Billenő áramkörök (multivibrátorok)
|
|
- Piroska Orbán
- 8 évvel ezelőtt
- Látták:
Átírás
1 Billenő áramkörök (multivibrátorok) 1. Bevezetés Multivibrátorok típusai A billenőkörök pozitívan visszacsatolt univerzális digitális áramkörök, melyeket négyszögjelek előállítására használunk. Kimeneti feszültségük nem folytonosan változik, hanem két, az áramköri paraméterek által meghatározott értéket vehet fel. Az egyes állapotok közötti átbillenés több különböző módon is történhet; ezek szerint létezik: bistabil multivibrátor --- mint a neve is mutatja, mindkét állapota stabil. A kimeneti jelszint csak akkor változik, ha az átbillenési folyamatot egy bemeneti jel kiváltja. monostabil multivibrátor --- csak egy stabil állapota van. A másik (instabil) állapotát egy bemeneti jellel válthatjuk ki, és az csak az alkatrészek értékei által meghatározott ideig marad fenn. Ezen idő eltelte után az áramkör automatikusan visszabillen a stabil állapotába. astabil multivibrátor --- nincs stabil állapota. Külső vezérlés nélkül, periodikusan változtatja kimeneti feszültségszintjét, billeg a két állapota között. A billenő áramköröket általánosan az 1. ábra szemlélteti. A billenőkör típusát a visszacsatolások (K1, K2) határozzák meg (lásd 1. táblázat). Típus K 1 csatoló K 2 csatoló Bistabil R R Monostabil R C Astabil C C 1. táblázat - Billenőkörök visszacsatolásai 1. ábra - Billenőkörök blokksémája - 1 -
2 2. Bistabil multivibrátor (flip-flop) A bistabil billenőkör áramköri megvalósítása a 2. ábrán látható. Tekintsük át a működését! Alapállapotban sem az S sem az R bemenetre nem adunk jelet. Ilyenkor az áramkör a két stabil állapota egyikében van, és ott meg is marad (vagy Q1=0 V és Q2=U+, vagy pedig Q1=U+ és Q2=0 V, ahol U+ a2 tápfeszültséget jelöli). Tételezzük fel, hogy áramkörünk ez utóbbi állapotban van. Ha az S bemenetre tápfeszültséget adunk, akkor a T1 emitterbázis diódán meginduló áram hatására a tranzisztor kinyit, T1 kollektor feszültsége lecsökken. Emiatt T2 bázisárama csökken, T2 kollektor feszültsége nő. Ez a növekedés visszahat az R2 ellenálláson keresztül T1 bázisára és tovább növeli annak bázisáramát (pozitív visszacsatolás). A kapcsolás a stabil 2. ábra - Bistabil billenőkör állapotot akkor éri el, ha T1 teljesen kinyit. T2 ekkor teljesen lezárt, és R2-n keresztül T1-et nyitva tartja. Ezek után az S bemenetről le is vehetjük a tápfeszültséget, az áramkör megtartja stabil állapotát. Az áramkör másik stabil állapotba történő átbillenését úgy idézhetjük elő, hogy az R bemenetre adunk tápfeszültséget. Ha mindkét bemenetre egyszerre kerül tápfeszültség, akkor mindkét tranzisztor kinyit. Ez az állapot instabil. Ha ezután a bemenetekről levesszük a feszültséget, akkor az áramköri elemek aszimmetriája dönti el, hogy melyik stabil állapotba billen az áramkör. Mivel a végállapot ebben az esetben nem dönthető el egyértelműen, ezt a bemenő kombinációt ki kell zárni.ha ezt biztosítjuk, akkor a bistabil multivibrátor (flip-flop) két kimenete (Q1, Q2) logikai értelemben egymás negáltjai. Vegyük észre, hogy ez az áramkör egy memóriaelem, hiszen emlékszik arra, hogy a legutóbb melyik állapotába billentettük. Az S bemenetre adott jellel lehet beírni (set), az R bemenetre adott jellel pedig törölni (reset). A régi statikus RAM-ok ilyen elemekből álltak össze. 3. Monostabil multivibrátor A monostabil multivibrátor áramköri megoldásánál kiindulhatunk a flip-flop áramkörből. Az egyik visszacsatoló ellenállást helyettesítsük kondenzátorral. Természetesen egy ellenállással gondoskodnunk kell T2 egyenáramú munkapontjának beállításáról is. Ezt az áramkört szemlélteti a 3. ábra. Az áramkör működése hasonlít az előző kapcsolásnál megismertekhez. Kiindulási helyzetként tegyük fel hogy T1 lezárt állapotban van, a T2 tranzisztor pedig vezet (RB2-n keresztül folyik bázisáram). Ez az 3. ábra - Monostabil billenőkör - 2 -
