülethez az ún. kritikus beesési szög alatt érkező fénysugár teljes mértékben visszaverődik. (A kritikus beesési szög a Descartes Snellius-törvény alapján meghatározható ún. határszög.) Colladon, majd John Tyndhall kísérletükkel megalapozták a hullámvezető-optika későbbi dinamikus fejlődését, hiszen amennyiben az ilyen rendszerek geometriáját és optikai tulajdonságait jól választjuk meg, a fénysugár csapdába ejthető és kiváló hatásfokkal vezethető. Mára ez a felfedezés számos területet, köztük a távközlés, a különböző mérés- és érzékeléstechnikák, valamint az egyéb integrált optikai módszerek világát is forradalmasította. Az optikai hullámvezető legegyszerűbben kivitelezhető, méréstechnikai szempontokból kiváló, valamint matematikailag a legkönynyebben tárgyalható elrendezése az ún. sík 1173
4 Magyar Tudomány 2015/10 dielektromos hullámvezető (2. ábra). Itt egy hordozó- (substrate S) és egy fedőréteg (cover C) között található vékony, magas törésmutatójú dielektrikumréteg (film F) tölti be a hullámvezető szerepét. A filmrétegbe csatolt, s bennük terjedő ún. módusok (megfelelő fizikai paraméterekkel jellemezhető fénynyalábok) egy exponenciálisan lecsengő elektromágneses teret, ún. evaneszcens mezőt építenek fel a határfelület néhány száz nanométeres környezetében (2. ábra). Az evaneszcens mező kölcsönhat a hullámvezető film környezetével, így például a felületére rögzített felismerőelemekkel (illetve később a felismerőelem célmolekula komplexekkel) is. Mivel e mező intenzitása a hullámvezetőtől távolodva exponenciálisan csökken, az ilyen jelátalakítók csakis a felület közvetlen környezetének változásait detektálják (Kozma et al., 2014a). A hullámvezetésen alapuló első, széles körben elterjedt bioérzékelő bemutatása (Tiefenthaler Lukosz, 1984) óta már számos más összeállítás is bizonyította, hogy a sík dielektrikum hullámvezetők kiválóan alkalmasak szenzorikai feladatok ellátására. Ezek közül az egyik legismertebb eljárás, amely hatékonyan használja ki a hullámvezetők kivételes felületérzékenységét, az optikai hul lámvezető fénymódus spektroszkópia (optical waveguide lightmode spectroscopy OWLS). Elrendezése a következő: egy sík hullámvezető struktúrát rendkívül finoman forgatható goniométerasztalra helyeznek, majd egy lézerfényforrás fényét egy polarizációforgatón keresztül a hullámvezetőn található optikai rácsra irányítják. A hullámvezető két végére egy-egy fotodiódát illesztenek, s ezekkel mérik a beesési szög függvényében a fény intenzitást (2. ábra, jobb oldali kép). Azon beesési szög mellett, amely esetén a fény képes a hullámvezetőbe csatolódni, azaz módus indul, inten zitáscsúcsot mérünk a detektorokkal. Ez a pozíció azonban a beeső fény hullámhosszán és a rács periódusán túl függ a rétegek opto-geometriai paramétereitől, azaz a rend szer effektív törésmutatójától is. Amennyiben a fedő, film és hordozó közegek optikai sűrű sége állandónak tekinthető, a felületen fejlődő vé konyrétegben végbemenő változás a módus csúcsok pozíciójának folyamatos mérésével követhető. Interferométerek Thomas Young 1804-ben publikálta a híres kétréses fényinterferencia-kísérletét, amely meghatározó szerepet töltött be a fény hullámtermészetének elfogadásában, továbbá, a 2. ábra Az optikai rács segítségével a hullámvezető rétegbe csatolt módus evaneszcens mezeje kölcsönhat a hullámvezető környezetével (balra); az optikai hullámvezető fénymódus spektroszkóp elvi felépítése (jobbra) (Nagy et al., 2006) 1174
5 3. ábra Integrált Mach Zehnder típusú (balra) és Young-féle interferométer (jobbra) sematikus szerkezeti vázlata (Kozma et al., 2014a) klasszikus optikától a modern kvantumfizikáig számos tudományterületet inspirált, és segített a környező világ mélyebb megértésében. Kísérletében bemutatta, hogy egy pontforrás fénye egymáshoz közeli két résen áthaladva interferenciamintázatot hoz létre. Kilencven évvel később, egy másik jelentős kísérlet két egymástól függetlenül tevékenykedő tudós nevéhez fűződik. Ludwig Mach (1892-ben) és Ludwig Zehnder (1891-ben) megmutatták, hogy egy kollimált fénynyaláb alkalmazható törésmutató-mérésre. Tekintve, hogy mind a Young-féle, mind pedig a Mach- Zehnder típusú interferométer a fény hullámtermészetét használja ki, működésük is hasonló. A modern interferométerekben a koherens és monokromatikus forrás polarizált fényét általában két nyalábra osztják, amelyek egyike a mintával lép kölcsönhatásba, míg a másik a referencia szerepét tölti be. A két nyaláb két egymástól független útvonalon jut el a detektorig, ahol azokat interferáltatva a két nyaláb mérő- és referenciaágak fáziskülönbségéről kaphatunk információt. A Mach- és Zehnder-féle elvet követő interferométerek működésének alapja, hogy a mérőágukban haladó fénynyaláb a kívánt biológiai oldattal, azaz a mintával kölcsönhatásba lép, miközben a referenciaágban terjedőhöz képest fáziseltolódást szenved. A két nyalábot újraegyesítve a fáziskülönbségüknek megfelelő interferenciaintenzitást mérjük (I ~cos(δφ)). Amennyiben a minta optikai tulajdonságai megváltoznak, a detektált interferenciaintenzitás is ennek megfelelően módosul. A Young-interferométerek esetén csupán annyi a különbség, hogy a két nyalábot nem egyesítik újra, hanem azokat (miután a mérőág kölcsönhatott a mintával) két szomszédos, egymáshoz közel található pontból (má sodlagos pontforrásból) gömbhullámokat indítva egy képérzékelő felületén interferenciamintázatot hoznak létre. A szen zorfelületen végbemenő változások a mérőágban terjedő nyaláb fázisát, így az interferenciamintázat intenzitásának minimum- és maximumhelyeit eltolják, amelynek mértékéből következtethetünk a vizsgált folyamat biofizikai tulajdonságaira. Mind a Mach-Zehnder, mind a Young típusú modern jelátalakítókat többnyire hullámvezetőkbe integrálják (3. ábra). Ez esetben a fen ti leírás a szabadon terjedő nyalábok helyett hullámvezetett módusokra lesz érvényes. Ellipszometria Paul Karl Ludwig Drude már 1889-ben lefektette az ellipszometria elméleti alapjait (Drude, 1175
6 Magyar Tudomány 2015/ ), azonban a módszer csak a számítástechnika fejlődésével tudott elterjedni, mivel a mérések kiértékelése nagy számítási kapacitást igényel. Az eljárás kihasználja, hogy a fény polarizációs állapota a határfelületen történő törés vagy visszaverődés következtében megváltozik. Ellipszometriáról akkor beszélünk, ha a beesési síkkal párhuzamosan polarizált fény visszaverődését hasonlítjuk a beesési síkra merőlegesen polarizált fény reflexiójához. A fentiekben tárgyalt bioérzékelők szemszögéből nézve az ellipszometria olyan interferometriának is tekinthető, ahol a referencianyalábunk a beesési síkra merőleges polarizációjú fény. A legtöbb megoldás sajátja, hogy a vizsgáló fénynyaláb polarizációs állapotát modulálja (például egy polarizátor a beeső fénysugár tengelye mentén történő forgatásával), és a reflektált intenzitást méri a moduláció függvényében. Ily módon az egymásra merőleges polarizációjú reflexióknak nem csupán az amplitúdója, de a fázisa is összevethető lesz. Következésképpen az in terferométerekhez hasonlóan a vizsgáló fény hullámhosszánál jóval vékonyabb, szubnanométeres vékonyrétegvastagság-érzékenység érhető el. A spektroszkópiai ellipszométer két állítható dőlésszögű, azonos sík ban fekvő optikai karból, egy finoman pozi cionálható optikai asztalból, valamint vezér lő és feldolgozó elektronikai elemekből épül fel. Az egyik optikai kar a fényforrást és a po lari zátort, a másik az analizátort és a detektort foglalja magában. A fényforrás fénye a forgó polarizátoron áthaladva az aktuális polari zá torállásnak megfelelő síkban lineárisan polarizálttá válik. Ezután a mintára vetődik, ahol a fény-anyag kölcsönhatás