3 áramkör egyetlen stabil állapota. Az S-re adott rövid pozitív bemeneti impulzus T1-et kinyitja, ezáltal T1 kollektorfeszültsége közel nullára csökken. Ezt a feszültségugrást a C1 kondenzátor átviszi T2 bázisára, ezért T2 lezár, kollektorfeszültsége a tápfeszültségig felugrik. Emiatt az R1 visszacsatoló ellenálláson keresztül T1 nyitva marad még akkor is, ha közben S-en megszűnt a jel. Ez azonban nem stabil állapot, mert az RB2 ellenálláson keresztül a C1 kondenzátor elkezd feltöltődni, így T2 bázisfeszültsége növekszik. Az RB2C1 tag időállandója által meghatározott idő után T2 kinyit, kollektorfeszültsége leugrik. T1 lezár, s az áramkör visszaáll a stabil állapotába. Látható tehát, hogy a kimeneti impulzus időtartamát csak az RCC1-tag időállandója szabja meg. Monostabil billenőkört készíthetünk műveleti erősítő segítségével is. Erre mutat példát a 4. ábra. A műveleti erősítő amellyel a Műveleti erősítők alapkapcsolásai című mérés keretében részletesen foglalkozunk a bemeneteire vezetett két feszültség különbségét erősíti: Uki=A(U1-U2). Általában erősítésük nagyon nagy, így csak igen kis (U1-U2) feszültségkülönbségek mellett működnek lineárisan. Nagyobb feszültségkülönbségek hatására telítésbe mennek (kimenetükön a tápfeszültség jelenik meg) (pozitív, vagy negatív) Az ideális műveleti erősítőt a következő paraméterek jellemzik: erősítésük végtelen A = bemeneti ellenállásuk végtelen Rbe= kimeneti ellenállásuk nulla Rki= 0 4. ábra - Monostabil billenőkör műveleti erősítővel Ha a 4. ábrán látható áramkör (melynél U+=12 V,U-=-12 V) Ube bemenetére nem adunk jelet, akkor az erősítő invertáló bemenete (-) földpotenciálon (0 V), nem invertáló bemenete (+) az R2-R3 feszültségosztónak köszönhetően 1,09 V potenciálon van. Így a két bemenet közötti különbség telítésbe viszi az erősítőt, melynek kimenetén ezért +12 V mérhető stabilan. Az áramkör működése: Adjunk (pozitív) feszültségugrást az Ube bemenetre! A C1 kondenzátor a feszültségváltozást átengedi, ezért U2 is pozitív feszültségre kerül. Ha ennek a jelnek az amplitúdója nagyobb, mint a nem invertáló bemenet potenciálja (U1=1,09 V), akkor az erősítő kimeneti szintje - 3 -
4 átbillen -12 V-ra. Így a C2 kondenzátor egyik fegyverzetén hirtelen 24 V-os potenciálcsökkenés következik be 1. C2 átengedi a feszültségváltozást, ezért másik fegyverzetén is megjelenik a 24 V-os potenciálcsökkenés. A kimenet változásaira vonatkozóan tehát a kondenzátor egy igen erős pozitív visszacsatolást jelent (mivel a pozitív bemenetre vezetjük vissza a kimenet jelét), s ez garantálja, hogy a kimeneti feszültség nemcsak kimozdul az addigi szintjéről, hanem biztosan át is billen az ellentétes tápfeszültség szintjére. Az átbillenés után az erősítő neminvertáló (+) bemenetén kialakult U1=-22,91 V potenciál nem stabil, hiszen a C2 kondenzátor elkezd töltődni, az R3-C2 ponton a potenciál elkezd növekedni a feszültségosztó által megszabott egyensúlyi 1,09 V irányába. Amikor U1 eléri U2 feszültségszintjét (amely a rajta megjelenő tűimpulzus után ismét 0 V lesz), az áramkör visszabillen stabil állapotába. A visszabillenést a kondenzátor, mint pozitív visszacsatolás, ugyancsak segíti. Thevenin-tétele értelmében a feszültségosztó egyenáramú szempontból helyettesíthető egy 1,09 V elektromotoros erejű feszültséggenerátorral, amelynek belső ellenállása a feszültségosztó ellenállásainak párhuzamos eredője (Rp). Az ebben a körben kialakuló áram tölti a kondenzátort. A kondenzátoron mérhető feszültség a töltődéskor: Az egyenletet t-re kifejezve és megoldva, az átbillenés ideje: input trigger + R C U + 3 output 5. ábra - Monostabil multivibrátor 555-ös IC-vel 4 Elméleti feladat: F1:Számolja ki a 4. ábrán látható áramkörben C2 értékét úgy, hogy a kimeneti jel időtartama 200 μs legyen (a műveleti erősítőt tekintse ideálisnak)! A gyakorlatban monostabil multivibrátort gyakran egy kimondottan erre a célra gyártott integrált áramkörrel (ICvel) valósítanak meg: az 555-ös 2 univerzális időzítővel. Ezzel az alkatrésszel µs-tól néhány óráig terjedő időzítések is megoldhatók. Az integrált áramkörös monostabil multivibrátor (5. ábra) periódusideje a következő képlettel számítható: T =1,1 RC[s] Elméleti feladat: F2:Végezze el az előbbi elméleti feladatban keresett kapacitás-érték kiszámítását ezen képlet alapján is! 1 A műveleti erősítőt szimmetrikus tápfeszültséggel tápláljuk, azaz ±U T-vel, a bemeneti jel pedig 0V középfeszültségű 2 A boltban a következő neveken kapható: CA555, NE555, HA555, SE555, ICM7555, MC1555, LM555C, LC7555 stb
5 4. Astabil multivibrátor A multivibrátorok, mint két-állapotú elektronikai áramkörök, kiválóan alkalmasak négyszögjelek generálására. Egy tipikus astabil multivibrátor sémája látható a 6. ábrán. A T1 kollektor körében lévő D1 világító dióda (LED) szerepe most az, hogy a feszültségek vizuális vizsgálatát segítse. Az áramkör működése: Először tételezzük fel, hogy a két tranzisztor és a köréjük épített elemek teljes szimmetriát eredményeznek. Ebben az esetben az áramkör egyensúlyban van, mindkét tranzisztor vezet. Azonban áramkörünk nem tökéletesen zavarmentes. Ha más nem is, a bekapcsolási folyamat bizonyosan jelentős tranzienseket okoz. A 6. ábra - Astabil multivibrátor tranzisztorokkal kondenzátorokon keresztül megvalósuló pozitív visszacsatolás miatt (mivel a jelet Q-ról, azaz a kimenetről vezetjük a másik tranzisztor bázisára, azaz bemenetére) az áramkör nem stabil a zavarjelekkel szemben. Tegyük fel, hogy egy zavarjel miatt nőni kezd a T1 tranzisztor kollektorárama, ami azt eredményezi, hogy növekszik a feszültségesés T1 Rc ellenállásán. Ez a feszültségváltozás a C1 kondenzátoron átjutva maga után vonja T2 bázisfeszültségének a csökkenését. A T2 tranzisztor tehát kevésbé lesz nyitva, azaz csökken a kollektorárama, és nő a kollektorfeszültsége. Ezen feszültségnövekedés a C2 kondenzátoron átjutva még jobban kinyitja a T1 tranzisztort (itt zárul a pozitív visszacsatolási hurok), és a folyamat addig tart, amíg T2 teljesen le nem zár. Ennek eredményeként Q1~0 V, míg Q2 = U+, a LED (D1) világít. A pozitív visszacsatolásnak köszönhető gyors átbillenés után a kondenzátorok (C1-C2) elkezdenek töltődni. C1 kollektorhoz kötött pontja közel 0 V-on van, a másik pontja azonban az R1 ellenálláson keresztül U+-hoz van kötve. Ezért a C1 kondenzátor az R1C1 időállandó által meghatározott sebességgel elkezd töltődni. A töltődés miatt a T2 tranzisztor bázisán lévő + R 1 R 2 C U output 7. ábra - Astabil multivibrátor 555-ös IC-vel feszültség el fogja érni a bázis-emitter dióda nyitófeszültségét, és T2 elkezd kinyitni. Ekkor az előzőhöz nagyon hasonló folyamat