következtében po larizációs állapota megváltozik (általában elliptikusan polarizálttá válik). A mintáról a nyaláb az analizátorba jut, ahol az ezen áthaladni képes fényhányad bejut a detektorba. A mérés eredménye a hullámhossz és az analizátor szögének függ vényében mért intenzitás. Az érzékenység növelése érdekében egyre gyakrabban alkalmaznak a hullámvezető-spektroszkópiához hasonlóan hordozó felől mérő ellipszometriai elrendezéseket is, kombinálva a következő fejezetben bemutatott plazmonrezonanciával. Plazmonika A tudományos cikkekben szereplő hivatkozásokat és az eladási statisztikákat tekintve 4. ábra Spekroszkópiai ellipszométer működési elvének egyszerűsített bemutatása (URL1) 1176
7 5. ábra A felületi plazmonrezonancián alapuló spektroszkóp elvi felépítése (balra) (Janosov Kozma, 2014a). Jobbra egy 2 4 mikrotömböt tartalmazó hordozó és egy mérési eredmény rész lete látható (a háttérben, hamisszínes ábrázolásban). (A kép a Fraunhofer-Institut für Zelltherapie und Immunologie Institutsteil Bioanalytik und Bioprozesse [IZI-BB] tulajdona.) egyaránt minden idők legsikeresebb optikai jelátalakítói a felületi plazmonrezonanciát (surface plasmon resonance SPR) kihasználó spektroszkópiai berendezések. E műszerek működési elve az, hogy egy vékony aranyréteg felületéről teljes visszaverődést szenvedő lézerfény evaneszcens mezeje felületi plazmonokat (kollektív rezgésbe hozott szabad elektronokat) gerjeszthet a fémréteg felületén. Az SPR-technológia alkalmazása esetén a fémfelületről reflektálódó fény intenzitásának szögfüggését mérik (Homola et al., 1999). Az ún. Kretschmann-elrendezésben egy üvegprizmához törésmutató-illesztő folyadékkal olyan üveghordozót rögzítenek, amelynek túlsó felületére előzőleg arany vékonyréteget választottak le. A bioérzékelés az aranyréteg fe lületén megy végbe (5. ábra). A beesési síkkal párhuzamosan polarizált fény intenzitása a fémrétegről visszaverődve egy adott, a felületi plazmonokat gerjesztő szög nél jelentősen lecsökken, amiből meghatároz ható a vizsgált vékonyréteg optikai tulajdonsá ga. E fizikai paraméter megváltozása kapcsolatba hozható a bekötődő célmolekulák mennyiségével. Mikrotömbolvasók Már az első bemutatásuk óta széles körben alkalmaznak mikrotömböket (microarrays), ha több mérendő mennyiség együttes detektálására van szükség. Ennek oka, hogy egyszerű és költséghatékony módon alkalmazzák a nano-biotechnológia nyújtotta előnyöket. Több száz vagy több ezer biológiailag fontos anyagot, például különféle felismerőelemoldatokat cseppentenek (és rögzítenek kémiailag) rács elrendezésben egy hordozó felületére. A cseppek térfogata néhány nanoliter vagy kevesebb, s a hordozón felvett átmérőjük tipikusan mikrométer. A hordozót ezek után kezelik a mintával. Jelölésmentes mikrotömbök esetén a chip egy mosási lépést követően azonnal vizsgálható. Jelöléses kiolvasás esetén egy további előkészítési lépést szükséges beiktatni, amelynek során a megkötött célmolekulákat például fluoreszcens molekulákkal megjelölik. Számos említésre méltó optikai mikrotömbolvasó látott már napvilágot, amelyek közül a legismertebbek a konfokális mikro- 1177
8 Magyar Tudomány 2015/10 szkóp elvén működő fluoreszcenciaszkennerek és a fluoreszcens-mikroszkópok. Az előző alfejezetekben bemutatott példák közül is több eljárás alkalmas mikrotömbök kiolvasására. Említhetjük például a képalkotó felületi plazmon spektroszkópokat vagy a képalkotó spektroszkópiai ellipszométereket. E készülékek a mikrotömb teljes felületét időben folyamatosan vizsgálva pontos információt adnak a célmolekulák bekötődésről, így több száz vagy akár több ezer felismerőelem - célmolekula reakció párhuzamos kinetikai elemzésekre is lehetőséget nyújtanak. Az utóbbi években számos hordozható, költséghatékony mikrotömbolvasót is bemutattak, amelyek bár érzékenységben még elmaradnak, ígéretesnek bizonyultak helyi diagnosztikai alkalmazásokra (Kozma et al., 2014b). Kitekintés Clarknak és Lyonsnak, valamint az elmúlt több mint ötven év során nyomdokaikba lé pő számtalan kutatónak köszönhető, hogy a fentiekben bemutatott bioérzékelők mára már széles körben elterjedtek, s a modern ku tatások alapvető eszközeivé váltak. A terület dinamikus fejlődését, térhódítását, valamint a már megjelent kisméretű, hordozható eszközöket látva könnyen elképzelhető, hogy ugyanúgy, ahogy ma a mobiltelefonok, a jövőben ezek is mindennapjaink szerves részei lesznek. Ehhez azonban még hosszú út vezet, hiszen nem elegendő csupán a készülékek árát csökkenteni. Az eszközök érzékenységét, a mérések megbízhatóságát is jelentősen javítani kell, továbbá ezeket olyan kis méretben IRODALOM Clark, Leland C. Lyons Champ (1962): Electrode Systems for Continuous Monitoring in Cardio vascular Surgery. Annals of the New York Academy of Sciences. 102, DOI: /j tb13623.x kell megvalósítani, hogy azok nem invazív módon legyenek képesek folyamatos detektálásra a lehető legkevesebb minta felhasználásával úgy, hogy mindeközben a lehető legtöbb paraméter együttes meghatározását tegyék lehetővé. Az imént megfogalmazott cél elérését az ún. lab-on-a-chip fejlesztések segítik, amelyek miniatürizált diagnosztikai laboratóriumok chip méretű megvalósítását célozzák. Ha a kisméretű, olcsó és megbízható bio érzékelőket egyesíteni tudjuk a miniatürizált, laboratóriumi feladatokat ellátni képes lab-on-a-chip eszközökkel, úgy az ún. point-of-care (helyszíni) vizsgálatok széles körben elterjedhetnek, s ezek a beteg közvetlen közelében, akár az orvosi rendelőben, a kórházi ágy mellett, otthonainkban, vagy a mentőautóban is gyors és széles körű vizsgálatok elvégzését tehetik majd lehetővé. Ezen hordozható analitikai laboratóriumokkal néhány percen belül, vagy akár még rövidebb idő alatt elvégezhető helyszíni tesztek a vizsgálatot végző orvos számára azonnali és rendkívül fontos információt szolgáltathatnak majd a beteg állapotáról. Nem lesz szükség a minta szállítására, a túlterhelt központi laboratóriumok tehermentesítésével pedig elkerülhető lesz a vizsgálat késlekedése, s mindezekkel időt nyerve, a helyszínen felállított gyors és pontos diagnózis alapján történő azonnali beavatkozás életeket menthet. Kulcsszavak: bioérzékelés, hullámvezető, interferometria, ellipszometria, plazmonika, mikrotömbök Cooper, Matthew A. (2002): Optical Biosensors in Drug Discovery. Nature Reviews on Drug Discovery. 1, DOI: /nrd838 Drude, Paul (1889): Über oberflächenschichten. II. 1178
9 Theil. Annalen der Physik. 272, DOI: /andp Homola, J. Yee, S. S. Gauglitz, G. (1999): Surface Plasmon Resonance Sensors: Review. Sensors and Actuators B. 54, DOI: /S (98) Janosov Milán Kozma Péter (2014): A jelölésmentes bioérzékelés modern eszközei. Fizikai Szemle. 9, JanosovM_KozmaP.pdf Kozma Péter Kehl, F. Ehrentreich-Förster, E. Stamm, C. Bier, F. F. (2014a): Integrated Planar Optical Waveguide Interferometer Biosensors: A Comparative Review. Biosensors and Bioelectronics. 58, DOI: /j.bios Kozma Péter Lehmann, A. Wunderlich, K. Michel, D. Schumacher, S. Ehrentreich-Förster, E. Bier, F. F. (2014b): A Novel Handheld Fluorescent Micro array Reader for Point-of-care Diagnostic. Biosensors and Bioelectronics. 47, DOI: /j.bios Nagy Norbert Volk J. Tóth A. L. Hámori A. Bársony I. (2006): Optikai érzékelők nanoszerkezetű szilíciumból. Élet és Tudomány. 36, Tiefenthaler, Kurt Lukosz, Walter (1984): Integrated Optical Switches and Gas Sensors. Optics Letter. 9, DOI: /OL URL1: Application-Notes/ Spectroscopic- Ellipsometry-Characterization-of-Thin-Films-Usedin-the-Food-Packaging-Industry/ 1179
KEZDŐLAP ARCHÍVUM IMPRESSZUM KERESÉS