indul be, csak most a T2 tranzisztoron. Tehát a rendszer átbillen a másik állapotába, amikor T2 van nyitva és T1 pedig zárva. Ilyenkor Q2~0 V, míg Q1= U+, D1 nem világít. A fentiekből látszik, hogy a két állapot közötti átbillenések időtartama a kondenzátorok feltöltődésének és kisülésének időtartamával arányos. Ezt az időt az R1 és R2 ellenállásokon valamint a C1, C2 kondenzátorokon keresztül tudjuk szabályozni. τ1= R1C1, illetve τ2= R2C2. Ha τ1=τ2, akkor szimmetrikus négyszögjelet kapunk. Ha ez nem teljesül, akkor a multivibrátor két állapota különböző időállandóval rendelkezik, s a kimeneti négyszögjel is aszimmetrikus lesz.
6 Ezt az áramkört is megépíthetjük (7.ábra) az előzőekben megismert univerzális időzítő IC-vel (555). A négyszögjel frekvenciája a következő képlettel számítható: t 1 t 2 A négyszögjel t1 és t2 periódus-hossza, valamint D kitöltési tényezője (a pozitív és negatív periódusok aránya): 5. Mérési feladatok M1: Építsen astabil multivibrátort egy előre megadott áramköri lapkán a 8. ábrán látható kapcsolás alapján! 8. ábra - Astabil multivibrátor 555-tel 9. ábra - Astabil multivibrátor NE555-ös IC-vel. Beültetési rajz - 6 -
7 a) Számítással határozza meg az ellenállás(ok) értékét a mérésvezető által megadott kondenzátor értékeihez úgy, hogy az áramkör f = 1 Hz frekvenciával billegjen! A LED (D1) színe szabadon választható a rendelkezésre álló készletből. b) A mérésvezetőtől kapott, előre legyártott nyomtatott huzalozású lemezen forrassza össze az astabil multivibrátort. Munkájához az előzőekben kiszámított értékű alkatrészeket használja fel! Az áramkör összeszerelése során a forrasztópáka használatának elsajátítása, és a megépítés közben szerezhető tapasztalatok begyűjtése a cél. Az összeszerelés megkezdése előtt vegyék szemügyre a mérőhelyen található, kész mintaáramkört, és próbáljanak meg hasonló panelt készíteni! c) Mérje meg oszcilloszkóp segítségével, hogy ténylegesen mekkora frekvencián billeg az áramkör. M2: Állítson össze monostabil billenőkört a 4. ábrán látható kapcsolásban, breadboard-on. A billenés időtartama legyen 200 μs. Mérje meg oszcilloszkóp és jelgenerátor segítségével a kimeneti jel időtartamát. A bemeneti jel frekvenciáját számítással határozza meg! Műveleti erősítőként μa741-est használjon! 6. Ajánlott irodalom [1] Budó Ágoston: Kísérleti fizika II., Tankönyvkiadó [2] John D. Lenk: Elektronikai alapkapcsolások gyűjteménye, Műszaki Könyvkiadó [3] Zombori Béla: Az elektronika alapjai, Nemzeti Tankönyvkiadó - 7 -
Billenő áramkörök (multivibrátorok) Jelterjedés hatása az átvitt jelre
Billenő áramkörök (multivibrátorok) Jelterjedés hatása az átvitt jelre. Bevezetés Multivibrátorok típusai A billenőkörök pozitívan visszacsatolt univerzális digitális áramkörök, melyeket négyszögjelek
Billenő áramkörök Jelterjedés hatása az átvitt jelre
Billenő áramkörök Jelterjedés hatása az átvitt jelre Berta Miklós 1. Billenőkörök A billenőkörök pozitívan visszacsatolt digitális áramkörök. Kimeneti feszültségük nem folytonosan változik, hanem két meghatározott
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Hobbi Elektronika. Bevezetés az elektronikába: Műveleti erősítők - 2. rész
Hobbi Elektronika Bevezetés az elektronikába: Műveleti erősítők - 2. rész 1 Felhasznált irodalom Sulinet Tudásbázis: A műveleti erősítők alapjai, felépítése, alapkapcsolások Losonczi Lajos: Analóg Áramkörök
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő
Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok
25.B 25.B. 25.B Impulzustechnikai alapáramkörök Impulzusok elıállítása
5.B Impulzustechnikai alapáramkörök Impulzusok elıállítása Értelmezze a félvezetı elemek és a mőveleti erısítı kapcsoló üzemmódját, a stabil- és a kvázistabil állapotot! Magyarázza el a tranzisztoros vagy
MUNKAANYAG. Juhász Róbert. Impulzustechnikai fogalmak - impulzustechnikai áramkörök. A követelménymodul megnevezése:
Juhász Róbert Impulzustechnikai fogalmak - impulzustechnikai áramkörök A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
Mûveleti erõsítõk I.
Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
Műveleti erősítők alapkapcsolásai A Miller-effektus
Műveleti erősítők alapkapcsolásai A Miller-effektus Berta Miklós 1. Elméleti összefoglaló A műveleti erősítő (1. ábra) olyan áramkör, amelynek a kimeneti feszültsége a következőképpen függ a bemenetére
M ű veleti erő sítő k I.
dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt
ANALÓG ÉS DIGITÁLIS TECHNIKA I
ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS BILLENŐ ÁRAMKÖRÖK 2010/2011 tanév 2. félév 1 IRODALOM
1. A mérés tárgya: Mechatronika, Optika és Gépészeti Informatika Tanszék D524. Műveleti erősítők alkalmazása
Mechatronika, Optika és Gépészeti Informatika Tanszék M7 A mérés célja: A mérés során felhasznált eszközök: A mérés során elvégzendő feladatok: 1. A mérés tárgya: Műveleti erősítők alkalmazása D524 Analóg
Bevezetés az elektronikába
Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az
Bevezetés az elektronikába
Bevezetés az elektronikába 3. Astabil multivibrátorok alkalmazása 1 Ismétlés: astabil multivibrátor Amikor T2 kinyit, Uc2 alacsony (néhány tized V) lesz, az eredetileg feltöltöt kondenzátor negatívbe viszi
Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.
Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros
Elektronika Előadás. Műveleti erősítők táplálása, alkalmazása, alapkapcsolások
Elektronika 2 2. Előadás Műveleti erősítők táplálása, alkalmazása, alapkapcsolások Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,
DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE
M I S K O L C I E G Y E T E M GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ÉS ELEKTRONIKAI INTÉZET DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE MECHATRONIKAI MÉRNÖKI BSc alapszak hallgatóinak MÉRÉSI
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet
<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai
MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi
Elektronika I. Gyakorló feladatok
Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó
Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?
Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre
Elektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
Foglalkozási napló a 20 /20. tanévre
Foglalkozási napló a 20 /20. tanévre Elektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 34 522 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Beütésszám átlagmérő k
Beütésszám átlagmérő k A beütésszám átlagmérők elsősorban a radioaktív sugárforrások intenzitásának ellenőrzésére és mérésére szolgálnak Természetesen használhatjuk más jeladók esetében is, amikor például
I M P U L Z U S T E C H N I K A
ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 I M P U L Z U S T E C H N I K A ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Impulzus fogalma...3 Impulzus megadása, impulzus jellemzők...3 Az impulzusok
Elektronika 1. 4. Előadás
Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.