1 / 7 2015.10.19. 13:32 A Magyar Tudományos Akadémia folyóirata. Alapítva: 1840 KEZDŐLAP ARCHÍVUM IMPRESSZUM KERESÉS OPTIKAI BIOÉRZÉKELÉS X Kozma Péter PhD, tudományos munkatárs, MTA Energiatudományi Kutatóközpont
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
A módszerek jelentősége. Gyors-kinetika módszerek. A módszerek közös tulajdonsága. Milyen módszerekről tanulunk?
Gyors-kinetika módszerek módszerek jelentősége 2010. március 9. Nyitrai Miklós biológiai mechanizmusok megértése; iológiai folyamatok időskálája; Vándorló melanocita (Victor SMLL). ms skálán való mérések.
Mérés spektroszkópiai ellipszométerrel
Mérés spektroszkópiai ellipszométerrel Bevezetés Az ellipszometria egy igen sokoldalú, nagypontosságú optikai módszer vékonyrétegek dielektromos tulajdonságainak meghatározására. Mivel optikai módszer,
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Gyors-kinetikai módszerek
Gyors-kinetikai módszerek Biofizika szemináriumok Futó Kinga Gyorskinetika - mozgástan Reakciókinetika: reakciók időbeli leírása reakciómechanizmusok reakciódinamika (molekuláris szintű történés) reakciósebesség:
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Interferometrikus optikai hullámvezetőbioszenzor jelölésmentes érzékeléshez
Kozma Péter Interferometrikus optikai hullámvezetőbioszenzor jelölésmentes érzékeléshez - Tézisfüzet - Pannon Egyetem Molekuláris- és Nanotechnológiák Doktori Iskola 1 valamint Magyar Tudományos Akadémia
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Mikroszerkezeti vizsgálatok
Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
GEOMETRIAI OPTIKA I.
Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában
Akusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
Modern Fizika Labor. 17. Folyadékkristályok
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Röntgen-gamma spektrometria
Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet
MÉRÉS SPEKTROSZKÓPIAI ELLIPSZOMÉTERREL
MÉRÉS SPEKTROSZKÓPIAI ELLIPSZOMÉTERREL VÉKONYRÉTEGEK Beleznai Szabolcs, Basa Péter 2009.06.02. 1. MÉRÉS CÉLJA Az ellipszometria egy sokoldalú, nagypontosságú optikai módszer vékonyrétegek dielektromos
Történeti áttekintés
A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916
Készítette: Bagosi Róbert Krisztián Szak: Informatika tanár Tagozat: Levelező Évfolyam: 3 EHA: BARMAAT.SZE H-s azonosító: h478916 OPTIKAI SZÁLAK Napjainkban a távközlés és a számítástechnika elképzelhetetlen
KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:
GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT
Abszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai
Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése Kereskedelmi forgalomban kapható készülékek 1 Fogalmak
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
Optikai bioérzékelőkkel a személyre szabott diagnosztika felé
Optikai bioérzékelőkkel a személyre szabott diagnosztika felé Bonyár Attila, PhD bonyar@ett.bme.hu Budapest, 2017.11.07. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY
Elektrooptikai effektus
Elektrooptikai effektus Alapelv: A Pockels effektus az a jelenség, amikor egy eredendően kettőstörő anyag kettőstörő tulajdonsága megváltozik az alkalmazott elektromos tér hatására, és a változás lineáris
Fény, mint elektromágneses hullám, geometriai optika
Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző
Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában. Csarnovics István
Új irányok és eredményak A mikro- és nanotechnológiák területén 2013.05.15. Budapest Fényérzékeny amorf nanokompozitok: technológia és alkalmazásuk a fotonikában Csarnovics István Debreceni Egyetem, Fizika
Optomechatronika I Antal Ákos
Optomechatronika I. Optomechatronikai lencserendszerek típusai, tervezése, szimulációja Optomechatronikai elemek típusai, foglalásuk, gyártástechnológiák Interferometriás műszerek 2018. Antal Ákos A tantárgy
Kristályok optikai tulajdonságai. Debrecen, december 06.
Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik
Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
Mérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Anizotróp eset, közepes frekvencia. Összegzés
A 6. ábráról az is leolvasható, ha λ eff < λ cr, azaz csak egyetlen vonzó fixpont van, akkor az energiaveszteség nem sokkal tér el az izotróp esettôl, míg a második vonzó fixpont, vagyis λ eff > λ cr megjelenése
A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.
A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer
ÉRZÉKELŐK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK TÖRTÉNETI ÁTTEKINTÉS BEVEZETŐ ÁTTEKINTÉS FÉLVEZETŐ LÉZERANYAGOK OPTIKAI HÁLÓZAT FELÉPÍTÉSE
ÉRZÉKELŐK Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS ÉRZÉKELŐK I 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK 1. Fotonika: fénytávközlés
Abszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
XVIII. A FÉNY INTERFERENCIÁJA
XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,
Szélesszögű spektroszkópiai ellipszométer fejlesztése és alkalmazása napelem-technológiai ZnO rétegek vizsgálatára
Szélesszögű spektroszkópiai ellipszométer fejlesztése és alkalmazása napelem-technológiai ZnO rétegek vizsgálatára PhD tézisfüzet Major Csaba Ferenc Témavezető: Dr. Fried Miklós Magyar Tudományos Akadémia
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
A fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
Egy kvantumradír-kísérlet
Egy kvantumradír-kísérlet "Részecske vagyok, vagy hullám, Élek-e vagy ez a hullám? Megmondanám, hogyha tudnám, De mindent én sem tudhatok." Részlet a Fizikus Indulóból Tartalmi kivonat Bevezetés Feynman
Kozma Péter - Interferometrikus optikai hullámvezetőbioszenzor jelölésmentes érzékeléshez
1 Kozma Péter Interferometrikus optikai hullámvezetőbioszenzor jelölésmentes érzékeléshez - Doktori (PhD) értekezés - Pannon Egyetem Molekuláris- és Nanotechnológiák Doktori Iskola 1 valamint Magyar Tudományos
13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:
13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris
Optika és Relativitáselmélet
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 9. Szivárvány, korona és a glória Cserti József, jegyzet, ELTE, 2007. Fı- és mellékszivárvány Fı- és mellékszivárvány Horváth Ákos felvételei Fı-
10. mérés. Fényelhajlási jelenségek vizsgála
Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő 2012.10.15 (engedélyezett késés) 10. mérés Fényelhajlási jelenségek vizsgála Bevezetés: A mérések során a fény hullámhosszából adódó jelenségeket
Optikai méréstechnika alkalmazása járműipari mérésekben Kornis János
Optikai méréstechnika alkalmazása járműipari mérésekben Kornis János PhD, okleveles villamosmérnök, Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék, kornis@phy.bme.hu Absztrakt: Az optikai
mágneses-optikai Kerr effektus
Mágnesezettség optikai úton történő detektálása: mágneses-optikai Kerr effektus I. Mágneses-optikai effektusok 2 II. Kísérleti technika 3 III. Mérési feladatok 5 IV. Ajánlott irodalom 6 2008. BME Fizika
Immunológiai módszerek a klinikai kutatásban
Immunológiai módszerek a klinikai kutatásban 8. előadás Immunszerológia, immunkémia Az immunoassay-k érzékenysége A fő szérumfehérje frakciók és az ahhoz tartozó fehérjék Az Ig valencia és aviditás viszonya
SZENZOROK ÉS MIKROÁRAMKÖRÖK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS ÉRZÉKELŐK I
SZENZOROK ÉS MIKROÁRAMKÖRÖK 18. ELŐADÁS: FÉNYVEZETŐ SZÁLAS ÉRZÉKELŐK I 2015/2016 tanév 2. félév 1 FÉNYVEZETŐ SZÁLAS OPTIKAI ÉRZÉKELŐK 1. Fotonika: fénytávközlés és üvegszálas optikai hullámvezetők. 2.