Az 555-ös időzítő használata a mikrokontrolleres tervezésben
Az 555-ös időzítő használata a mikrokontrolleres tervezésben Nagy Gergely BME EET 01. április 4. ebook ready Bevezetés Az 555-ös IC-t Hans Camenzind tervezte 1971-ben a Signetics (ma Philips) munkatársaként.
Jelformáló áramkörök vizsgálata Billenő áramkörök vizsgálata (Időkeret: 5óra) Név:
Jelformáló áramkörök vizsgálata Billenő áramkörök vizsgálata (Időkeret: 5óra) Név: Előzetes kérdések: Írja az áramköri jelhez a dióda és a tranzisztor lábainak elnevezését! Kell ügyelni a nf kapacitású
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
Impulzustechnikai áramkörök elemzése
2. mérés Impulzustechnikai áramkörök elemzése Az impulzustechnikai áramkörökben a tranzisztorok kapcsoló üzemmódban működnek. A kapcsoló megszakított állapotát a lezárt üzemmódú tranzisztor valósítja meg,
Az 555-ös időzítő használata a mikrokontrolleres tervezésben
Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Az 555-ös időzítő használata a mikrokontrolleres tervezésben Nagy Gergely Elektronikus
Egyszerű áramkör megépítése és bemérése
. mérés Egyszerű áramkör megépítése és bemérése Bevezetés A szokásos mérnöki megközelítések az áramkörtervezésben azon alapulnak, hogy az elméleti ismeretek alapján elsőként az áramkör egy modelljét építik
Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök
Lineáris és kapcsoló üzemű feszültség növelő és csökkentő áramkörök Buck, boost konverter Készítette: Támcsu Péter, 2016.10.09, Debrecen Felhasznált dokumentum : Losonczi Lajos - Analog Áramkörök 7 Feszültség
Elektronika alapjai. Témakörök 11. évfolyam
Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia
Műveleti erősítők alapkapcsolásai A Miller-effektus
Műveleti erősítők alapkapcsolásai A Millereffektus 1. Bevezetés A műveleti erősítő pl. a gyári standard µa741 (1. ábra) olyan áramkör, amelynek a kimeneti feszültsége a következőképpen függ a bemenetére
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
Analóg áramkörök Műveleti erősítővel épített alapkapcsolások
nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak
A/D és D/A konverterek vezérlése számítógéppel
11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,
Áramkörök számítása, szimulációja és mérése próbapaneleken
Áramkörök számítása, szimulációja és mérése próbapaneleken. Munkapontbeállítás Elektronika Tehetséggondozás Laboratóriumi program 207 ősz Dr. Koller István.. NPN rétegtranzisztor munkapontjának kiszámítása
07. mérés Erősítő kapcsolások vizsgálata.
07. mérés Erősítő kapcsolások vizsgálata. A leggyakrabban használt üzemi paraméterek a következők: - a feszültségerősítés Au - az áramerősítés Ai - a teljesítményerősítés Ap - a bemeneti impedancia Rbe
Hobbi Elektronika. Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások
Hobbi Elektronika Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások 1 Felhasznált irodalom Torda Béla: Bevezetés az elektrotechnikába 2. F-alpha.net: The Multivibrator P. Falstad: Circuit
KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA
KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók
Bipoláris tranzisztoros erősítő kapcsolások vizsgálata
Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:
Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem
Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................
MUNKAANYAG. Farkas József. Digitális áramkörök kapcsolásai. Kapcsolási rajzok értelmezése, készítése. A követelménymodul megnevezése:
Farkas József Digitális áramkörök kapcsolásai. Kapcsolási rajzok értelmezése, készítése A követelménymodul megnevezése: Mérőműszerek használata, mérések végzése A követelménymodul száma: 396-6 A tartalomelem
A 2009-es vizsgákon szereplő elméleti kérdések
Kivezérelhetőség és teljesítményfokozatok: A 2009-es vizsgákon szereplő elméleti kérdések 1. Ismertesse a B osztályú teljesítményfokozat tulajdonságait (P fmax, P Tmax, P Dmax(1 tr), η Tmax )! (szinuszos
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia
Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők
Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek
Hobbi Elektronika. Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások
Hobbi Elektronika Bevezetés az elektronikába: Egyszerű tranzisztoros kapcsolások 1 Felhasznált irodalom Torda Béla: Bevezetés az elektrotechnikába 2. CONRAD Elektronik: Elektronikai kíséletező készlet
Impulzustechnikai áramkörök szimulációja és dokumentálása
Dienes Zoltán Impulzustechnikai áramkörök szimulációja és dokumentálása A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem
3. Mérés. Áramkör építési gyakorlat III. Rezgéskeltők II
3. Mérés Áramkör építési gyakorlat III. Rezgéskeltők II. 204.03.5. Az elkövetkező mérés első fele két kapcsolás erejéig tovább taglalja a műveleti erősítővel megvalósítható egyszerű oszcillátorok témakörét:
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri
Az ideális feszültségerősítő ELEKTRONIKA_2
Az ideális feszültségerősítő ELEKTRONIKA_2 Elektronika 2 (Kód:INBK812) Kredit: 2 Óraszám: 2/hét Vizsgáztatás: ZH_1(a hetedik előadás helyet) ZH_2(a 14-edik előadás helyet) szóbeli a vizsgaidőszakban Értékelés:
Elektronikai laboratóriumi gyakorlatok. Bevezető előadás
Elektronikai laboratóriumi gyakorlatok Bevezető előadás Elérhetőségek Nukleáris Technikai Intézet Laboratórium: R. ép. II. emelet 214. terem Tárgyfelelős: Dr. Pór Gábor (por@reak.bme.hu) Laborvezető: Farkas
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Billenőkörök. Mindezeket összefoglalva a bistabil multivibrátor az alábbi igazságtáblázattal jellemezhető: 1 1 1 nem megen
Billenőkörök A billenőkörök, vagy más néven multivibrátorok pozitívan visszacsatolt, kétállapotú áramkörök. Kimeneteik szigorúan két feszültségszint (LOW és HIGH) között változnak. Rendszerint két kimenettel
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
11.2. A FESZÜLTSÉGLOGIKA
11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy
1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás
1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! gerjedés Bode hurokerősítés nem-invertáló db pozitív visszacsatolás követő egységnyi Kösse össze a két oszlop egy-egy összetartozó fogalmát!
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE
MÉŐEŐSÍTŐK MÉŐEŐSÍTŐK EEDŐ FESZÜLTSÉGEŐSÍTÉSE mérőerősítők nagy bemeneti impedanciájú, szimmetrikus bemenetű, változtatható erősítésű egységek, melyek szimmetrikus, kisértékű (általában egyen-) feszültségek
Passzív és aktív aluláteresztő szűrők
7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három
MUNKAANYAG. Farkas József. Digitális áramkörök méréstechnikája. A követelménymodul megnevezése: Mérőműszerek használata, mérések végzése
Farkas József Digitális áramkörök méréstechnikája követelménymodul megnevezése: Mérőműszerek használata, mérések végzése követelménymodul száma: 396-6 tartalomelem azonosító száma és célcsoportja: SzT-2-3
Tranzisztoros erősítő vizsgálata. Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás?
Tranzisztoros erősítő vizsgálata Előzetes kérdések: Mire szolgál a bázisosztó az erősítőkapcsolásban? Mire szolgál az emitter ellenállás? Mi az emitterkövető kapcsolás 3 jellegzetessége a földelt emitterűhöz
MŰVELETI ERŐSÍTŐK MÉRÉSE
MISKOLCI EYETEM ILLMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKI- ELEKTRONIKI TNSZÉK DR. KOÁCS ERNŐ MŰELETI ERŐSÍTŐK MÉRÉSE FŐISKOLI SZINTŰ, LEELEZŐ TOZTOS ILLMOSMÉRNÖK HLLTÓKNK MÉRÉSI UTSÍTÁS 2003. MŰELETI ERŐSÍTŐS
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
Elektronika Előadás. Műveleti erősítők. Alapkapcsolások műveleti erősítővel.
Elektronika 1 8. Előadás Műveleti erősítők. Alapkapcsolások műveleti erősítővel. Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,
Érzékelők és beavatkozók
Érzékelők és beavatkozók DC motorok 3. rész egyetemi docens - 1 - DC motorvezérlés H-híd: +V r Motor mozgatás előre Motor mozgatás hátra Fékezés Szabadonfutás a vezérlés függvényében UL LL + Ø - UR LR
1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak:
Az erősítő alapkapcsolások, de a láncbakapcsolt erősítők nem minden esetben teljesítik azokat az elvárásokat, melyeket velük szemben támasztanánk. Ilyen elvárások lehetnek a következők: nagy bemeneti ellenállás;
Elektronika Előadás. Műveleti erősítők felépítése, ideális és valós jellemzői
Elektronika 2 1. Előadás Műveleti erősítők felépítése, ideális és valós jellemzői Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök,
Zh1 - tételsor ELEKTRONIKA_2
Zh1 - tételsor ELEKTRONIKA_2 1.a. I1 I2 jelforrás U1 erősítő U2 terhelés 1. ábra Az 1-es ábrán látható erősítő bemeneti jele egy U1= 1V amplitúdójú f=1khz frekvenciájú szinuszos jel. Ennek megfelelően
Irányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális
Elektronikai laboratóriumi gyakorlatok. Bevezető előadás
Elektronikai laboratóriumi gyakorlatok Bevezető előadás Elérhetőségek Nukleáris Technikai Intézet R. ép. III. emelet, Titkárság telefonszáma: 463-2523 Laboratórium: R. ép. II. emelet 214. terem Tárgyfelelős:
Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek
Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos
Teljesítményerősítők ELEKTRONIKA_2
Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.
O s z c i l l á t o r o k
O s z c i l l á t o r o k Az oszcillátorok periodikus jelet előállító jelforrások, generátorok, azaz olyan áramkörök, amelyeknek nincs bemenete, csak kimenete. A jelgenerálás alapja a pozitív visszacsatolás.
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Nagyfrekvenciás rendszerek elektronikája házi feladat
Nagyfrekvenciás rendszerek elektronikája házi feladat Az elkészítendő kis adatsebességű, rövidhullámú, BPSK adóvevő felépítése a következő: Számítsa ki a vevő földelt bázisú kis zajú hangolt kollektorkörös
ELEKTRONIKA I. (KAUEL11OLK)
Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az
Ideális műveleti erősítő
Ideális műveleti erősítő Az műveleti erősítő célja, hogy alap építőeleméül szolgáljon analóg matematikai műveleteket végrehajtó áramköröknek. Az ideális műveleti erősítő egy gyakorlatban nem létező áramköri
Foglalkozási napló a 20 /20. tanévre
Foglalkozási napló a 20 /20. tanévre Audio- és vizuáltechnikai műszerész szakma gyakorlati oktatásához OKJ száma: 35 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának
Vizuális segédlet az Elektrotechnika II. laboratóriumi mérési gyakorlataihoz
Vizuális segédlet az Elektrotechnika II. laboratóriumi mérési gyakorlataihoz 2007. dr. Kloknicer Imre laborvezet 2 Tartalom 1. Bevezetés 2. Mérések 2.1 1. sz. mérés (dióda, Zener dióda) 2.2 2. sz. mérés
10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások
10. Konzultáció: Erősítő fokozatok összekapcsolása, visszacsatolások, műveleti erősítők és műveleti erősítős kapcsolások "Elektrós"-Zoli 2013. november 3. 1 Tartalomjegyzék 1. Erősítő fokozatok összekapcsolása
Gingl Zoltán, Szeged, dec. 1
Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:
ÉRETTSÉGI VIZSGA május 16. TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA május 16. 8:00. Időtartam: 180 perc
ÉRETTSÉGI VIZSGA 2018. május 16. TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA 2018. május 16. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati Beadott fájlok nevei EMBERI ERŐFORRÁSOK
1. ábra A Wien-hidas mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!
Koincidencia áramkörök
Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ
ÁLTALÁNOS SZENZORINTERFACE KÉSZÍTÉSE HANGKÁRTYÁHOZ SIMONEK PÉTER KONZULENS: DR. OROSZ GYÖRGY MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK 2017. MÁJUS 10. CÉLKITŰZÉS Tesztpanel készítése műveleti erősítős