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-23/16-M Dr. Szalóki Imre, fizikus, egyetemi docens Radócz Gábor,
Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet
A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával
Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,
E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
Ultrahangos anyagvizsgálati módszerek atomerőművekben
Ultrahangos anyagvizsgálati módszerek atomerőművekben Hangfrekvencia 20 000 000 Hz 20 MHz 2 000 000 Hz 20 000 Hz 20 Hz anyagvizsgálatok esetén használt UH ultrahang hallható hang infrahang 2 MHz 20 khz
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Optika gyakorlat 5. Gyakorló feladatok
Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen
Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék
OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
A fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén
ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor
Abszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken
Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
Fényvezető szálak és optikai kábelek
Fényvezető szálak és optikai kábelek Fizikai alapok A fénytávközlés alapvető passzív elemei. Ötlet: 1880-as években Alexander Graham Bell. Optikai szálak felhasználásának kezdete: 1960- as évek. Áttörés
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.
2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat
Geometriai Optika (sugároptika)
Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés
PhD DISSZERTÁCIÓ TÉZISEI
Budapesti Muszaki és Gazdaságtudományi Egyetem Fizikai Kémia Tanszék MTA-BME Lágy Anyagok Laboratóriuma PhD DISSZERTÁCIÓ TÉZISEI Mágneses tér hatása kompozit gélek és elasztomerek rugalmasságára Készítette:
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD
A hiperspektrális képalkotás elve
Távérzékelési laboratórium A VM MGI Hiperspektrális laborja korszerű hardveres és szoftveres hátterére alapozva biztosítja a távérzékelési technológia megbízható hazai és nemzetközi szolgáltatását. Távérzékelés
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?
FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb
Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán
Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi
A diplomaterv keretében megvalósítandó feladatok összefoglalása
A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert
Fény- és fluoreszcens mikroszkópia. A mikroszkóp felépítése Brightfield mikroszkópia
Fény- és fluoreszcens mikroszkópia A mikroszkóp felépítése Brightfield mikroszkópia Történeti áttekintés 1595. Jensen (Hollandia): első összetett mikroszkóp (2 lencse, állítható távolság) 1625. Giovanni
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor
Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp
Számítástudományi Tanszék Eszterházy Károly Főiskola.
Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés
Biomolekuláris nanotechnológia. Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium
Biomolekuláris nanotechnológia Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium Az élő szervezetek példája azt mutatja, hogy a fehérjék és nukleinsavak kiválóan alkalmasak önszerveződő molekuláris
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Rezervoár kőzetek gázáteresztőképességének. fotoakusztikus detektálási módszer segítségével
Rezervoár kőzetek gázáteresztőképességének vizsgálata fotoakusztikus detektálási módszer segítségével Tóth Nikolett II. PhD hallgató SZTE Környezettudományi Doktori Iskola 2012. augusztus 30. Budapest,
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.
Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István
Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,
Fényhullámhossz és diszperzió mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja
Az elektromágneses sugárzás kölcsönhatása az anyaggal
Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be
ÓRIÁS MÁGNESES ELLENÁLLÁS
ÓRIÁS MÁGNESES ELLENÁLLÁS Modern fizikai kísérletek szemináriúm Ariunbold Kherlenzaya Tartalomjegyzék Mágneses ellenállás Óriás mágneses ellenállás FM/NM multirétegek elektromos transzportja Kísérleti
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport